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Abstract

The kernel distribution function estimator method is the most popular nonparametric method to es-
timate the cumulative distribution function F (x). In this investigation, we propose a new estimator
for F (x) based on a linear combination of kernels. The mean integrated squared error, asymptotic
mean integrated squared error and the asymptotically optimal bandwidth for the new estimator
are derived. Also, based on the plug-in technique in density estimation, we propose a data based
method to select the bandwidth for the new estimator. In addition, we evaluate the new estimator
using simulations and real life data.

Keywords: Distribution function; kernel smoothing; Plug-in; Bandwidth Selection; Density es-
timation; Mean square error
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1. Introduction

In statistics, we are required to derive statistical inferences, descriptions and summaries from a
given set of data. The basic properties of this data are conventionally described by the probability
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density function pdf and its distribution function (cumulative distribution function cdf ). In most
cases, the pdf or the cdf for a given data are provided and this makes conclusions about the data
easier.

However, in practical situations, random variables from these data are required to be studied with-
out the knowledge of the pdf and the cdf . Alternatively, we are given a set of n observations
x1, x2, . . . , xn assumed to be deductions from independent and identically distributed random vari-
ablesX1, X2, . . . , Xn without the knowledge of the distribution they came from. Here, we are faced
with the problem of estimating the unknown pdf and the cdf , the estimation being the first step to
be taken in order to understand and represent the behavior of a data.

The goal of estimation of the pdf and cdf can be reached by following either of these two ap-
proaches: the parametric approach and the nonparametric approach. The parametric approach in-
volves the assumption that the random variable belongs to a particular family of distribution, for
example, Normal family, Gamma family, etc. which has a range of parameters. Thus, several con-
ditions to use the parametric estimate must be investigated and if these conditions are satisfied,
the estimate will have more power over the nonparametric estimate. The estimation using this pa-
rameterized functions is usually associated with the data interpreting being too rigid due to the
restriction by parameters. Thousands of investigators used the parametric approach to estimate the
parameters: for example, Shakhatreh et al. (2016) used the parametric approach in the estimation
of the beta generalized linear exponential distribution. Ahsanullah and Habibullah (2015) used the
parameter approach in some estimations for the exponential distribution, and Yuan (2018) used
a parametric method to estimate the the bivariate Weibull distribution, where the author used the
generalized moment method for reliability evaluation.

The nonparametric approach is more often than not more accurate than the parametric approach.
This is because there exist no parameter restricting the behavior of the random variables and thus
the data is left to “speak for itself.” Hence, the estimates of the pdf and cdf follow the behavior of
the data. The most well know approach for density estimation is using the kernel method which was
proposed in 1956 by Rosenblatt and independently by Parzen in 1962. This estimator is also known
as a Rosenblatt-Parzen estimator. Nadaraya (1962) proposed the kernel method to estimate the
cumulative distribution function F (x). There are several measures of error to evaluate the estimator
for the cumulative distribution function. Azzalini (1981), Swanepoel (1988), Jones (1990), Sarda
(1993) and Jones (1990), and Altman and Leger (1995) discussed the exact and asymptotic mean
square error. Ahmad and Mugdadi (2006) derived the weighted mean Hellinger distance for the
estimator. The kernel type estimator is a well know technique in the nonparametric estimation.
Rabhi and Soltani (2016) investigate the kernel estimate of the conditional hazard function. In
addition, Wand and Jones (1994) discussed the kernel density estimation regression estimation and
Multivariate estimation. Additional details about the bandwidth selection can be found in Wand
and Jones (1995) and Mugdadi and Jeter (2010).

In this investigation we study the linear combinations of kernels in the the kernel distribution
estimator. The cruel parts of the kernel distribution estimator is to derive one of the measure of
errors and to obtain the optimal bandwidth. Thus, our goal in this research paper is to derive the
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mean integrated square error as the main measure of error in kernel estimators then to obtain the
optimal bandwidth for the estimator. In addition, we will modify the the Plug in technique to
obtain a data based method based on linear combinations of kernels. More details about the plug-
in technique can be found in Wand and Jones (1995). Investigators can use linear combinations of
kernels in any kernel estimation such as regression and multivariate estimations. Also, it can be
use in other measures of errors such as Hellinger Distance.

2. The Linear Combination of Kernels

Let X1, X2, . . . , Xn be a random sample. The kernel density estimator for the probability density
function f(x) is given by

f̂(x) =
1

nh

n∑
j=1

k

(
x−Xj

h

)
, (1)

where k(.) is the kernel function and h is the bandwidth. In addition, the kernel estimator for the
cumulative distribution function F (x) is given by

F̂ (x) =
1

n

n∑
j=1

K

(
x−Xj

h

)
, (2)

where K(x) =
∫ x

−∞ k(t) dt. We replace the kernel function, k(.) in the kernel probability density
estimator by the linear combination of kernels,

∑p
i=1 aiki(.), where p ≥ 2,

∑p
i=1 ai = 1 and ais

are positive, to obtain

f̂ ∗(x) =
1

nh

n∑
j=1

p∑
i=1

aiki

(
x−Xj

h

)
, (3)

where for each i,
∑k

i=1 ai = 1, ki is a kernel function, symmetric about zero and
∫
k(u)du = 1.

Linear combination of kernels have been used in density estimation by Ahmad and Ran (2004). A
linear combination of two normal densities have been considered by Savchuk et al. (2010) suggest-
ing the possibility of using a combination of other classes of kernels. Thus, a motivation to discuss
the linear combination of kernels in the cumulative distribution function estimation is important.

The kernel distribution function estimator is consequently given by

F̂ ∗(x) =
1

n

n∑
j=1

p∑
i=1

aiKi

(
x−Xj

h

)
, (4)

where for each i, Ki(x) =
∫ x

−∞ ki(z) dz and for the same ais.
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3. The MISE and the Optimal Bandwidth

The most common criterion to evaluate the estimator F̂ (x) is the Mean Integrated Squared Error
(MSE), which is given by

MISE(F̂ (x)) = E

∫
(F̂ (x)− F (x))2W (x) dx,

where W (x) is a nonnegative weight function. To derive the optimal bandwidth, we will evaluate
the asymptotic mean integrated square error for the estimator. We use assumptions synonymous to
those of Sarda (1993). The assumptions on the weight function, the bandwidths, the kernel and the
distribution function are:

(I) The weight function, W is bounded and has a compact support.

(II) For each i, Ki is absolutely continuous, limx→−∞Ki(x) = 0 and limx→∞Ki(x) = 1.

(III) Given that ki = K ′i, we have
∫
xki(x) dx = 0 and

∫
x2ki dx <∞.

(IV ) For each i,

Ki(z) =


0, z > 1,
1
2
+ gi(z), |z| < 1,

1, z < −1,

where gi(z) = −gi(−z) for all z such that |z| ≤ 1.

(V ) F is twice differentiable and F and |f ′| are bounded on the support of W.

Under conditions (I) − (V ), we will prove Lemma 3.1 and Lemma 3.2. In addition, we will use
these two lemmas to prove Theorem 3.1.

Lemma 3.1.

V ar(F̂ ∗) =
1

n
(F (x) (A+ 2B − F (x))) + h

n
f(x) (Ri(K))

+
2

n
(Eil(K)− (A+ 2B)) +O(h2).

Proof:

Note that

V ar(F̂ ∗(x)) = E(F̂ ∗(x))2 + (E(F̂ ∗(x)))2. (5)

To evaluate E(F̂ ∗(x)), we have
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E

(
p∑

i=1

aiKi

(
x−Xi

h

))
=

∫ ∞
−∞

p∑
i=1

aiKi

(
x− y
h

)
f(y) dy.

Using IV ,

∫ ∞
−∞

p∑
i=1

aiKi(z)f(x− hz) dz =
p∑

i=1

ai

∫ ∞
−∞

Ki(z)f(x− hz) dz

=

∫ −1
−∞

0 + h

p∑
i=1

ai

∫ 1

−1

(
1

2
+ gi(z)

)
f(x− hz) dz

+ h

∫ ∞
1

f(x− hz) dz.

But,

h

p∑
i=1

ai

∫ 1

−1

(
1

2
+ gi(z)

)
f(x− hz) dz = h

p∑
i=1

ai

∫ 1

−1

(
1

2
+ gi(z)

)
f(x) dz

+O(h2)

= hf(x) +O(h2),

and

h

∫ ∞
1

f(x− hz) dz =
∫ x−h

−∞
f(y) dy = F (x)− hf(x) +O(h2).

Therefore,

E(F̂ ∗(x)) = F (x)− hf(x) +O(h2) + hf(x) +O(h2) = F (x) +O(h2),

and

(E(F̂ ∗(x)))2 = F (x)2 +O(h4).
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But,

E(F̂ ∗(x))2 =E

(
p∑

i=1

aiK
2
i

(
x−Xj

h

))2

=E[

p∑
i=1

a2iKi

(
x−Xj

h

)2

+ 2
∑∑

i 6=l
aialKi

(
x−Xj

h

)
Kl

(
x−Xj

h

)
=

p∑
i=1

a2iE

(
K2

i

(
x−Xj

h

))
+ 2
∑∑

i 6=l
aialE

(
Ki

(
x−Xj

h

)
Kl

(
x−Xj

h

))
=

p∑
i=1

a2i

∫ ∞
−∞

K2
i

(
x− y
h

)
f(y) dy

+ 2
∑∑

i 6=l
aial

∫ ∞
−∞

Ki

(
x− y
h

)
Kl

(
x− y
h

)
f(y) dy.

Note that
p∑

i=1

a2iE

(
K2

i

(
x−Xj

h

))
=

p∑
i=1

a2i

∫ ∞
−∞

K2
i

(
x− y
h

)
f(y) dy,

and

K2
i (z) =


0, y > x+ h,
1
4
+ gi(z) + g2i (z), |z| < 1,

1, y < x− h.
Thus, ∫ ∞

−∞

p∑
i=1

a2iK
2
i (z)f(x− hz) dz =

p∑
i=1

a2i

∫ ∞
−∞

K2
i (z)f(x− hz) dz

=

∫ −1
−∞

0dz

+ h

p∑
i=1

a2i

∫ 1

−1

(
1

4
+ gi(z) + g2i (z)

)
f(x− hz) dz

+ h

p∑
i=1

a2i

∫ ∞
1

f(x− hz) dz ,

and ∫ 1

−1
K2

i (z) dz =

∫ 1

−1

(
g2i (z) + gi(z) +

1

2

)
dz

=

∫ 1

−1
g2i (z) dz +

1

2
.
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Therefore,

p∑
i=1

a2iE(K
2
i (z)) =

p∑
i=1

a2iF (x) + hf(x)

p∑
i=1

a2i

(∫
−1

1(K2
i (z))− 1

)
+O(h2).

Let
∑p

i=1 a
2
i = A. This implies

p∑
i=1

a2iE(K
2
i (z)) = AF (x)− Ahf(x) + hf(x)

p∑
i=1

a2iE(K
2
i (z)) dz +O(h2).

But,

∑∑
i 6=l
aialE

(
Ki

(
x−Xj

h

)
Kl

(
x−Xj

h

))
=
∑∑

i 6=l
aial

∫ ∞
−∞

Ki

(
x− y
h

)
Kl

(
x− y
h

)
f(y)dy.

Now,

E (Ki(z)Kl(z)) =

∫ ∞
−∞

Ki(z)Kl(z)f(x− hz) dz,

where

Ki(z)Kl(z) =


0, y > x+ h,
1
4
+ 1

2
gi(z) +

1
2
gi(z) + gi(z)gl(z), |z| < 1,

1, y < x− h.
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Therefore,

∫ ∞
−∞

Ki(z)Kl(z)f(x− hz) dz =
∫ 1

−∞
0 dz

+

∫ 1

−1

(
1

4
+

1

2
gi(z) +

1

2
gl(z) + gi(z)gl(z)

)
×

f(x− hz) dz + h

∫ ∞
1

f(x− hz) dz×∫ x−h

−∞
f(y) dy

+ h

∫ 1

−1

(
1

4
+

1

2
gi(z) +

1

2
gl(z) + gi(z)gl(z)

)
×

f(x− hz) dz
=F (x)− hf(x)

+

∫ 1

−1

(
1

4
+

1

2
gi(z) +

1

2
gl(z) + gi(z)gl(z)

)
×

f(x) dz +O(h2)

=F (x)− hf(x) + h

2
f(x)

+ hf(x)

∫ 1

−1
gi(z)gl(z) dz +O(h2)

=F (x)− h

2
f(x)

+ hf(x)

∫ 1

−1
gi(z)gl(z) dz +O(h2).

Here we note that

∫ 1

−1
gi(z)gl(z) dz =

∫ 1

−1
Ki(z)Kl(z) dz −

1

2
.

Therefore,

∫ ∞
−∞

Ki(z)Kl(z)f(x− hz) dz =F (x)−
h

2
f(x) +

(∫ ∞
−∞

Ki(z)Kl(z) dz −
1

2

)
+O(h2)

=F (x)− hf(x) + hf(x)

∫ ∞
−∞

Ki(z)Kl(z) dz

+O(h2),
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and

2
∑∑

i 6=l
aialE (Ki(z)Kl(z)) =2

∑∑
i 6=l
aial[F (x)− hf(x)

+ hf(x)

∫ ∞
−∞

Ki(z)Kl(z) dz +O(h2)]

=
(
2
∑∑

i 6=l
aialF (x)

)
−
(
2
∑∑

i 6=l
aialhf(x)

)
+ hf(x)2

∑∑
i 6=l
aial

∫ ∞
−∞

Ki(z)Kl(z) dz +O(h2).

Let
∑∑

i 6=laial = B. Thus,

2
∑∑

i 6=l
aialE (Ki(z)Kl(z)) =2BF (x)− hBf(x)

+ hf(x)2
∑∑

i 6=l
aial

∫ ∞
−∞

Ki(z)Kl(z) dz +O(h2).

Therefore, the variance is

V ar
(
F̂ ∗(x)

)
=
1

n

(
AF (x)− Ahf(x) + hf(x)

p∑
i=1

a2iE(K
2
i (z)) dz +O(h2)

)

+ [2BF (x)− hBf(x) + hf(x)2
∑∑

i 6=l
aial

∫ ∞
−∞

Ki(z)Kl(z) dz

+O(h2)]−
(
F (x)2 +O(h4)

)
=
1

n
(F (x) (A+ 2B − F (x))) + h

n
f(x)

(
p∑

i=1

a2iE(K
2
i (z)) dz

)

+
2

n

(∑∑
i 6=l
aial

∫ ∞
−∞

Ki(z)Kl(z) dz − (A+ 2B)

)
+O(h2)

=
1

n
(F (x) (A+ 2B − F (x))) + h

n
f(x) (Ri(K))

+
2

n
(Eil(K)− (A+ 2B)) +O(h2). �

Lemma 3.2.

Bias2(F̂ ∗) =
1

4
h4(f ′(x))2(µi(k))

2 +O(h6).

Proof:

It is known that

Bias(F̂ ∗(x)) = E(F̂ ∗(x))− F (x).
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But,

E(F̂ ∗(x)) =

∫ x−h

−∞
f(y)dy + h

p∑
i=1

ai

∫ 1

−1

(
1

2
+ gi(z)

)
f(x− hx dz).

Here also, ∫ x−h

−∞
f(y)dy = F (x)− hf(x),

and

h

p∑
i=1

ai

∫ 1

−1

(
1

2
+ gi(z)

)
f(x− hz) dz =h

p∑
i=1

ai

∫ 1

−1

(
1

2
+ gi(z)

)
×(

f(x)− hzf ′(x) +O(h2) dz
)

=h

p∑
i=1

ai

∫ 1

−1
Ki(z)[f(x)

− hf ′(x) +O(h3)]dz

=hf(x)

p∑
i=1

ai

∫ 1

−1
Ki(z) dz

− h2f ′(x)
p∑

i=1

ai

∫ 1

−1
aiKi(z) dz +O(h3).

Using integration by parts,∫ 1

−1
Ki(z) dz = zKi(z)|1−1 −

∫ 1

−1
zKi(z) dz.

From condition (IV ), zKi(z)|1−1 = 1, and
∫ 1

−1 zKi(z) dz =
1
2
− 1

2

∫ 1

−1 z
2ki(z) dz. Also,

p∑
i=1

ai

∫ 1

−1

(
1

2
+ gi(z)

)
f(x− hz) dz = f(x)

p∑
i=1

ai − hf ′(x)
p∑

i=1

ai ×(
1

2
− 1

2

∫ 1

−1
z2ki(z) dz

)
= f(x)− h2

2
f ′(x)

+
h

2
f ′(x)

p∑
i=1

ai

∫ 1

−1
z2ki(z) dz.

Therefore,

Bias(F̂ ∗(x)) = F (x)− hf(x) + hf(x)− h2

2
f ′(x)

+
h2

2
f ′(x)

p∑
i=1

ai

∫ 1

−1
z2ki(z) dz − F (x) +O(h3)

=
1

2
h2f ′(x)

p∑
i=1

ai

∫ 1

−1
z2ki(z) dz +O(h3),
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and

Bias2(F̂ ∗(x)) =
1

4
h4(f ′(x))2

(
p∑

i=1

ai

∫ 1

−1
z2ki(z) dz

)2

+O(h6)

=
h4

4
(f ′(x))2 (µi(k))

2 +O(h6). �

Theorem 3.1.

Under conditions (I)− (V ) , the MSE for F̂ ∗(x) is given by:

MSE(F̂ ∗(X)) =
1

n
F (x) ((A+ 2B)− F (x)) + h

n
f(x)[Ri(K) + 2Eil(K)

−(A+ 2B)] +
1

4
h4f ′(x)2µi(k)

2 +O(h6),

where A =
∑p

i=1 a
2
i , B =

∑∑
i 6=l aial, Ri(K) =

∑p
i=1 a

2
i

∫ 1

−1Ki(z)
2 dz,

Eil(K) =
∑∑

i 6=l aial
∫ 1

−1Ki(z)Kl(z) dz, and µi(k) =
∑p

i=1 ai
∫ 1

−1 z
2ki(z) dz

Proof:

The expression for the mean squared error is given by

MSE(F̂ ∗(x)) = V ar(F̂ ∗(x)) +Bias2(F̂ ∗(x)).

Therefore, using Lemma 3.1 and Lemma 3.2, the MSE is given by:

MSE(F̂ ∗(x)) =
1

n
F (x) ((A+ 2B)− F (x)) + h

n
f(x)[Ri(K) + 2Eil(K)

−(A+ 2B)] +
1

4
h4f ′(x)2µi(k)

2 +O(h6). �

Lemma 3.3.

Under conditions (I) to (V ) the MISE for the kernel distribution function estimator using linear
combination is given by

MISE(F̂ ∗(x)) =
1

n
D1(F ) +

h

n
D2(F ) (Ri(K) + 2Eil(K)− (A+ 2B))

+
h4

4
D3(F ) (µi(k))

2 +O(h6),

whereD1(F ) =
∫
F (x)(A+2B−F (x))f(x)W (x) dx, D2(F ) =

∫
f(x)2W (x) dx, andD3(F ) =∫

f ′(x)2f(x)W (x) dx. In addition, A, B, Ri(K), Eil(K) and µi(k) are given and defined in The-
orem 3.1.
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Proof:

MISE(F̂ ∗(x)) =

∫
MSE(F̂ ∗(x))f(x)W (x) dx

=

∫
(
1

n
F (x) ((A+ 2B)− F (x)) + h

n
f(x)[Ri(K) + 2Eil(K)

−(A+ 2B)] +
1

4
h4(f ′(x))2µi(k)

2 +O(h6))f(x)W (x) dx

=
1

n

∫
F (x)(A+ 2B − F (x))f(x)W (x) dx

+
h

n

∫
f(x)2W (x) dx (Ri(K) + 2Eil(K)− (A+ 2B))

+
1

4
h4
∫

(f ′(x))2f(x)W (x) dx
(
µi(k)

2
)
+ O(h6).

Hence,

MISE(F̂ ∗(x)) =
1

n
D1(F ) +

h

n
D2(F )[Ri(K) + 2Eil(K)−

(A+ 2B)] +
h4

4
D3(F ) (µi)

2 +O(h6). �

Corollary 3.1.

Under the conditions (I) to (V ) above, the asymptotic MISE for the kernel distribution function
estimator using linear combination is given by:

AMISE(F̂ ∗(x)) =
1

n
D1(F ) +

h

n
D2(F )[Ri(K) + 2Eil(K)

−(A+ 2B)] +
h4

4
D3(F ) (µi)

2 ,

and the asymptotically optimal bandwidth is given by:

h∗AMISE =
(D2(F ))

1/3 (A+ 2B −Ri(K)− 2Eil(K))1/3

n1/3(D3(F ))1/3 (µi(k))
2/3

,

where Ri(K), Eil(K), µi(k), D2(F ) and D3(F ) are defined in Theorem 3.1 and Lemma 3.3.

Proof:

By deriving the AMISE(F̂ ∗(x)) and having it equal to zero,

1

n
D2(F ) (Ri(K) + 2Eil(K)− (A+ 2B)) + h3D3(F ) (µi)

2 = 0.

Therefore,

h3D3(F ) (µi)
2 =

1

n
D2(F ) (A+ 2B −Ri(K)− 2Eil(K)) ,



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 887

which implies

h3 =
(D2(F )) (A+ 2B −Ri(K)− 2Eil(K))

n(D3(F )) (µi)
2 .

Thus,

h =
(D2(F ))

1/3 (A+ 2B −Ri(K)− 2Eil(K))1/3

n1/3(D3(F ))1/3 (µi)
2/3

,

which can be denoted by h∗AMISE and is called the asymptotic MISE optimal bandwidth. �

4. The Plug-in Method for Linear Combination

In all cases of kernel density estimation, the asymptotically optimal bandwidth is derived using
either a single kernel or the linear combination of kernels in the estimator, the optimal bandwidth
has the terms D2(F ) =

∫
f(x)2W (x) dx and D3(F ) =

∫
f ′(x)2f(x)W (x) dx, where both D2(F )

and D3(F ) contain the actual value of the pdf , f(x) and so to estimate the asymptotically optimal
bandwidth, we need to estimate the value of f. Thus, it is essential to estimate D2(F ) and D3(F ).
One the technique to estimate them is using the plug-in method.

The plug-in method goes back to Woodroofe (1970). Then, it was used in the kernel density esti-
mation by Hall and Marron (1987), Hall and Marron (1991), and Sheather and Jones (1991), and
it was used for the cumulative distribution function by Polansky and Baker (2000). However, Alt-
man and Léger (1993) estimated the optimal bandwidth with an estimate for D2(F ) as suggested
by Hall and Marron (1987). This estimator is given by

D̂2(F ) =
1

n(n− 1)

∑
i 6=j

α−1v kv

(
Xi −Xj

αv

)
W (Xi),

where αv is a suitable bandwidth selected by using one of the bandwidth selector methods and also
kv is any suitable kernel, while, the estimator for D3(F ) was given by

D̂3(F ) =
1

n3α4
b

n∑
i=1

n∑
j=1

n∑
k=1

k′b

(
Xi −Xj

αb

)
k′b

(
Xi −Xk

αb

)
,

where kb and αb are a suitable kernel and its associated bandwidth respectively. The estimators for
the linear combination case are given in the following theorem.

Theorem 4.1.

The Plug-in estimators for D2(F ) and D3(F ) using a linear combination of kernels are given by

D̂∗2(F ) =
1

n(n− 1)b1

∑
j 6=k

p∑
i=1

aigi

(
Xj −Xk

b1

)
W (Xj),
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and

D̂∗3(F ) =
1

n3b42

n∑
j=1

n∑
k=1

n∑
l=1

p∑
i=1

aiq
′
i

(
Xj −Xk

b2

) p∑
i=1

aiq
′
i

(
Xj −Xl

b2

)
W (Xj),

respectively.

Proof:

Thus, we will estimate D2(F ) using a linear combination of kernels as follow:

D̂∗2(F ) =

∫
f̂ ∗(xj)f(x)W (x) dx

=
1

n

n∑
j=1

(
1

nh

n∑
k=1

p∑
i=1

aiki

(
Xj −Xk

h

))
W (Xj)

=
1

n

n∑
j=1

(
1

h

p∑
i=1

aiki(0) +
1

(n− 1)h

∑
j 6=k

p∑
i=1

aiki

(
Xj −Xk

h

))
W (Xj)

=
1

nh

p∑
i=1

aiki(0) +
1

n(n− 1)h

∑
j 6=k

p∑
i=1

aiki

(
Xj −Xk

h

)
W (Xj).

The terms for which i = j, that is the terms with ki(0) are independent of the data and so can be
thought of as bias terms (Hall and Marron, 1987). Therefore,

D̂∗2(F ) =
1

n(n− 1)h

∑
j 6=k

p∑
i=1

aiki

(
Xj −Xk

h

)
W (Xj).

For D3(F ), we have

D3(F ) =

∫
f ′(x)2f(x)W (x) dx

=

∫
(f ′(x)) (f ′(x)) f(x)W (x) dx.

But

f̂ ∗
′
(x) =

1

nh2

n∑
j=1

p∑
i=1

aik
′
i

(
x−Xj

h

)
.
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Figure 1. Exp(1)(Black), Fn(step function), F̂ ∗ using Flin(red) and F̂ (blue)

Therefore,

D̂∗3(F ) =

∫ (
f̂ ∗
′
(x)
)(

f̂ ∗
′
(x)
)
f(x)W (x) dx

=

∫ (
1

nh2

n∑
j=1

p∑
i=1

aik
′
i

(
x−Xj

h

))(
1

nh2

n∑
j=1

p∑
i=1

aik
′
i

(
x−Xj

h

))
f(x)W (x)dx

=
1

n

n∑
j=1

(
1

nh2

n∑
k=1

p∑
i=1

aik
′
i

(
Xj −Xk

h

))(
1

nh2

n∑
l=1

p∑
i=1

aik
′
i

(
Xj −Xl

h

))
W (Xj)

=
1

n3h4

n∑
j=1

n∑
k=1

n∑
l=1

p∑
i=1

aik
′
i

(
Xj −Xk

h

) p∑
i=1

aik
′
i

(
Xj −Xl

h

)
W (Xj).

Note that the kernels and the bandwidths used here are chosen as desired depending on how well
they work in the estimation. That is, they are not necessarily the same as those used in other parts
of the optimal bandwidth. �

5. The Plug-in Method for Linear Combination

5.1. Simulations

In this section, the simulations is performed on twice and independently two independent samples
with small (n = 20) and large (n = 100) samples from exponential distribution with mean one.
Figure 1 includes the graphs for the cumulative distribution function F (x) and the estimators using
the methods: (1) the empirical, (2) the kernel distribution function F̂ (x) using the Epanechnikov
kernel, and (3) the linear combination of kernels F̂ ∗(x) using the kernels Epanenchnikov and
Biweight with a1 = a2 = 0.5. The graphs show that the F̂ and F̂ ∗ are smoother than the empirical
distribution function. F̂ ∗ can be seen to be closer to F (x) in the graphs with n = 20 and they all
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tend to coincide for n = 100.

5.2. Real-Life Data

Using the real world data at White et al. (1960), which is in Table 1, we will estimate the cumulative
distribution function. The data were various characteristics of pure beeswax were studied. The
beeswax samples were collected from 59 sources and for each sample the characteristics were
studied. One of the studied characteristics is the melting point of each sample.

Table 1. The beeswax samples

63.78 63.45 63.58 63.08 63.4 64.52 63.27
63.1 63.34 63.5 63.83 63.63 63.27 63.3
63.83 63.5 63.36 63.86 63.34 63.92 63.88
63.36 63.36 63.51 63.51 63.84 64.27 63.5
63.56 63.39 63.78 63.92 63.92 63.56 63.43
64.21 64.24 64.12 63.92 63.53 63.5 63.3
63.86 63.93 63.43 64.4 63.61 63.03 63.68
63.13 63.41 63.6 63.13 63.69 63.05 62.85
63.31 63.66 63.6

In Polansky and Baker (1999), the empirical distribution function and the kernel estimate of the
distribution of the melting points was studied. We compare among the empirical distribution func-
tion, F̂ (x) and F̂ ∗(x) using linear combinations of kernels. The weighted function is any function
w(x), such that

∫ 1

0
w(x)dx = 1, for simplicity and to have more accurate comparison we used the

weighted function that was used by Polansky and Baker (1999), which is w(x) = 1, 0 < x < 1,
where other selections can be used and studied, but we will have a different form for the asymptotic
optimal bandwidth.

Figures 2, 3 and 4 represent the estimate of the cumulative distribution function for the real life
data example using the empirical estimate, the linear combination of kernels and using F̂ (x). From
these three figures, we noticed that the estimate using linear combination is close to the one with
one kernel but it is still closer to the empirical estimator in the three cases, where we can conclude
the linear combination may improve the estimation.

6. Conclusion

The kernel distribution estimator is a well known technique to estimate the distribution function
F (x), while the easiest technique to estimate F (x) is the empirical estimator. The main disadvan-
tage of the empirical technique that is the estimator is not smooth where the graph is look like
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Figure 2. Fn(step function), F̂ ∗ using Flin11(dotted line) and F̂ (dashed line)
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Figure 3. Fn(step function), F̂ ∗ using Flin21(dotted line) and F̂ (dashed line)

stairs. Thus, it is for sure that the graph based on the empirical estimate is not the correct graph
when the data is from a continuous distribution. To evaluate the estimator usually we minimize
the error and mainly minimize the mean square error. In this paper we derived the mean integrated
square error for the kernel distribution estimator using linear combinations of kernels. Also, we
obtained the optimal bandwidth using the linear combinations of kernels. In addition, we proposed
the plug in method for the linear combinations of kernels as a data based method to obtain the
optimal bandwidth. From the figures we noticed that the method using linear combinations of ker-
nels are closer to the well know empirical distribution function estimator than using a single kernel
estimator. In addition, it is clear that the estimator using linear combinations is smoother than the
empirical estimator which provides us with an indication that using linear combination of kernels
is an effective way in the kernel distribution estimator.
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Figure 4. Fn(step function), F̂ ∗ using Flin31(dotted line) and F̂ (dashed line)

On this investigation we used several regularity conditions on the probability density function, on
the kernels and on the weighted function. Even, these conditions are well known and used in the
kernel distribution estimator; an investigator may derive the mean integrated square error and study
the bandwidth selection with different conditions.

This work can be extended to study other techniques for bandwidth selection such as the least
square technique and the Biased in technique. Also, we can study other measures of error such as
the mean weighted Hellinger Distance and the Mean Absolute Error. The linear combinations of
kernels can be use to extended for the kernel estimator of function of observations.
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