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Abstract

A non-linear SEIR mathematical model for coronavirus disease in India has been proposed, by
incorporating the saturated incidence rate on the occurrence of new infections. In the model, the
threshold quantity known as the reproduction number is evaluated which determines the stability
of disease-free equilibrium and the endemic equilibrium points. The disease-free equilibrium point
becomes globally asymptotically stable when the corresponding reproduction number is less than
unity, whereas, if it is greater than unity then the endemic equilibrium point comes into existence,
which is locally asymptotically stable under certain restrictions on the parameters value in the
model. The impact of various parameters on the threshold quantity is signified by the sensitivity
analysis. Numerical results imply that by implementing and strictly following the prevention mea-
sures a rapid reduction in the reproduction number for COVID-19 can be observed, through which
the coronavirus disease can be controlled.
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1. Introduction

Coronavirus disease (COVID-19) is a transmissible disease caused by a newly discovered coron-
avirus. COVID-19 is a new epidemic and the hazardous coronavirus turned-up in Wuhan, China, in
the month of December 2019. Before that outbreak of COVID-19 disease in China, the world was
not well known to it. According to the World Health Organization (2020a), there are three ways of
transmission of COVID-19 virus defined as:

(1) Symptomatic transmission: The transmission of virus from an infected individual who is ex-
periencing the symptoms of coronavirus and can infect others.

(2) Pre-symptomatic transmission: The transmission of virus by people who don’t look or feel
sick, but will eventually get symptoms later. They can also infect others even without getting
symptoms (CNN report (2020)).

(3) Asymptomatic transmission: The transmission of the virus by infected people who do not have
symptoms and will never get symptoms from their infection, but these infected carriers could
still infect others (CNN report (2020)).

By globally affecting many countries, COVID-19 has now become a pandemic. By the end of
September 25, 2020, a report from WHO says that worldwide confirmed cases of COVID-19 were
32, 755, 202 (Worldometer (2020a)) and total deceased had reached 992, 979 with the case fatality
rate about 3.03%. Recent worldwide data indicate that the cluster of cases is a major reason for
increasing the incidence of COVID-19 on a large scale.

In India, community transmission was initially a reason for the spread of COVID-19. As reported
by the World Health Organization (2020b), the cluster of cases has now become a major concern for
it. As of September 25, 2020, total confirmed cases of COVID-19 in India were around 5, 901, 571
also, total deceased has crossed 93, 410. In India, the number of infected people recovered from the
COVID-19 disease is more than 4, 900, 000. According to the World Health Organization (2020c),
individuals infected with other immune based comorbidities are more vulnerable to become in-
fected with coronavirus, which has majorly led to more than 70% deaths due to COVID-19 disease
in India. The government of India, has advised not to travel the highly infected regions and quaran-
tine to those who are returning from such regions. As this pandemic has become a severe concern in
India, the government has restricted international travelling to stop disease transmission (Colbourn
(2020); World Health Organization (2020a)).

Mathematical modeling is an important instrument to understand the real-world problems. So far,
many efforts have been taken into account to develop realistic mathematical models together with
the investigation of the transmission dynamics of infectious diseases and the researchers are still
working to improve it. The disease can be supervised by forecasting the importance of public
health interventions and predicted patterns of epidemics, which in turn help to formulate the epi-
demiological model.
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Many researchers started to work with the basic SIR and SEIR models to understand the
transmission dynamics of infectious diseases (Awoke and Semu (2018); Pradhan et al. (2019);
Tanvi and Aggarwal (2020b); Tanvi et al. (2020); Yaghoubi and Najafi (2020); Wang et al.
(2009)). Manyombe et al. (2020) proposed a mathematical model to describe the viral infec-
tion of HIV-1 with both cell-to-cell and virus-to cell transmission together with four distributed
delays. Nowadays, many researchers have also started considering more realistic mathematical
models with saturated incidence rate than the bilinear incidence rate (βIS), in order to cap-
ture the behavioural changes of population when infected population increases (Liu (2019);
Liu and Yang (2012)). Hsu and Hsieh (2005) have proposed a mathematical model by incor-
porating the saturated incidence rate induced by quarantine and other prevention measures im-
plemented by the health authorities in addition to the behavior changes observed in the pop-
ulation to avoid infection. Dongmei and Ruan (2007) described an SIR model by consider-
ing nonmonotonic incidence rate to describe the psychological effects of certain infectious dis-
eases on the society. The global outbreak of COVID-19 attracts the curiosity of researchers
to work upon it. Several mathematical modeling problems have been proposed by the re-
searchers to interpret the transmission of COVID-19 (Annas et al. (2020); Ahmad et al. (2020);
Chen et al. (2020); Kucharski et al. (2020); Mandal et al. (2020); Pang et al. (2020); Prem et
al. (2020); Quaranta et al. (2020); Shahidul et al. (2020); Wilder-Smith and Freedman (2020);
Zhang et al. (2020)). In an article of Yang and Wang (2020), they suggested a mathematical model
comprising both environment to human and human to human routes for the transmission of coro-
navirus. The transmissibility rate of super spreaders in a mathematical model for the spread of
COVID-19 disease is discussed by Ndairou et al. (2020) and they investigated the sensitivity anal-
ysis of the model corresponding to different parameters. Lin et al. (2020), studied the government
actions and behavioural reaction of individuals as control measures to propose a conceptual model.

In accordance with the above mentioned papers, we have introduced a non-linear mathematical
model by introducing the saturated incidence rate to anticipate the effect of prevention measures
that create obstructions in the transmission of COVID-19 disease from infectives to susceptibles.
Therefore, we have introduced a Holling type-II (Dubey et al. (2013)) function as the incidence
rate. The Holling type-II function signifies the fact that when the number of infected individuals is
very large then the improvement through behavioural changes (infection prevention, self quaran-
tine and isolation) can be observed in susceptibles as well as infectives in order to create hindrance
in the spread of infection and this may happen because of media or self awareness amongst in-
dividuals. At this time, upholding the role of government strategies is a prerequisite; that is, a
continuance of quarantine, social distancing, isolation of infectives and adequate treatment facil-
ity to minimize the COVID-19 disease from the population. All the quantitative and qualitative
analysis of the proposed model have been done using Perko (1991) and Strogatz (2014).

The paper is organized in the following manner. A non-linear mathematical model to study the
transmission dynamics of COVID-19 has been proposed in the second section. Together with, the
location and existence of the disease-free and the endemic equilibrium points, we have estimated
the reproduction number in the third section. The fourth section deals with the stability analysis of
the disease free equilibrium and the endemic equilibrium points. In the fifth section, the sensitivity
analysis of the reproduction number with respect to various parameters is determined. In the sixth
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section, the system is solved numerically to signify the impact of prevention measures on disease
spread. In the seventh section, we concluded the results with a brief discussion.

2. Model formation

In this section, we have introduced a non-linear SEIR mathematical model by incorporating a
saturated incidence rate, to describe the transmission dynamics of COVID-19. To begin with the
model, we assume that the population is homogeneously distributed. A constant recruitment rate
Λ is presumed, with which population is entering into the class of susceptibles. Further we do not
distinguish between asymptomatic infected individuals and symptomatic infectives as both of them
are contagious and as reported by (ECDC (2020)), there is no significant difference in their viral
load. For formulating the model, the total population N(t) is divided into four mutually exclusive
compartments defined as

• S(t) - the class of population susceptible to COVID-19 disease.

• E(t) - the class of pre-symptomatic individuals exposed to coronavirus, capable to infect other.

• I(t) - the class of symptomatic and asymptomatic infected individuals.

• R(t) - the class of population recovered from the disease.

Thus, the total population N(t) is given as

N(t) =S(t) + E(t) + I(t) +R(t).

Susceptibles

Exposed
individuals

Infectives

Recovered

Λ

µ

(µ+ µE) (µ+ µI)

µ

λ

k

δ

τ

Figure 1. Schematic diagram of mutually distinct classes for the COVID-19 model
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Susceptibles receive infection of COVID-19 disease, after having an effective contact with exposed
or infected individuals. The force of infection, λ, associated with the transmission is a Holling
type-II function given as

λ = β

(
ηE

1 + γ1E
+

I

1 + γ2I

)
. (1)

In the expression of λ, a parameter β denotes the transmission rate of infection. The modification
parameter η < 1, signifies that the exposed individuals have less viral load than the infected in-
dividuals to spread the infection. Terms 1

1+γ1E
and 1

1+γ2I
(contributing a vital role in the model)

measure the inhibition effect from the behavioural change of exposed individuals and infectives,
corresponding to increment in the number of exposed and infected individuals, respectively. The
term γ1, determines the behavioural changes such as infection prevention and social distancing
taken under consideration by uninfected population. Infection prevention comprises various mea-
sures such as rigorous hand-washing schemes, respiratory etiquettes and the use of surgical face
masks. The term social distancing focuses on reducing physical contact between infectives and
susceptibles as a means of interrupting transmission of coronavirus. There are various kinds of
social distancing measures such as individual level social distancing which includes quarantine of
individuals, having close contact with a newly detected infected individual and measures affecting
groups of individuals, which consists the restriction of mass gatherings, closure of workplaces,
educational institutes, border closures and travelling restrictions. Whereas, the term γ2 measures
the effectiveness of facilities provided by the healthcare authorities, which comprises isolation of
infectives, establishing treatment facilities for sub-intensive and intensive care needs together with
reducing the workload on healthcare workers. The effectiveness of these interventions increases
with increase in the number of exposed and infected populations, which in result decrease the
number of new infections. It can be observed in the following expression:

lim
E,I→∞

β

(
ηE

1 + γ1E
+

I

1 + γ2I

)
= β

(
η

γ1

+
1

γ2

)
.

Thus, the saturated incidence rate is more effective as it prevents the unboundedness of the force
of infection considering suitable parameters.

At the rate λS, susceptibles switch into the exposed class. It is assumed that, after remaining under
the incubation period, exposed individuals proceed to the class of infectives, with the progression
rate kE, where k is a progression coefficient (indicates the inverse of incubation period). After
taking treatment of the disease, the number of infectives headway to the class of recovered individ-
uals by the rate δI , as δ is the recovery rate of infectives. Further, evidence from other coronavirus
infections (SARS and MERS) suggest that recovered individuals are likely to be immune from
re-infection as a result of development of antibodies in their body as reported by ECDC (2020).
However, it is assumed that a small fraction of these individuals will not get permanent immu-
nity due to compromised immune systems and hence become susceptible again at the rate τ . The
model is described along with a schematic diagram given in Figure (1). By considering the above
described facts and definition of various parameters, the mathematical representation of the model
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Table 1. Description of parameters for the COVID-19 model

Parameter Description
Λ constant recruitment rate
β transmission rate for coronavirus
µ natural death rate
µE disease induced death rate of exposed individuals
µI disease induced death rate of infectives
k progression rate from exposed class to infected class
δ recovery rate of infected individuals
τ progression rate from recovered to susceptible class
γ1 effectiveness of behavior change in exposed individuals
γ2 effectiveness of behavior change in infected individuals
η modification parameter

is
dS

dt
= Λ− λS + τR− µS,

dE

dt
= λS − kE − (µ+ µE)E,

dI

dt
= kE − δI − (µ+ µI)I,

dR

dt
= δI − τR− µR,

(2)

with the initial conditions given as

S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0 and R(0) = R0 > 0. (3)

2.1. Basic properties of the model

To prove that the model is well posed, all the solution components S(t), E(t), I(t) and R(t) must
be positive for all time t > 0, as all the classes imply human population. This can be easily verified
by following Tanvi and Aggarwal (2020a). Based on biological reasons, the following feasible
region will be considered

Ω =

{
(S,E, I, R) ∈ R4

+ : N(t) 6
Λ

µ

}
.

Now, to prove the boundedness of the components of solution, we observe that

N ′(t) = Λ− µN(t)− µEE − µII 6 Λ− µN(t).

Thus, we obtain
dN

dt
+ µN 6 Λ,
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from which we get

N(t) 6 N(0)e−µt +
Λ

µ
(1− e−µt).

Therefore, if N(0) 6 Λ
µ

, we get 0 < N(t) 6 Λ
µ

. This proves the boundedness of N(t) and in turn,
N(t) proves the boundedness of all the components of solution for the model. Thus, mathemat-
ically the model system (2) is a well-posed model. Based on the above discussion, we state the
following theorem.

Theorem 2.1.

For the model system (2), together with the initial conditions given by (3), all the solution compo-
nents S(t), E(t), I(t) and R(t) are positive for t > 0. Further, the region Ω is positively invariant;
that is, all the solutions starting in Ω remain in Ω.

3. Equilibrium points

In this section, we determine the basic reproduction number and the equilibrium points to describe
the steady state of the model system (2). The equilibrium points for the model system (2) can be
determined by solving the following system of simultaneous equations:

Λ− λS + τR− µS = 0,

λS − kE − (µ+ µE)E = 0,

kE − δI − (µ+ µI)I = 0,

δI − τR− µR = 0.

(4)

A state when no coronavirus infection is present in the population is described by the disease-free
equilibrium point for the model system (2), computed as

Q0 =

(
Λ

µ
, 0, 0, 0

)
. (5)

3.1. The basic reproduction number

The basic reproduction number, denoted byR0, is a threshold quantity which calculates the average
number of secondary infections generated by a single infected individual in an entirely susceptible
population (Jones (2007)). It measures the contagiousness of the disease and informs about the
urgency of implementing the prevention measures to avoid the disastrous situation. It majorly
depends on three factors:

• The probability of acquiring infection when an infected individual comes in contact with a
susceptible.
• The average rate of contact between susceptibles and infectives.



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 1053

• The duration of infectiousness of infectives.

To evaluate the basic reproduction number by using the next-generation matrix approach (Driess-
che and Watmough (2002)), we compute matrices V and F corresponding to the transfer and the
new infection terms, respectively. Matrices V and F are given as

F =

[
ηβ Λ

µ
β Λ
µ

0 0

]
and V =

[
k + µ+ µE 0
−k1 δ + µ+ µI

]
.

Therefore, by calculating FV −1 we obtain the basic reproduction numberR0 = ρ(FV −1), as

R0 = βη
Λ

µ(k + µ+ µE)
+ βk

Λ

µ(k + µ+ µE)(δ + µ+ µI)
. (6)

3.2. The endemic equilibrium point

After solving the system of equations given by (4) in terms of the force of infection λ, the endemic
equilibrium point for the model system (2) is obtained as Q∗ = (S∗, E∗, I∗, R∗). The components
of Q∗ are given as follows

S∗ =
Λ(k + µ+ µE)(δ + µ+ µ)(τ + µ)

(k + µ+ µE)(δ + µ+ µ)(τ + µ)(λ+ µ)− δkλτ
,

E∗ =
Λλ(δ + µ+ µ)(τ + µ)

(k + µ+ µE)(δ + µ+ µ)(τ + µ)(λ+ µ)− δkλτ
,

I∗ =
Λkλ(τ + µ)

(k + µ+ µE)(δ + µ+ µ)(τ + µ)(λ+ µ)− δkλτ
,

R∗ =
Λδkλ

(k + µ+ µE)(δ + µ+ µ)(τ + µ)(λ+ µ)− δkλτ
.

(7)

We can compute the force of infection λ, by using the expression

λ = β

(
ηE∗

1 + γ1E∗
+

I∗

1 + γ2I∗

)
.

After some algebraic calculations, we obtain that λ satisfies the following cubic equation

A2λ
3 + A1λ

2 + A0λ = 0, (8)

where

A2 = (δkτ)2 + γ1γ2kΛ2VW 2 + γ2kΛUVW 2 + γ1ΛUV 2W 2 + (UVW )2

− δkΛτW (γ2k + γ1V )− 2δkτUVW,

A1 = ΛkUVW 2(γ2µ− β) + ΛUV 2W 2(γ1µ− βη) + 2µ(UVW )2 + δk2ΛτβW

+ δkΛηβτV W − 2δkτµUVW − (γ1 + ηγ2)kΛ2βVW 2,

A0 = (µUVW )2 − βΛµUVW 2(ηV + k).

(9)
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In the expression given by (9), the terms, U, V and W are computed as

U = k + µ+ µE,

V = δ + µ+ µI ,

W = τ + µ.

From Equation (8), we get

either λ = 0 or A2λ
2 + A1λ+ A0 = 0. (10)

The term λ = 0, gives the disease-free equilibrium point and λ∗ satisfying the quadratic equation in
(10), corresponds to the unique endemic equilibrium point. The endemic equilibrium point exists,
if all the components of Q∗ are positive, which is possible, only if the force of infection (λ) is
positive.

It can be easily observed thatA2 > 0, whereas,A0 < 0 only ifR0 > 1 . Thus, by Descarte’s rule of
sign, the quadratic equation A2λ

2 +A1λ+A0 = 0 has a unique positive real root λ whenR0 > 1,
which proves the existence and uniqueness of the endemic equilibrium pointQ∗ = (S∗, E∗, I∗, R∗)
forR0 > 1. We summarize the above discussion in the following theorem.

Theorem 3.1.

The unique endemic equilibrium point Q∗ = (S∗, E∗, I∗, R∗) for the model system (2) exists, if
R0 > 1.

4. Stability analysis of the equilibrium points

In this segment, the stability analysis has been performed to visualize the behavior of solution
trajectories near the equilibrium points.

Theorem 4.1.

The disease-free equilibrium point Q0, for the model system (2) is locally asymptotically stable, if
R0 < 1 and is unstable, otherwise.

Proof:

The Jacobian matrix corresponding to the model system (2) is evaluated at the disease-free equi-
librium point Q0, given as

J0 =


−µ −ηβ Λ

µ
−β Λ

µ
τ

0 ηβ Λ
µ
− (k + µ+ µE) β Λ

µ
0

0 k −(δ + µ+ µI) 0
0 0 δ −(µ+ τ)

 .
The characteristic equation of J0 is

(λ+ µ)(λ+ (µ+ τ))(λ2 + C1λ+ C0) = 0,
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where

C1 = (k + µ+ µE) + (δ + µ+ µI)− ηβ
Λ

µ
,

C0 = (k + µ+ µE)(δ + µ+ µI)− β
Λ

µ
(η(δ + µ+ µI) + k) .

The first two linear factors give two eigenvalues, as λ1 = −µ and λ2 = −(µ + τ). The remaining
quadratic factor is λ2 +C1λ+C0 = 0. In a quadratic factor, C0 and C1 are positive only if R0 < 1.
Therefore, according to the Routh-Hurwitz criterion both the roots of λ2 + C1λ + C0 = 0 have
negative real parts, ifR0 < 1. Thus, forR0 < 1, all the eigenvalues of J0 have a negative real part.
Therefore, the disease-free equilibrium point is locally asymptotically stable, if the corresponding
reproduction number is less than unity and is unstable, otherwise. �

For proving the global stability of the disease-free equilibrium point by following Castillo-Chavez
et al. (1999), we rewrite the model system (2) as

dU

dt
= F (U, I),

dI

dt
= G(U, I), (11)

G(U, 0) = 0,

where U denotes the number of uninfected individuals and I denotes the number of infected indi-
viduals. According to Castillo-Chavez et al. (1999), the following two conditions are sufficient to
guarantee the global stability of the disease-free equilibrium point (U0, 0):

(H1) For dU
dt

= F (U, 0), U0 is globally asymptotically stable,
(H2) G(U, I) = AI − Ĝ(U, I), where Ĝ(U, I) > 0 for (U, I) ∈ G′,

where A = DIG(U0, 0) is a M-matrix and G′ is a region, where the model makes biological sense.

Theorem 4.2.

The disease-free equilibrium point Q0 = (Λ
µ
, 0, 0, 0) for the model system (2), is globally asymp-

totically stable, ifR0 < 1 and the conditions expressed in (H1) and (H2) are satisfied.

Proof:

In the previous theorem the local asymptotic stability of Q0 has been proved for R0 < 1. Thus,
the global stability of Q0 can only be proved in the region where R0 < 1. For this, we let U =
(S,R)T ∈ R2

+ be the vector whose coordinates represent the uninfected classes of population
and I = (E, I)T ∈ R2

+ be the vector whose coordinates represent the two infected classes of
population. Here, Q0 = (U0, 0), where U0 = (Λ

µ
, 0). For the model system (2), F (U, I) of equation
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(11) can be written as

F (U, I) =

[
Λ− λS + τR− µS
δI − τR− µR

]
.

Hence,

F (U, 0) =

[
Λ + τR− µS
−(τ + µ)R

]
.

It is obvious that, U0 =
(

Λ
µ
, 0
)

is globally asymptotically stable for F (U, 0).

Now, for condition (H2) we consider

G(U, I) =

[
λS − (k + µ+ µE)E
kE − (δ + µ+ µI)IT

]
.

We also have, G(U, I) = AI − Ĝ(U, I), from which we obtain

Ĝ(U, I) =

[
Ĝ1(U, I)

Ĝ2(U, I)

]
=

[
β Λ
µ

(ηE + I)− βS
(
η E

1+γ1E
+ I

1+γ2I

)
0

]

>

[
β Λ
µ

(
ηE γ1E

1+γ1E
+ I γ2I

1+γ2I

)
0

]
.

It can be clearly seen that Ĝ(U, I) > 0. Thus, both the conditions (H1) and (H2) are satisfied,
which prove the global asymptotic stability of the disease-free equilibrium point for R0 < 1.
Epidemiologically, it means the disease can be eradicated from the population in the long run, if
the corresponding reproduction number is less than unity. �

Now, for the model system (2), we define four new variables S = x1, E = x2, I = x3, andR = x4,
to illustrate the local asymptotic stability of the endemic equilibrium point Q∗, in such a manner
that x1 + x2 + x3 + x4 = 1. Thus, the model system (2), can be expressed as

dx1

dt
= Λ− λx1 + τx4 − µx1,

dx2

dt
= λx1 − (k + µ+ µE)x2,

dx3

dt
= kx2 − (δ + µ+ µI)x3,

dx4

dt
= δx3 − (µ+ τ)x4.

(12)

The force of infection λ, can be expressed as

λ =
ηβx2

1 + γ1x2

+
βx3

1 + γ2x3

.
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The linearization matrix for the model system (2) evaluated at the disease-free equilibrium point
Q0, is obtained as

J0 =


−µ −ηβ Λ

µ
−β Λ

µ
τ

0 ηβ Λ
µ
− (k + µ+ µE) β Λ

µ
0

0 k −(δ + µ+ µI) 0
0 0 δ −(µ+ τ)

 .
After lettingR0 = 1, we obtain the bifurcation parameter as:

β = β∗ =
µ

Λ

[(δ + µ+ µI)(k + µ+ µE)

η(δ + µ+ µI) + k

]
.

It is straightforward to observe that 0 is a simple eigenvalue, corresponding to the matrix J0 for
R0 = 1. Also for R0 = 1, it can be observed in theorem (4.1) that C1 is positive. Thus, the
remaining three eigenvalues of J0 have negative real parts. Therefore, we can decompose the
neighbourhood of the disease-free equilibrium point into a one dimensional center manifold and
a three-dimensional stable manifold. Thus, the center manifold theory (Carr (1981)) can be used
to investigate the local stability of the endemic equilibrium point Q∗. For convenience, the the-
orem given by Castillo-Chavez and Song (2004) to determine the local stability of the endemic
equilibrium point is stated as follows.

Theorem 4.3.

Consider, the following general system of ordinary differential equations with a parameter φ:

dx

dt
= f(x, φ),

f : Rn × R→ R and C2(Rn × R),
(13)

where 0 is an equilibrium point of the system (that is, f(0, φ) = 0 for all φ), and assume

(1) A = Dxf(0, 0) =
(
dfi
dxj

(0, 0)
)

is the linearization matrix of system (13) at the equilibrium 0
and φ evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have a
negative real part.

(2) Matrix A has a right eigenvector w and a left eigenvector v (each corresponding to the zero
eigenvalue).
Let fk be the kth component of f and

a =
n∑

k,j,i=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0). (14)

The local dynamics of the system around 0 is totally determined by the signs of a and b.

(a) a > 0, b > 0. When φ < 0 with |φ| << 1, 0 is locally asymptotically stable and there exists
a positive unstable equilibrium; when 0 < φ << 1, 0 is unstable and there exists a negative,
locally asymptotically stable equilibrium point.

(b) a < 0, b < 0. When φ < 0 with |φ| << 1, 0 is unstable; when 0 < φ << 1, 0 is locally
asymptotically stable and there exists a positive, unstable equilibrium point.
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(c) a > 0, b < 0. When φ < 0 with |φ| << 1, 0 is unstable and there exists a negative, locally
asymptotically stable equilibrium; when 0 < φ << 1, 0 is stable and a positive unstable
equilibrium appears.

(d) a < 0, b > 0. When φ changes sign from negative to positive, 0 changes its stability from
stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and
locally asymptotically stable.

Now, we have to compute the right and left eigenvectors corresponding to the matrix J0. The right
eigenvector of the matrix J0 is w = [w1, w2, w3, w4], with its components computed as

w1 =
β∗Λ(k + µ+ µE)

µ(ηβ∗ − µ(k + µ+ µE))
, w2 =

β∗Λ

µ(k + µ+ µE)
, w3 = 1 and w4 =

δ

τ + µ
.

The components of the left eigenvector v = [v1, v2, v3, v4, ] satisfying vJ0 = 0, are obtained as

v1 = 0, v2 = 1, v3 =
β∗Λ

µ(δ + µ+ µI)
and v4 = 0.

Computation of a and b. Now, by computing the partial derivatives of f2 and f3 with respect
to x1, x2, x3, x4 and β∗, the non-zero partial derivatives evaluated at the disease-free equilibrium
point are obtained as

∂2f2

∂x1∂x2

= ηβ∗,
∂2f2

∂x1∂x3

= β∗,
∂2f2

∂x2
2

= −2ηβ∗
Λγ1

µ
,
∂2f2

∂x2
3

= −2β∗
Λγ2

µ
,

∂2f2

∂x2∂β∗
= η

Λ

µ
and

∂2f2

∂x3∂β∗
=

Λ

µ
.

Thus, the values for a and b are computed as

a =
4∑

k,j,i=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

= 2β∗
Λ

µ

(
τµ(k + µ+ µE)

(µ+ τ)(µ(k + µ+ µI)− ηβ∗)
− γ2 −

β∗µ2(k + µ+ µI)
2 + ηβ∗γ1Λ2

(µ(k + µ+ µI)− ηβ∗Λ)2

)
,

b =
4∑

k,i=1

vkwi
∂2fk
∂xi∂β∗

(0, 0),

= v2

(
w2

∂2f2

∂x2∂β∗
+ w3

∂2f2

∂x3∂β∗

)
,

=
Λ

µ
(ηw2 + w3) > 0.

It can be observed that a < 0, only if

γ2 >
τµ(k + µ+ µE)

(µ+ τ)(µ(k + µ+ µI)− ηβ∗)
− β∗µ2(k + µ+ µI)

2 + ηβ∗γ1Λ2

(µ(k + µ+ µI)− ηβ∗Λ)2
. (15)

Therefore, the interior endemic equilibrium point for the model system (2), is locally asymptot-
ically stable for R0 > 1 and β∗ < β, with β close to β∗, if Equation (15) holds. The above
discussion can be summarized in the following theorem.
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Theorem 4.4.

The endemic equilibrium pointQ∗ corresponding to the model system (2) is locally asymptotically
stable forR0 > 1, if

γ2 >
τµ(k + µ+ µE)

(µ+ τ)(µ(k + µ+ µI)− ηβ∗)
− β∗µ2(k + µ+ µI)

2 + ηβ∗γ1Λ2

(µ(k + µ+ µI)− ηβ∗Λ)2
. (16)

Further, if Equation (16) holds, the system exhibits a supercritical transcritical bifurcation at
R0 = 1, with β = β∗ as a bifurcation parameter.

5. Sensitivity analysis

In this segment, the significance of sensitivity of the threshold quantity, R0, to the parameters of
the model is discussed. Sensitivity analysis is commonly used to acknowledge the vitality of model
prediction to parameters value. Due to the common occurrence of errors, while using presumed pa-
rameters value and collecting data, determination of the relative importance of the various factors
becomes imperative, that may affect transmission and prevalence of the disease. Therefore, it is
important to study the relative change in the reproduction number with respect to a parameter. In
respect of this, the ratio of the relative change in a variable to the relative change in a parameter
provides the normalized forward sensitivity index. The normalized forward sensitivity index, as-
sists to determine how to reduce human morbidity and mortality due to a disease. Alternatively,
the sensitivity index can be evaluated on the basis of partial derivatives, provided that a variable
can be differentiated with respect to a parameter.

Definition 5.1.

The normalized forward sensitivity index of a variable, u, that depends differentiably on a param-
eter p, is defined as Chitnis et al. (2008)

Υu
p :=

∂u

∂p

p

u
. (17)

With respect to all existing parameters in the threshold quantity, R0, the sensitivity of R0 de-
termines the parameters having an immense impact on the reproduction number, R0. By using
parameters value given in Table 3, the sensitivity indices will be given.

By using the sensitivity index ofR0 to the parameters, we have analyzed the following points:

• From ΥR0

β = 1, we deduce that with the increment (reduction) of any fraction of amount
in the transmission rate β, R0 also increases (decreases) by the same fraction. Therefore, as
transmission rate gets lower, the disease also vanishes from the community.
• From ΥR0

Λ = 1, we can conclude that, with the gain (fall) of 10% in the recruitment rate Λ,R0

also increases(decreases) by 10%, which may lead to an epidemic.
• From ΥR0

δ = −0.541474, it can be observed that increasing the recovery rate δ for infectives
by 10%, the reproduction number diminishes by 5.41474%. Therefore, the faster recovery of
infected individuals will give the rapid reduction in the reproduction number.
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Table 2. Sensitivity indices ofR0 to the parameters value

parameter Sensitivity index (R0)

β 1
Λ 1
k −0.358669
µ −1.00069
µE −0.00199523
µI −0.0971727
δ −0.541474
η 0.361054

• From ΥR0

η = 0.361054, it can be realized that R0 changes positively by 3.61054% as η in-
creases by 10%. That is, as η reduces, exposed individuals transmit COVID-19 disease with a
lower rate, which in turn helps to reduce the reproduction number,R0.

From the above observations, it can be figured out that the sensitivity indices provide vital infor-
mation by analyzing the mathematical model with the data taken into account.

6. Numerical simulations

In this section, we perform numerical simulations to analyze the model and justify the analytical
results. The disease COVID-19 had already affected India at the beginning of the month of March
2020. By the end of September 2020 in India, COVID-19 has become a pandemic disease. We
simulate the non-linear model by estimating the data which include the number of confirmed cases,
active cases, recovered cases and deaths due to coronavirus during the month of September 2020
(that is, from September 1, 2020 to September 25, 2020), to study the transmission dynamics of
COVID-19 in India. Therefore, the initial number of susceptibles is chosen as S(0) = 1.3 × 109

(MoHFW (2020)), with initial conditions for the remaining classes as E(0) = 1, 022, 200, I(0) =
800, 127 and R(0) = 2, 836, 945. Now, we will discuss the estimation of parameters value.

The estimated value of baseline parameters are computed from COVID-19 data sources such
as the Worldometer (2020b), World Health Organization (2020a) and the published literature.
In India, the daily number of births ranges between 45, 000 − 70, 000 (India population live
(2020)), therefore, we have assumed the constant recruitment rate Λ to be 50, 000. The trans-
mission rate for COVID-19 disease is fitted according to the transmission pattern of coronavirus
in India at β = 6.4 × 10−11. The parameter µ, denoting the natural death rate, is estimated to be

1
69.3
× 1

365
= 3.9 × 10−5 per day, where 69.3 years is the average life expectancy of an individual

in India (Statista (2020)). For the time interval September 01, 2020 to September 25, 2020, the
average number of deaths per day was estimated at 1, 119 and the average number of new cases
at 88, 545 that are evaluated using the daily number of deaths and daily new cases, respectively
(Worldometer (2020b)). Thus, the disease induced death rate of infectives (µI) is estimated as
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Table 3. Set of parameters value for COVID-19 in India

Parameter Value Source
Λ 50000 day −1 Estimated, (India population live (2020))
β 6.4× 10−11 day −1 Fitted
µ 0.000039 day −1 Estimated, (Statista (2020))
µE 0.0002 day −1 Assumed
µI 0.012638 day −1 Estimated, (Worldometer (2020b))
k 1/10 day −1 Estimated, (MoHFW (2020))
δ 1/14 day −1 Estimated
τ 0.0001 day −1 Fitted
γ1 8.5× 10−7 Assumed
γ2 6.8× 10−7 Assumed
η 0.68 Fitted

the per day case fatality rate due to COVID-19, at µI = 0.012638 day−1. As exposed individu-
als have only mild infection and may have compromised immune systems due to other immune
based comorbidities, therefore, we have assumed the number of deaths of exposed individuals as
µE = 0.0002 day−1. According to MoHFW (2020), the average incubation period for COVID-19
ranges between 1−12.5 days, that is, a time between exposure to the virus and onset of symptoms.
Therefore, we have data fitted the progression rate from exposed class to infected class at k = 1

10

day−1.

According to Ferguson et al. (2013), the average time an infective spent in hospital is 8 days. Fur-
ther, after getting treatment in the hospital, an individual needs to be under isolation for the next 6
days. Thus, on an average the number of days an infective needs to recover completely is 14 days,
from which we have estimated the recovery rate per day at δ = 1

14
day−1. It is observed that the

recovered individuals from COVID-19 infection get immuned for a few months. However, an indi-
vidual with compromised immune system may not gain sufficient immunity, and hence, becomes
susceptible again. Thus, the value of τ is assumed at 0.0001 (fitted according to the data of India).
In the model, γ1 and γ2 are the prevention measures taken by exposed and infected individuals,
respectively. A small increment in γ1 and γ2 diminish the force of infection significantly, therefore,
we have assumed γ1 = 8.5× 10−7 and γ2 = 6.8× 10−7. The modification parameter η = 0.68 (in
force of infection) indicates that exposed individuals have less viral load to spread the COVID-19
disease infection in relation to the infected individuals.

To validate the proposed model and estimated parameters value, the time series plot of real data
from September 1, 2020 to September 25, 2020 with the predicted solution trajectory of the model
system for the time interval September 1 - November 30, 2020 , has been shown in Figure 2.
From Figure 2(a) and 2(b), it can be observed that by the end of November 30, 2020, the predicted
number of actively infected cases of COVID-19 will reach around 850, 000 whereas, the number
of recovered cases will be approximately 9, 000, 000. Thus, to accommodate a large number of
infectives in quarantine centres and hospitals, the health care authorities are required to be equipped
with sufficient treatment facilities.
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Figure 2. Time series plot showing the least square fit of the model system to real data of India (a) Population infected
from COVID-19 (b) Population recovered from COVID-19. The red dots represent the real data of India
for infectives and recovered individuals and the solid lines represent the prediction given by the model for
COVID-19

(a) 100 200 300 400 500
Time

1.25×109

1.26×109

1.27×109

1.28×109

1.29×109

1.30×109

1.31×109
Population

Susceptibles

(b) 100 200 300 400 500
Time

700000

800000

900000

1×106

Population

Infected individuals

Exposed individuals

(c) 100 200 300 400 500
Time

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

Population

Recovered individuals

Figure 3. Graphs indicating the prevalence of COVID-19 infection when the reproduction number for the COVID-19 is
greater than unity

In Figure 3, the graphs illustrated the results obtained for R0 > 1 by exercising the parameters
value as given in Table (3). Due to disobeying the rules implemented by the government (not
effectively following social distancing and isolation rules), the transmission rate of COVID-19
in India has reached to β = 6.4 × 10−11. Thus, the reproduction number is estimated at R0 =
1.54, which is greater than unity. Therefore, we have obtained, the DFE point Q0 = (1.28205 ×
109, 0, 0, 0) and the endemic equilibrium point Q∗ = (1.01476 × 109, 265443, 319428, 1.61834 ×
108). For the value of β = 6.4×10−11, the DFE pointQ0 becomes unstable andQ∗ becomes stable,
as in this case R0 > 1. The reproduction number R0 > 1 indicates that the spread of infection
per infected individual has risen, which in turn, drastically increases the infected cases. Number
of infected individuals rises at a steeper rate in the first 10 days and then gently decreases to reach
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Figure 4. Graphs justifying the local stability of the disease-free equilibrium point Q0 = (1.28205 × 109, 0, 0, 0) for
R0 = 0.963531 < 1

the value at 319428. Also, the number of individuals actively infected with COVID-19 rises due to
inadequate implementation of social distancing by exposed individuals and isolation of infectives.
However, as infected individuals increase, the number of recovered individuals also rises at a faster
rate than the number of infectives. Thus, neglecting the isolation of infectives, social distancing by
exposed individuals, and major precautions by susceptibles and exposed individuals enforce R0

to be greater than unity and compel the endemic equilibrium point Q∗ to come into existence.
Therefore, if R0 continues to increase at this rate, a large number of individuals in India become
infected with COVID-19. Figure (3) indicates the prevalence of infection forR0 > 1.

In Figure 4, the results are portrayed for β = 4.0 × 10−11, which enforces the basic reproduction
number R0 to reduce down below the unity at 0.963531. Self quarantine of uninfected popula-
tion and isolation of infectives, increase the effectiveness of the prevention measures (γ1 and γ2,
respectively), which in turn reduce the force of infection for the disease transmission and thus, im-
pose a huge impact on the threshold quality R0. If the transmission rate β reduces to 4.0× 10−11,
the number of infected individuals also decreases significantly. Number of individuals being ex-
posed to COVID-19 disease rapidly starts diminishing and converges to zero. From the initial time,
the number of exposed individuals starts falling down to approach zero, in a duration of around
500 days. Due to rapid curtail in exposed individuals, the number of infected individuals also de-
creases effectively and approaches zero in approximately 500 days. As the infected population
rises initially, recovered individuals are rising continuously to reach its peak level and then start
decreasing to approach zero, as infected individuals reach towards zero. After getting the treatment
for COVID-19 disease, few recovered individuals will not get permanent immunity due to compro-
mised immune systems and hence again become susceptible. Also, due to reduction in the amount
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Figure 5. Graphs illustrating the influence of the transmission rate on population to justify the impact of prevention
measures among individuals. The graphs are plotted by varying the transmission rate from 5.8 × 10−11 to
6.4× 10−11 (a) Exposed individuals (b) Infected individuals (c) Number of recovered individuals

of spread of the COVID-19 disease, the number of infectives decreases which in turn, increases the
number of susceptible to reach its maximum value for R0 = 0.963531. Therefore, to reduce R0

below one, precautionary measures such as infection prevention, social distancing and isolation of
infectives must be essentially followed by all the classes of population. Figure 4, justifies the local
stability of the disease-free equilibrium Q0 = (1.28205× 109, 0, 0, 0) forR0 < 1.

In Figure 5, we discuss the effects of transmission rate for four distinct values, that is, β =
6.4 × 10−11, β = 6.2 × 10−11, β = 6.0 × 10−11 and β = 5.8 × 10−11. The transmission rate
measures the rate at which a susceptible individual acquires COVID-19 infection after coming
in contact with an infected individual. As the transmission rate rises from β = 5.8 × 10−11

to β = 6.4 × 10−11, the threshold quantity R0 will be drastically changed and increases from
R0 = 1.397 to R0 = 1.54. This indicates that the number of uninfected individuals follow-
ing social distancing measures is getting lower and hence for R0 = 1.54, the number of in-
fectives increases at a higher rate, in relation to R0 = 1.397 instead. As the number of in-
fectives increases, the number of individuals being exposed to COVID-19 infection rises at a
higher rate, due to inappropriate implementation of self quarantine and social distancing by the
exposed population. For the transmission rate β = 5.8 × 10−11 the endemic equilibrium point is
(1.07454 × 109, 206077, 247989, 1.2564 × 108), whereas for β = 6.4 × 10−11, the endemic equi-
librium point is computed as (1.01476× 109, 265443, 319428, 1.61834× 108). This indicates that
even with minimal increment in the rate of disease transmission, the number of individuals being
exposed to the disease increases with a large proportion and hence infectives also increase with
an enormous rate. However, since the total number of infected individuals has risen with a big
fraction, this implies recovered individuals also increase eventually, whereas due to increment in
β susceptibles decrease as they become more prone to get infected with the disease. Therefore, an
increment in the value of β indicates that the prevention rules such as infection prevention, social
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Table 4. The impact of variation in the effectiveness of prevention measures (γ2) taken by infectives

γ1 γ2 Susceptibles Exposed Infectives Recovered
8.5× 10−7 1× 10−7 9.32243× 108 347390 418041 2.11795× 108

8.5× 10−7 2× 10−7 9.51135× 108 328628 395464 2.00356× 108

8.5× 10−7 3× 10−7 9.67540× 108 312336 375858 1.90424× 108

8.5× 10−7 4× 10−7 9.81976× 108 298001 358607 1.81683× 108

distancing and isolation of infectives are not strictly followed and implemented in the community.
The numerical simulations indicate that the threshold quantity R0, and the transmission rate β
must be rapidly reduced, otherwise the COVID-19 disease may become hazardous for the country.

6.1. Impact of prevention measures

In this segment, we explore the effect of prevention measures followed by exposed individuals and
infectives to reduce the infection prevalence. The inhibition effects measured in terms of prevention
level including social distancing, isolation of infectives and taking proper precautions such as mask
wearing, cleansing body and rigorous hand washing are depicted in Figure 6 and 7. In the model,
γ1 and γ2 describe the effectiveness of the prevention measures taken by exposed and infected
individuals, respectively.

The impact of the level of preventions taken by the population of the infected class can be inter-
preted from Table (4). From the table, it can be observed that by keeping the value of γ1 constant,
number of susceptibles increases, together with increasing the value effectiveness of prevention
measures followed by infectives, that is γ2, from 1 × 10−7 to 4 × 10−7. Whereas, the number of
exposed individuals, infectives and recovered individuals decrease with huge margins, due to a
significant increment in the value of γ2.

The results obtained in Figure 6, indicate the impact of effectiveness of prevention measures taken
by infectives (γ2), with a fixed value of γ1 = 8.5 × 10−7, over susceptibles, exposed individuals,
infectives and recovered individuals. In the figure, the graphs of different classes represent the
comparison between the multiple curves of same class for four distinct values of the prevention
rate: γ2 = 1 × 10−7, γ2 = 2 × 10−7, γ2 = 3 × 10−7 and γ2 = 4 × 10−7. From Figure 6(a),
6(b) and 6(c), it can be noticed that a small variation in prevention measures taken by the infected
population positively change the level of disease in the community. Therefore, with the increment
in γ2, that is, improving isolation facilities for infectives, proper medicinal facilities to improve the
immune system of infected individuals, more hindrance will be created for the virus to spread, and
hence, the number of individuals suffering from the disease decreases.

In Figure 7, the results are depicted for a fixed value of γ2 = 6.8 × 10−7 and taking four distinct
values for γ1, the effectiveness of prevention measures taken by the number of population being
exposed to coronavirus, as γ1 = 1 × 10−7, γ1 = 4 × 10−7, γ1 = 8 × 10−7 and γ1 = 2 × 10−6.
Increment in the value of γ1, reduces the number of exposed individuals with marginal rate by tak-
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Figure 6. Graphs indicating the impact of effectiveness of prevention measures(γ2), taken by infectives, induced by
isolation and use of face masks on the population by varying γ2 between 1× 10−7 and 4× 10−7 (a) Impact
on individuals exposed to COVID-19 (b) Impact on COVID-19 infectives (c) Impact on recovered individuals
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Figure 7. Graphs illustrating the effectiveness of prevention measures(γ1), taken by exposed individuals (induced quara-
tine, social distancing and use of face mask in public), ranges between 1× 10−7 and 2× 10−6 (a) Impact on
exposed individuals (b) Impact on COVID-19 infectives (c) Impact on recovered individuals

Table 5. The impact of variation in the effectiveness of prevention measures(γ1), taken by exposed individuals

γ1 γ2 Susceptibles Exposed Infectives Recovered
4× 10−7 6.8× 10−7 9.90076× 108 289957 348927 1.76779× 108

6× 10−7 6.8× 10−7 1.00203× 109 278088 334644 1.69543× 108

7× 10−7 6.8× 10−7 1.00738× 109 272774 328249 1.66303× 108

ing more precautions towards infection prevention and social distancing, which in turn influences
the number of infectives as infected population diminishes initially with large proportion and then
falls down with marginal rates as prevention measure γ1 increases.
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From Table (5), it can be analyzed that raising the value of γ1 from 4 × 10−7 to 7 × 10−7, does
not effectively increase the number of susceptibles, only slight improvement can be observed in
the class of susceptibles. In a similar manner, a minor increment in the value of prevention level of
exposed individuals does not provide a high impact in reducing the number of exposed individuals.
This may happen, due to a less viral load on exposed individuals, and hence, lesser infectiousness of
exposed individuals (signified by the parameter η) in comparison with actively infected individuals.
In order to observe the significant impact of prevention measures taken by exposed individuals, a
remarkable improvement in γ1 is required by stringently obeying prevention measures such as,
border screening, work from home, social distancing, self-quarantine and use of face masks in
public.

The results depicted in Figure 6 and 7, imply that only with a huge increment in γ1, the number
of exposed individuals and infectives decrease effectively. However, only with a small increment
in γ2, the number of infectives and hence, exposed individuals decrease with a large proportion.
Therefore, prevention measures for infectives are essentially required to implement in communities
on a large scale.

From the numerical outcomes, we conclude that, to remove the spread of COVID-19 in India,
influential headway treatment programmes, border screening, social distancing, self-quarantine
awareness and isolation are prerequisites. Through this a significant reduction in COVID-19 dis-
ease can be achieved. The model, however, has few limitations such as limited accessibility of
data as COVID-19 is a newly emerged disease. Thus, some parameters value have been assumed,
instead of estimating from the given data. Even with this limitation, the given model provides the
realistic information due to the incorporation of saturated incidence rate.

7. Conclusion

Coronavirus outbreak has become a major concern for all the countries, especially for the coun-
tries with a large population. To pay adequate attention towards the transmission dynamics of
COVID-19, we made assumptions to impose the current actions taken by the government. In this
paper, a mathematical model has been proposed for COVID-19 disease by incorporating the satu-
rated incidence rate for the transmission of coronavirus to understand the influence of government
strategies such as isolation, infection prevention and social distancing on the spread of infection.
The threshold quantity, which shapes the overall disease risk of the epidemic, known as the basic
reproduction numberR0, has been computed. By analysing the basic reproduction number, the lo-
cation and the global asymptotic stability of the disease-free equilibrium point has been proved for
R0 < 1. Whereas, the endemic equilibrium point comes into existence and has been proved to be
locally asymptotically stable for R0 > 1, under certain restrictions on the parameters. To signify
the importance of various parameters on the reproduction number, sensitivity analysis has been
performed, which in turn justify the impact of various parameters in reducing the transmission of
the disease.

Numerical simulations demonstrate the application of this paper on the transmission dynamics of
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COVID-19 in India. From the numerical simulations, it has been observed that by reducing in the
value of basic reproduction number, the spread of disease can be controlled. In sensitivity analysis,
we came to realize that any change in the transmission rate directly affects the basic reproduc-
tion number. Therefore, the disease may come into a controlled situation, if the basic reproduction
number is less than unity for which a remarkable reduction in the transmission rate of COVID-19
is required. According to the WHO report, it can be achieved by following social distancing, iso-
lation and early treatment of infectives. The presence of saturated incidence rate in the force of
infection for COVID−19 shows the impact of prevention measures taken by the exposed and in-
fected individuals. To reduce the infection prevalence, reduction in the number of effective contacts
between the infected individuals and the susceptibles is prerequisite, by strictly obeying quarantine
of infectives and taking preventive measures by the uninfected population. It can also be observed
that though the reproduction number does not depend explicitly on γ1 and γ2, the steady state
value of infectives in the endemic state decreases as the level of prevention increases. To reduce
the infection prevalence, strict obeying of control measures and policies such as home quarantine,
border screening, wearing marks, social distancing and isolation of infectives, are essentially re-
quired. According to the scientific evidences, the early withdrawal of these strategies introduce
undesirable results.

Thus, we conclude that to reduce the COVID-19 disease infection from the country, it is required
to strictly follow the WHO guidelines such as social distancing activities, infection prevention and
isolation of infectives, which in turn increase the prevention level and decrease the COVID-19
disease burden from the population.
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