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Abstract

In this paper, we discuss on the exact solutions of the nonlinear space-time fractional Burger-
like equation and also the nonlinear fractional fifth-order Sawada-Kotera equation with the exp-
function method. We use the functional derivatives in the sense of Riemann-Jumarie derivative and
fractional convenient variable transformation in this study. Further, we obtain some exact analytical
solutions including hyperbolic function.
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1. Introduction

Obvious, fractional differential equations (FDEs) have been the focus of many studies due to their
frequent appearance in several applications in physics, biology, engineering, signal processing,
systems identification, control theory, finance, fractional dynamics, and other different sciences
(see Kilbas et al. (2006), Mille and Ross (1993), and Podlubny (1999)). The exact solution of
the fractional differential equations have received tremendous attention of great, several inves-
tigators have successfully used reliable and algebraic methods for this purpose (see Taghizadeh
et al. (2015, 2016)). However, there are several methods to obtain exact solutions of fractional
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differential Burger-like equation and fractional differential Sawada-Kotera equation; for example:
the Sub-equation method, see Wang et al. (2017), the (G′/G) method, see Cerdid et al. (2019),
the F-expansion method, see Inan et al.(2017), the exp(−φ(ξ)) method see Ali et al. (2016) and
other methods, see Bulut et al. (2013), but we apply the exp-function method to nonlinear FDES’s,
space-time fractional Burger-like equation, see Cerdid et al. (2019) and Inan et al. (2017) and time-
fractional fifth-order Sawada-Kotera equation, see Ali et al. (2016) and Guner et al. (2017).

The organization of the paper follows in the second and third sections of the paper we define the
Riemann-Jumarie Derivative and we describe the exp-function method respectively. In Section 4
and Section 5 application of the exp-function method for Burger-like equation and Sawada-Kotera
equation respectively. In the end, the general conclusion is given in Section 6.

2. The Riemann-Jumarie Derivative

Assume that f : R −→ R, x −→ f(x) denotes a continuous (but not nesseciary differentiable)
function, then Riemann-Jumarie derivative (see Jumarie(2006, 2009)),

Dα
t f(t) =

{
1

Γ(1−α)
d
dt

∫ t
0 (t− ξ)−α(f(ξ)− f(0))dξ, if 0 < α ≤ 1,

(f (n)(t))(α−n), if n ≤ α < n+ 1, n ≥ 1.
(1)

Some important properties for the Riemann-Jumarie derivative of order α are listed below,

Dα
t t
β =

Γ(1 + β)

Γ(1 + β − α)
tβ−α, (2)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (3)

Dα
t f [g(t)] = f

′

g[g(t)]Dα
t g(t) = Dα

t f [g(t)](g
′
(t))α. (4)

We consider the fractional partial differential equation, with independent variable t, x1, x2, ..., xn
and dependent variable u :

P (u,Dα
t u,D

α
x1
u, ...,D2α

t U, ...) = 0 0 < α ≤ 1, t > 0. (5)

By using the fractional variable transformation

u(t, x1, ..., xn) = u(ξ) and ξ =
ctα

Γ(1 + α)
+

k1x
α
1

Γ(1 + α)
+ ...+

knx
α
n

Γ(1 + α)
, (6)

where c and ki, (i = 1, ..., n) are nonzero arbitrary constants. The fractional differential equation
(5) reduced to a nonlinear ordinary differential equation (ODE)

F (u, u′, u′′, ...) = 0, (7)

where the prime denotes the derivation with respect to ξ and u′ = du
dξ .
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3. The Exp-function method

In the exp-function method, we assume that the solution is a function,

u(ξ) =

∑m2

p=−m1
ap exp[pξ]∑n2

q=−n1
aq exp[qξ]

, (8)

where m1,m2, n1 and n2 are unknown positive integers that will be determined by using balance
method, for constructing the relations between m2,m1, n2 and n1, first we consider the highest
degree and the highest derivative order of function u(ξ) in the nonlinear (ODE) (7). For relation
between m2 and n2 by creating a balance between the first sentence of the highest degree and the
first sentence of the highest derivative order. Similarly, the relation between m1 and n1 is obtained
by balancing the last sentence of the highest degree and the last sentence of the highest derivative
order. Ebaid (2012) proved in Theorem 1 and Theorem 2 that m2 = n2 and m1 = n1 are the only
relations that can be obtained by applying the balancing method in the nonlinear (ODE) (7). In the
exp-function method, additional calculations of balancing the highest order linear term with the
highest order nonlinear term are not longer required in future because we only use their first and
last sentences. Hence, the method becomes more straightforward.

4. The space-time fractional Burger-like equation

Burger’s equation is related to applications in acoustic phenomena and has been utilized to model
turbulence and certain steady-state viscous flows. We consider conformable space-time fractional
Burger-like equation (see Cerdid et al. (2019) and Inan et al. (2017)),

Dα
t u+Dα

xu+ uDα
xu+

1

2
D2α
x u = 0, t > 0, 0 < α ≤ 1, (9)

where α is a parameter that describes the order of the fractional time derivative. By using variable
transformations

u(x, t) = u(ξ), and ξ =
ctα

Γ(1 + α)
+

kxα

Γ(1 + α)
, (10)

where c and k are constants, Equation (9) is reduced to an ordinary defferential equation

(c+ k)u′ + kuu
′
+
k2

2
u′′ = 0, (11)

where u′ = du
dξ .Integrating equation (11 ) with respect to ξ yields

(c+ k)u+
1

2
ku2 +

k2

2
u′ = 0. (12)

By using Equation (8) and Equation (12), we have

u
′
(ξ) =

A exp[(n2 +m2)ξ] + ...+B exp[−(n1 +m1)ξ]

C exp[2n2ξ] + ...+D exp[−2n1ξ]
, (13)

u2(ξ) =
E exp[2m2ξ] + ...+ F exp[−2m1ξ]

G exp[2n2ξ] + ...+H exp[−2n1ξ]
, (14)
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where A,B,C,D,E, F,G and H are coefficients determined by am2
, a−m1

, bn2
and b−n1

.

By balancing the highest order Exp-function in u′ and u2 in Equation (12), we have n2 +m2 = 2m2,
which implies m2 = n2. Similarly, balancing the lowest order exp-function in u′ and u2, we have
n1 + m1 = 2m1, which implies m1 = n1. For simplicity, we set m2 = n2 = 1 and m1 = n1 = 1 so
Equation (8) reduces to

u(ξ) =
a1 exp[ξ] + a0 + a−1 exp[−ξ]
b1 exp[ξ] + b0 + b−1 exp[−ξ]

. (15)

Substitating Equation (15) into Equation (12) and the help of Maple, we have

1

A
(R1 exp[2ξ] +R2 exp[ξ] +R3 +R4 exp[−ξ] +R5 exp[−2ξ]) = 0, (16)

where

A = (b1 exp[ξ] + b0 + b−1 exp[−ξ])2,

R1 = (c+ k)a1b1 +
1

2
ka2

1,

R2 = (c+ k)[a0b1 + a1b0] + ka1a0 +
1

2
k2a1b0 −

1

2
k2a0b1,

R3 = (c+ k)[a0b0 + 2a1b−1 + a−1b1] + k[a1a−1 + a−1b1 +
1

2
a2

0] + k2[a1b−1 − a−1b1],

R4 = (c+ k)[a0b−1 + a−1b0] + kb−1a0 −
1

2
k2a−1b0 +

1

2
k2a0b−1,

R5 = (c+ k)a−1b−1 +
1

2
ka2
−1. (17)

Solving this system of algebraic equation by using symbolic computation, we obtain the following
results.

If a1 = 0, a0 = 0 , a−1 = −2kb−1, b1 = b1, b0 = 0, b−1 = b−1, c = k2 − k and k = k.

If we set b1 = 1
2 , b−1 = −1

2 and k = 2, then we have a−1 = −2 and c = 2, we obtain the following
hyperbolic function solitary solution,

u(x, t) =
2 exp[−2( xα

Γ(1+α) + tα

Γ(1+α))]

sinh(2( −x
α

Γ(1+α) + tα

Γ(1+α)))
. (18)

5. The space-time fractional fifth-order Sawada-Kotera equation

We consider the space-time fractional fifth-order Sawada-Kotera equation (see Ali et al. (2016)
and Guner et al. (2017)),

Dα
t u+D5α

x u+ 45U2Dα
xu+ 15(Dα

xuD
2α
x u+ uD3α

x u) = 0, t > 0, 0 < α ≤ 1, (19)
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where α is a parameter describing the order of the fractional time-derivative. The function u(x, t) is
assumed to be a causal function of time. As in the previous section, we use variable transformations

u(x, t) = u(ξ), and ξ =
ctα

Γ(1 + α)
+

kxα

Γ(1 + α)
, (20)

where c and k are constants, Equation (19) is reduced to an ordinary defferential equation

cu′ + k5u(5) + 45ku2u′ + 15(k3u′u′′ + k3uu(3)) = 0, (21)

where u′ = du
dξ . Integrating Equation (21) with respect to ξ yields.

cu+ k5u(4) + 15ku3 + 15k3(uu′′) = 0. (22)

We have

(u(ξ))(4) =
I exp[(15n2 +m2)ξ] + ...+ J exp[−(15n1 +m1)ξ]

K exp[16n2ξ] + ...+ L exp[−16n1ξ]
, (23)

uu′′(ξ) =
M exp[(3n2 + 2m2)ξ] + ...+N exp[−(3n1 + 2m1)ξ]

P exp[5n2ξ] + ...+Q exp[−5n1ξ]
, (24)

where I, J,K,L,M,N, P and Q are coefficients determined by am2
, a−m1

, bn2
and b−n1

.

By the same approach as in before this section, balancing the terms u(4) and uu′′ in Equation (22)
we have m2 = n2,m1 = n1. To simplicity, we set m2 = n2 = 1 and m1 = n1 = 1 so equation (8)
degrades to

u(ξ) =
a1 exp[ξ] + a0 + a−1 exp[−ξ]
b1 exp[ξ] + b0 + b−1 exp[−ξ]

. (25)

Substiuting Equation (25) into Equation (22), and by the help of Maple, we have

1

A
(R1 exp[5ξ] +R2 exp[4ξ] +R3 exp[3ξ] +R4 exp[2ξ] +R5 exp[ξ] +R6

+R7 exp[−ξ] +R8 exp[−2ξ] +R9 exp[−3ξ] +R10 exp[−4ξ] +R11 exp[−5ξ]) = 0,
(26)

where
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A = (b1 exp[ξ] + b0 + b−1 exp[−ξ])5,

R1 = ca1b
4
1 + 15ka31b

2
1,

R2 = 15k3a1a0b
3
1 + ca0b

4
1 + 4ca1b

3
1b0 − 15k3a21b

2
1b0 + 45ka21a0b

2
1 + k5a0b

4
1 − k5a1b

3
1b0 + 30ka31b1b0,

R3 = 30ka31b1b−1 + 15ka31b
2
0 + ca−1b

4
1 + 45ka1a

2
0b

2
1 − 16k5a1b

3
1b−1 + 15k3a20b

3
1 − 60k3a21b

2
1b−1

+ 60k3a1a−1b
3
1 + 16k5a−1b

4
1 − 11k5a0b

3
1b0 + 4ca0b

3
1b0 + 90ka21a0b1b0 + 6ca1b

2
1b

2
0 + 45ka21a−1b

2
1

+ 4ca1b
3
1b−1 − 15k3a1a0b

2
1b0 + 11k5a1b

2
1b

2
0,

R4 = −135k3a1a0b
2
1b−1 + 77k5a1b

2
1b0b−1 + 30ka31b0b−1 − 76k5a0b

3
1b−1 + 4ca1b1b

3
0 + 45ka21a0b

2
0

− 11k5a1b1b
3
0 + 15k3a21b

3
0 + 75k3a0a−1b

3
1 + 6ca0b

2
1b

2
0 − k5a−1b

3
1b0 − 30k3a21b1b−1b0

+ 90k3a1a−1b
2
1b0 + 12ca1b

2
1b0b−1 + 11k5a0b

2
1b

2
0 + 15ka30b

2
1 − 15k3a1a0b1b

2
0 + 4ca−1b

3
1b0

+ 90ka21a−1b1b0 + 4ca0b
3
1b−1 + 90ka21a0b1b−1 + 90ka1a0a−1b

2
1 + 90ka1a

2
0b1b0,

R5 = 4ca0b1b
3
0 + k5a1b

4
0 − 60k3a1a−1b

2
1b−1 + 60k3a1a−1b1b

2
0 + 105k3a0a−1b

2
1b0 − 58k5a1b1b

2
0b−1

+ 12ca0b
2
1b−1b0 + 12ca1b1b

2
0b−1 + 47k5a0b

2
1b−1b0 + 90ka21a0b0b−1 − k5a0b1b

3
0 + 45ka1a

2
0b

2
0

+ 30ka30b1b0 − 15k3a20b1b
2
0 + 15k3a0a1b

3
0 + ca1b

4
0 + 15ka31b

2
−1 + 60k3a2−1b

3
1

+ 180ka1a0a−1b1b0 − 150k3a1a0b1b−1b0 + 6ca1b
2
1b

2
−1 + 4ca−1b

3
1b−1 + 6ca−1b

2
1b

2
0

+ 176k5a1b
2
1b

2
−1 − 176k5a−1b

3
1b−1 + 11k5a−1b

2
1b

2
0 + 45ka21a−1b

2
0 + 45ka1a

2
−1b

2
1 + 45ka20a−1b

2
1

+ 60k3a21b
2
0b−1 − 75k3a20b

2
1b−1 + 90ka21a−1b1b−1 + 90ka1a

2
0b1b−1,

R6 = 30k3a1a−1b
3
0 + 230k5a0b

2
1b

2
−1 + 45ka0a

2
−1b

2
1 + 105k3a21b0b

2
−1 + 30ka30b1b−1 + 90ka21a−1b0b−1

+ 90ka1a
2
0b0b−1 + 90ka1a0a−1b

2
0 + 90ka1a

2
−1b1b0 + 90ka20a−1b1b0 − 75k3a1a0b1b

2
−1

+ 180ka1a0a−1b1b−1 − 60k3a1a−1b1b−1b0 − 115k5a1b1b0b
2
−1 − 115k5a−1b

2
1b0b−1 + 12ca−1b

2
1b0b−1

+ 12ca1b1b0b
2
−1 − 10k5a0b1b−1b

2
0 + 4ca1b

3
0b−1 − 120k3a20b1b−1b0 + 12ca0b1b−1b

2
0 + 45ka21a0b

2
−1

+ 4ca−1b1b
3
0 + 5k5a−1b1b

3
0 + 5k5a1b

3
0b−1 + 6ca0b

2
1b

2
−1 + ca0b

4
0 + 15k3a30b

2
0 + 45k3a1a0b−1b

2
0

− 75k3a0a−1b
2
1b−1 + 45k3a0a−1b1b

2
0 + 105k3a2−1b

2
1b0,

R7 = −150k3a0a−1b1b−1b0 + 180ka1a0a−1b0b−1 + 4ca0b−1b
3
0 − k5a0b−1b

3
0 + 30ka30b0b−1 + 45ka20a−1b

2
0

+ 15k3a0a−1b
3
0 − 15k3a20b−1b

2
0 + 4ca1b1b

3
−1 + 6ca1b

2
0b

2
−1 + 6ca−1b

2
1b

2
−1 − 176k5a1b1b

3
−1 + 11k5a1b

2
0b

2
−1

+ 176k5a−1b
2
1b

2
−1 + 45ka21a−1b

2
−1 + 45ka1a

2
0b

2
−1 + 45ka1a

2
−1b

2
0 − 75k3a20b1b

2
−1 + 60k3a2−1b1b

2
0

+ ca−1b
4
0 + k5a−1b

4
0 + 15ka3−1b

2
1 + 60k3a21b

3
−1 − 58k5a−1b1b

2
0b−1 + 12ca0b1b

2
−1b0 + 12ca−1b1b

2
0b−1

+ 47k5a0b1b
2
−1b0 + 90ka1a

2
−1b1b−1 + 90ka20a−1b1b−1 + 90ka0a

2
−1b1b0 − 60k3a1a−1b1b

2
−1

+ 105k3a1a0b
2
−1b0 + 60k3a1a−1b

2
0b−1,

R8 = 4ca0b1b
3
−1 − 76k5a0b1b

3
−1 + 90k3a1a−1b0b

2
−1 + 90ka0a

2
−1b1b−1 − k5a1b0b

3
−1 + 12ca−1b1b0b

2
−1

+ 90ka20a−1b0b−1 + 77k5a−1b1b0b
2
−1 − 15k3a0a−1b

2
0b−1 + 6ca0b

2
−1b

2
0 + 30ka3−1b1b0 − 30k3a2−1b1b−1b0

+ 45ka0a
2
−1b

2
0 − 11k5a−1b

3
0b−1 + 15k3a2−1b

3
0 + 4ca1b0b

3
−1 + 75k3a1a0b

3
−1 − 135k3a0a−1b1b

2
−1

+ 90ka1a0a−1b
2
−1 + 11k5a0b

2
−1b

2
0 + 90ka1a

2
−1b0b−1 + 15ka30b

2
−1 + 4ca−1b

3
0b−1,

R9 = 4ca−1b1b
3
−1 + 30ka3−1b1b−1 + 6ca−1b

2
0b

2
−1 − 15k3a0a−1b0b

2
−1 + 90ka0a

2
−1b0b−1 + 15ka3−1b

2
0

+ 60k3a−1a1b
3
−1 + 45ka20a−1b

2
−1 − 16k5a−1b1b

3
−1 + 15k3a20b

3
−1 − 60k3a2−1b1b

2
−1 + 11k5a−1b

2
0b

2
−1

+ ca1b
4
−1 + 4ca0b

3
−1b0 − 11k5a0b

3
−1b0 + 16k5a1b

4
−1 + 45ka1a

2
−1b

2
−1,

R10 = k5a0b
4
−1 + 30ka3−1b0b−1 − k5a−1b0b

3
−1 + ca0b

4
−1 + 45ka0a

2
−1b

2
−1 + 4ca−1b0b

3
−1,

+ 15k3a−1a0b
3
−1 − 15k3a2−1b0b

2
−1

R11 = ca−1b
4
−1 + 15ka3−1b

2
−1. (27)

Solving the above algebraic equations by using Maple for a1, a0, a−1, b1, b0, b−1, c and k, we have
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the solution if a1 = 0, a0 = b0, a−1 = 0, b1 = b1, b0 = b0 and b−1 = 1
4
b20
b1

, k = −1 and c = −1.

We take b1 = 1
2 and b0 = 1,then a0 = 1 and b−1 = 1

2 so

u(x, t) =
1

2
sech2

[
1

2

(
−xα

Γ(1 + α)
+

tα

Γ(1 + α)

)]
. (28)

(a) u(x, t) of equation(18) (b) u(x, t) of equation(28)

Figure 1. a. solution of Burger-like equation for α = 1
2 b. solution of Sawada-Kotera equation for α = 1

2

6. Conclusion

In the present paper, the exact solution of some fractional differential equations is obtained by the
exp-function method. Also, by balancing the first sentence of the highest degree and first sentence
the highest derivative order of nonlinear (ODE) and similarly, balancing the last sentence of the
highest degree and last sentence the highest derivative order of nonlinear (ODE), leads m2 = n2

and m1 = n1. Consequently, the simplest choice m2 = n2 = 1 and m1 = n1 = 1 has to be
only considered. Hence, this method can be useful to solve other nonlinear FDEs in mathemati-
cal physics, because it is an easy, direct, concise, basic and powerful method to implement, also
the exp-function method generalized solitary solutions and periodic solutions of nonlinear equa-
tions. The principal merits of this method over the other methods are that it provides more general
solutions with some arbitrary parameters. It should be noticed that the solutions are accurate.
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