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Abstract

This paper deals with a host-parasitoid model subject to Allee effect and its dynamical behavior.
Steady state points of the proposed host-parasitoid model are computed. Stability properties are an-
alyzed with eigen values of Jacobian matrix which are determined at the steady states. Theoretical
findings are supported by numerical illustrations and enhanced by pictorial representations such as
bifurcation diagrams, phase portraits and local amplifications for different parameter values. Exis-
tence of chaotic behavior in the system is established via bifurcation and sensitivity analysis of the
system at the initial conditions. Various phase portraits are simulated for a better understanding of
the qualitative behavior of the considered model.
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1. Introduction

The behavior of the population can be studied, analyzed and predicted by means of suitable math-
ematical models. Biological parameters which are introduced in the model influence its stability
as seen in Gümüş (2014) and Merdan et al. (2018). Classical prey predator model was formu-
lated by Alfred J. Lotka in 1925 and Vito Volterra in 1926, independently. Volterra predicted os-
cillations in prey and predator fish populations in the Adriatic Sea. Basic Lotka-Volterra model
considered only the growth and death rates of the species. Also, the model assumed that there
will be unrestricted growth of prey in the absence of predator. In view of more accurate predic-
tions, many researchers studied the model with a logistic growth term which does not permit infi-
nite growth. Later on, more realistic models were developed by introducing functional responses
like Holling Type Functional Responses (I,II,III and IV), Crowley-Martin Response Function and
Beddington-DeAngelis Functional Response (Ashok et al. (2018); Lazaar and Mustapha (2019);
Moulipriya et al. (2017)).

The Allee factor is one such parameter which is vital to study the stability of an ecological model.
Warder Clyde Allee was an American ecologist who explored an effect called Allee Effect (earlier
the Allee principle) on smaller populations. It defines a relation between population density and
the per capita growth rate. To be precise, it means that for smaller populations, the reproduction
and individual fitness decrease. When the population grows larger, this effect usually saturates or
disappears. Allee effect comes in to play in natural population, when decrease in per capita growth
rate of a population at densities less than a critical value leads to limitations in finding mates. Allee
effect is useful in studying the dynamics of endangered and rare populations. Thus the models
involving allee effect are essential in conservation ecology (Allee (1931); Din (2017); Selvam et
al. (2018); Gümüş and Kose (2012); Gümüş (2015); Manoj Kumar and Bhadauria (2019); Merdan
and Gümüş (2012)).

Host- Parasitoid model is an example of population model (Allen (2007); Din et al. (2017); Din
and Hussain (2019); Nicholson and Bailey (1935)). Wasps, flies, moths and lacewings are some
examples of parasitoid species and most of the parasitoids are insects. It is estimated that there
are about 800, 000 parasitoid species. Parasites benefit from other organisms, the hosts, which may
lose their life at the end of the encounter. Parasitoids are insect species where larvae develops as
parasites on the hosts. Parasitoid larvae utilizes the resources from the host and may eventually
kill its host whereas adult parasitoids are free-living insects. Parasitoids and their hosts often have
synchronized life-cycles, e.g., both have one generation per year. Thus, host-parasitoid models
usually prefer to use discrete time steps that corresponds to generations (Gümüş (2017); Gümüş
(2018); Huu et al. (2008); May et al. (1981); Schreiber (2006); Tang and Chen (2002)). When a
suitable host is found, parasitoid lays only a single egg in it. However, the same host can be found
again later and then the parasite will lay another egg in it because parasites do not distinguish
between healthy hosts and already parasitized hosts. In Nicholson and Bailey model, the potential
fecundity of parasites is not limited. Parasites lay an egg at every encounter with the host even
when the number of encounters is very large. Thus, this model may overestimate parasitism rates
at high host density.
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Motivated by the important role of Allee effect in conservation biology, we propose to study the
impact of Allee effect in a host parasitoid system. This work is organized in the following manner.
Section 2 describes the model under discussion. In Section 3, we obtain steady state points and
stability is analyzed. In Section 4, a special form of Allee effect is introduced for illustrating the
dynamical properties of the system with time plots and bifurcation diagrams. Existence of chaos
is established and sensitivity of the system to initial conditions is also analyzed. Finally, the paper
ends with a section on conclusion.

2. Model Description

This paper aims at investigating the dynamical properties, especially, the stability of the host para-
sitoid system with Allee effect. In the following sections, we investigate the stability behavior of a
host-parasitoid model with the Allee effect (Gümüş (2017)) connected to Maynard-Smith growth
(Smith (1974)) of the form:

xn+1 =
rxnα(xn)

1 + (r − 1)xpn
e−ayn ,

yn+1 = cxn(1− e−ayn),
(1)

where r > 1 and a, c, p > 0, xn is the host population at time n, yn is the parasitoid population
at time n, r

1+(r−1)xpn is the growth rate of the host population, c is the number of eggs laid by
parasitoid. Here, α(xn) is the Allee function at nth generation.

The conclusion of the biological facts requires the following assumptions on α :

(1) if N = 0, then α(N) = 0, i.e., there is no reproduction without partners.
(2) α′(N) > 0 for N ∈ (0,∞), i.e., the effect of Allee parameter decreases as density increases.
(3) limN→∞α(N) = 1. That is, Allee effect vanishes at high densities.

3. Main Results

This section is devoted to the computation of steady state points of model (1) and the study of local
asymptotic stability of these points.

3.1. Steady state points of model (1)

Now, let us determine the steady state points of the model (1) by setting xn = xn+1 = x∗1 and
yn = yn+1 = y∗1 where (x∗1, y

∗
1) denote the steady state points. Thus, system (1) is transformed in

to

x∗1 =
rx∗1α(x

∗
1)

1 + (r − 1)x∗p1
e−ay

∗
1 ,

y∗1 = cx∗1(1− e−ay
∗
1 ).

(2)
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Assume that model (1) has positive steady state points. Then, we have the following theorem.

Theorem 3.1.

If 1+(r−1)x∗p1
rα(x∗1)

< 1 such that x∗1 6= 0, then model (1) has steady states (x∗1, y
∗
1). Otherwise, model (1)

has the steady state (x∗1, 0).

Proof:

Let us consider x∗1 6= 0 and y∗1 = 0. Then, we can write

x∗1 =
rx∗1α(x

∗
1)

1 + (r − 1)x∗p1
e−ay

∗
1 ,

which implies that,

r =
1 + (r − 1)x∗p1

α(x∗1)
. (3)

Let us define the following function by considering the right hand side of the Equation (3) such
that

k(x) =
1 + (r − 1)xp

α(x)
, x∗1 6= 0. (4)

From (4), we can see that the presence of an interaction point in Equation (3) can be determined
by a simple analysis of function k(x) for the selected function α(x) and values of p.

Now, let us investigate other steady state points (x∗1, y
∗
1) of the model (1) such that x∗1 6= 0 and

y∗1 6= 0. By considering the first equality, we can write

e−ay
∗
1 =

1 + (r − 1)x∗p1
rα(x∗1)

, (5)

which implies,

y∗1 = −1

a
ln

[
1 + (r − 1)x∗p1

rα(x∗1)

]
. (6)

If the following inequality holds

0 <
1 + (r − 1)x∗p1

rα(x∗1)
< 1,

then, y∗1 > 0 in Equation (6). Since x∗1 6= 0 and r > 1, it is clear that 1+(r−1)x∗p1
rα(x∗1)

> 0. Then, we have

1 + (r − 1)x∗p1
rα(x∗1)

< 1. (7)

When Equation (5) is combined with the second equation, we obtain

y∗1 = cx∗1

(
1− 1 + (r − 1)x∗p1

rα(x∗1)

)
.

If y∗1 is used in the first equation, then we obtain

x∗1 =
rx∗1α(x

∗
1)

(1 + (r − 1)x∗p1 )
e
−acx∗1

(
1− 1+(r−1)x

∗p
1

rα(x∗1)

)
.
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Therefore,

r =
1 + (r − 1)x∗p1

α(x∗1)
e
acx∗1

(
1− 1+(r−1)x

∗p
1

rα(x∗1)

)
. (8)

We shall write the following function h(x) by using the right hand side of Equation (8) for x∗1 = x,

h(x) =
1 + (r − 1)xp

α(x)
eacx(1−

1+(r−1)xp

rα(x) ).

Similarly, we can see that Equation (8) can have many interaction points. This situation can be
determined by a simple analysis of the function h(x) for the selected function α(x) and values
p, a, c, r. �

3.2. Stability analysis of model (1)

This section analyze the local asymptotic stability conditions of steady state points of model (1). If
model (1) is considered, we can write

F (Ht, Pt) =
rxnα(xn)

1 + (r − 1)xpn
e−ayn ,

G(Ht, Pt) = cxn(1− e−ayn).
(9)

Then, we state the following theorem.

Theorem 3.2.

For the steady state points of the model (1), the following statements hold:

(a) Assume that inequality (7) is not provided. The steady state (x∗1, 0) of the model (1) is locally
asymptotically stable if acx∗1 < 1 and∣∣∣∣r [(α(x∗1) + α′(x∗1)x∗1)(1 + (r − 1)x∗p1 )− p(r − 1)x∗p1 α(x

∗
1)]

(1 + (r − 1)x∗p1 )2

∣∣∣∣ < 1

such that x∗1 6= 0.

(b) Assume that inequality (7) is provided. The steady state (x∗1, y
∗
1) of the model (1) is locally

asymptotically stable under∣∣∣∣e−ay∗1 (acx∗1 + r [(α(x∗1) + α′(x∗1)x∗1)(1 + (r − 1)x∗p1 )− p(r − 1)x∗p1 α(x
∗
1)]

[1 + (r − 1)x∗p1 ]2

)∣∣∣∣
< 1 + e−2ay

∗
1
acx∗1r [(α(x

∗
1) + α′(x∗1)x∗1)(1 + (r − 1)x∗p1 )− p(r − 1)x∗p1 α(x

∗
1)]

[1 + (r − 1)x∗p1 ]2

+
e−ay

∗
1arcx∗1α(x

∗
1)(1− e−ay

∗
1 )

1 + (r − 1)x∗p1
< 2.
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Proof:

(a) On the assumption, let (x∗1, 0) be the unique steady state of the model (1). The Jacobian matrix
evaluated in the neighborhood of (x∗1, 0) is then written as follows:

J(x∗1 ,0) =

[
r[(α(x∗1)+α′(x∗1)x∗1)(1+(r−1)x∗p1 )−p(r−1)x∗p1 α(x∗1)]

(1+(r−1)x∗p1 )2
− arx∗1α(x

∗
1)

1+(r−1)x∗p1
0 acx∗1

]
. (10)

The eigenvalues of J(x∗1 ,0) are λ1 =
r[(α(x∗1)+α′(x∗1)x∗1)(1+(r−1)x∗p1 )−p(r−1)x∗p1 α(x∗1)]

(1+(r−1)x∗p1 )2
and λ2 = acx∗1. Con-

sequently, (x∗1, 0) is locally asymptotically stable if∣∣∣∣r [(α(x∗1) + α′(x∗1)x∗1)(1 + (r − 1)x∗p1 )− p(r − 1)x∗p1 α(x
∗
1)]

(1 + (r − 1)x∗p1 )2

∣∣∣∣ < 1 and acx∗1 < 1. (11)

(b) On the assumption, we consider that condition (7) is provided. The Jacobian matrix evaluated
in the neighborhood of (x∗1, y

∗
1) is written as follows:

J(x∗1 ,y∗1 ) =

[
a11 a12
a21 a22

]
. (12)

Here,
a11 =

re−ay
∗
1 [(α(x∗1)+α′(x∗1)x∗1)(1+(r−1)x∗p1 )−p(r−1)x∗p1 α(x∗1)]

[1+(r−1)x∗p1 ]2
, a12 =

−e−ay∗1 arx∗1α(x∗1)
1+(r−1)x∗p1

, a21 = c(1− e−ay∗1 )
and a22 = acx∗1e

−ay∗1 .

From the definition of the determinant and the trace of the matrix J(x∗1 ,y∗1 ), we can write

trJ(x∗1 ,y
∗
1 )

=e−ay∗1

(
acx∗1 +

r
[
(α(x∗1) + α′(x∗1)x∗1)(1 + (r − 1)x∗p1 )− p(r − 1)x∗p1 α(x∗1)

]
[1 + (r − 1)x∗p1 ]2

)
,

det J
(x∗1 ,y

∗
1 )

=
e−2ay∗1 acx∗1

[1 + (r − 1)x∗p1 ]2
r
[
(α(x∗1) + α′(x∗1)x∗1)(1 + (r − 1)x∗p1 )− p(r − 1)x∗p1 α(x∗1)

]
+
e−ay∗1 arcx∗1α(x

∗
1)(1− e−ay∗1 )

1 + (r − 1)x∗p1
,

(13)

respectively. If the following inequality (see Allen (2007))

|trJ | < 1 + det J < 2 (14)

is provided, then (x∗1, y
∗
1) is locally asymptotically stable. �

Corollary 3.1.

The model (1) possess the positive steady states (x∗1, 0) and (x∗1, y
∗
1). When inequality (7) is not

provided, (x∗1, 0) is the steady state of model (1) and is locally asymptotically stable under (11).
When inequality (7) is provided, then the steady state (x∗1, y

∗
1) is locally asymptotically stable under

(14).

Proof:

Note that the steady state (x∗1, 0) is a solution of the Equation (3) when x∗1 6= 0 and y∗1 = 0. If
α(x)
α′(x)

> 1
p(r−1)xp−1 + x

p
, then k(x) is an increasing function in (0,∞) . So, Equation (3) has only

one interaction point x∗1. Consequently, this steady state (x∗1, 0) is local asymptoticaly stable under
the conditions (11). Otherwise, Equation (3) can have many interaction points.
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When x∗1 6= 0 and y∗1 6= 0, if inequality (7) is provided, then y∗1 will be a positive value. Equation
(8) can have many interaction points for the selected function α(x) and p, r, a, c. If h′(x) > 0, then
Equation (8) has only one solution. Consequently, (x∗1, y

∗
1) is locally asymptotically stable under

the conditions (14). �

4. Numerical Simulations

As a special case, we consider the function α (xn) in the form

α (xn) =
xn

b+ xn
,

where b is the positive Allee constant. Model (1) is transformed into

xn+1 =
rx2n

(b+ xn) (1 + (r − 1)xpn)
e−ayn ,

yn+1 = cxn(1− e−ayn).
(15)

The Jacobian matrix of the model (15) is

J (x∗1, y
∗
1) =

[
b11 b12
b21 b22

]
. (16)

Here,

b11 =
rx∗1e

−ay∗1 [2(b+x∗1)(1+(r−1)x∗p1 )−bp(r−1)x∗p1 −x∗1−(p+1)(r−1)x∗(p+1)
1 ]

[(b+x∗1)(1+(r−1)x∗p1 )]2
, b12 = − arx∗21 e−ay

∗
1

(b+x∗1)(1+(r−1)x∗p1 )
,

b21 = c (1− e−ay∗1 ) and b22 = acxe−ay
∗
1 .

Numerical experiments of model (15) supplement the analytical results attained in the previous
section exhibit interesting dynamics of the model. Mainly, we present the trajectories of the so-
lutions x and y with corresponding phase plane diagrams (like sinks and limit cycles) for the
host-parasitoid model (15). Dynamic nature of system (15) about the steady states under various
different sets of parameter values are revealed in the following numerical examples.

Example 4.1.

This example considers r = 1.99; a = 1.25; b = 0.01; c = 2.6; p = 0.95; and the initial con-
dition (0.65, 0.45). Computation yields (x∗1, y

∗
1) = (0.363, 0.2722). The Jacobian matrix of (15)

is J(0.363, 0.2722) =

[
0.7661 −0.4537
0.7499 0.8395

]
. Here, Trace = 1.6056 and Det = 0.9834. Hence, the

stability condition Trace < 1 + Det < 2 is satisfied as Trace = 1.6056 < 1.9834(1 + Det) < 2.
Also the eigen values are λ1,2 = 0.8028 ± i5821 such that |λ1,2| = 0.9917 < 1. The criteria for
stability are satisfied. Hence, the system (15) is stable. The phase portrait in Figure 1 displays a
sink and the trajectory spiraling inwards towards the steady state (x∗1, y

∗
1).

Example 4.2.

Taking r = 1.99; a = 1.25; b = 0.005; c = 2.9; p = 0.9; and the initial condition
(0.65, 0.45) results in the steady state (x∗1, y

∗
1) = (0.3289, 0.2902). The Jacobian matrix of (15)
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is J(0.3289, 0.2902) =
[
0.7779 −0.4111
0.8822 0.8296

]
. Here, Trace = 1.6075 but Det = 1.0080. Hence, the

stability condition Trace < 1 + Det < 2 is not satisfied as Trace = 1.6075 < 2.0080(1 + Det) and
2.0080(1+Det) > 2. Also the eigenvalues are λ1,2 = 0.8037±i6017 such that |λ1,2| = 1.0040 > 1.
Thus, the criteria for stability are not satisfied. Hence, the system (15) is unstable. The trajectory
spirals inwards but does not approach a single point. The trajectory finally settles down as a limit
cycle, see the phase portrait in Figure 2.

The qualitative nature of a system can change as certain parameters are varied. In particular, sta-
bility nature of the steady states can change suddenly. These qualitative changes in the dynamics
are often termed as bifurcation. In short, qualitative changes are tied with bifurcation. The para-
metric values at which they occur are called bifurcation points. Five cases are considered for the
parameters (bifurcation) r, a, b, c and d.

Case I: Parameters are assigned the values a = 1.5; b = 0.01; c = 2.4; p = 0.95 with the initial
value (0.65, 0.45). Bifurcation is plotted for the growth parameter r in the range 1.2 − 4. Reverse
bifurcation of host-parasitoid population is produced in Figure 3. The system moves from chaotic
behavior to order and finally tends to a stable steady state.

Case II: Take the parameter values r = 1.99; b = 0.01; c = 2.6; p = 0.95 with the initial value
(0.65, 0.45), bifurcation diagram is plotted for a in the range 1− 2.05. Host-parasitoid population
tends to the stable steady state and its stability is lost and leading to chaos (see Figure 4).

Case III: Considering the parameter values r = 1.99; a = 1.25; c = 2.6; p = 0.95 along with the
initial value (0.65, 0.45), bifurcation parameter is chosen as b and the bifurcation is obtained for
the parameter b in the range 0− 0.065, see Figure 5.

Case IV: Consider the values r = 1.99; a = 1.25; b = 0.01; p = 0.95 with the initial value
(0.65, 0.45). By taking c as the bifurcation parameter, bifurcation diagram is plotted for in the
range 2− 4.2 (see Figure 6).

Case V: Choosing the parameter values r = 1.95; a = 1.5; b = 0.05; c = 1.9 with the initial
value (0.65, 0.35), bifurcation diagrams of (15) are exhibited in Figure 7 with p as the bifurcation
parameter in the range 0.5− 12. Unique bifurcation diagrams for both host and parasitoid popula-
tion appear and it is observed that the system is initially stable and loss its stability, then becomes
unstable and finally exhibits chaos.

Figure 8 and 9 are local amplifications of Figure 7, showing periodic window appearing in the
chaotic region. In periodic window, emerges periodic orbits. In addition, each window proceeds a
sub periodic doubling cascade and leads to chaos.

Phase plane portraits are also presented for the system with various values of p in Figure 10. For
p = 1 and p = 1.3, the solution curves spiral inwards and converges to a point indicating stability
and for p = 1.4 though curve spirals inwards, it settles down as limit cycle. For p = 1.7 − 5.66,
the solution curve spirals inwards, but does not converge to a point and circles are formed with
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different radii. Finally, for p = 6 − 11, chaotic attractors appear. Comparing the bifurcation and
phase plane diagrams, we justify our conclusions.

A characteristic of chaos is its dependency on initial conditions. In order to analyze the sensitiv-
ity of the system (15) to initial values, two paths are calculated with initial conditions (x0, y0),
(x0 + 0.00001, y0) as well as (x0, y0 + 0.00001) respectively. The result is displayed in Figure 11.
Initially, the two trajectories are impossible to distinguish; however there is a separation between
them after a certain number of iterations, which builds up rapidly.

5. Conclusion

This paper includes the qualitative nature of a discrete host-parasitoid model by involving Allee
effect. Biologically meaningful positive steady states are computed. Stability conditions are dis-
cussed with Jacobian matrices calculated at the steady state points. Jury conditions are used in the
investigation of dynamical behavior of the model especially the local stability analysis of the steady
states. Moreover, the system undergoes bifurcation when the chosen parameter passes through a
critical value, and closed invariant curves arise from a stable equilibrium state. The analytical re-
sults are strengthened with appropriate simulations and the system demonstrates chaotic behavior
over a wide range of parameters.
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Gümüş, Ö. A. (2014). Global and local stability analysis in a nonlinear discrete-time population
model, Adv. Difference Equ., Vol. 2014, No. 1, 299, pp. 1–9.
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Gümüş, Ö. A. (2017). Dynamics of a host-parasitoid model related to Smith growth form, General
Math. Notes, Vol. 38, No. 1, pp. 72–84.
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Figure 1. Stability of the model (15)

Figure 2. Unstability of the model (15)

Figure 3. Bifurcation structure of host-parasitoid population model (15) corresponding to r

Figure 4. Bifurcation structure of host-parasitoid population model (15) corresponding to a
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Figure 5. Bifurcation structure of host-parasitoid population model (15) corresponding to b

Figure 6. Bifurcation structure of host-parasitoid population model (15) corresponding to c

Figure 7. Bifurcation structure of host-parasitoid population model (15) corresponding to p
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Figure 8. Local amplification of Host population model (15) corresponding to p

Figure 9. Local amplification of parasitoid population model (15) corresponding to p
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Figure 10. Phase portraits of the host-parasitoid population model (15) for different values of p

Figure 11. Sensitive analysis for the host-parasitoid population model (15)


