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Abstract

In this paper, a new class of survival distributions based on the model of dependent lives and pro-
portional hazard rate family is introduced. This new family of bivariate survival models contains
several bivariate lifetime models and is more flexible. The main purpose of this paper is to gener-
alize this family of bivariate survival distributions of dependent lives so that more flexible models
can be achieved. These new families of distributions are called the bivariate proportional hazard
rate (BPHR) and the bivariate proportional hazard rate-geometric (BPHRG) families, respectively.
It is also observed that, if θ = 1, then the BPHR family is a particular state of the BPHRG family.
Several features of these new families of distributions such as the multivariate aging properties,
the bivariate hazard gradient, and dependency structures are investigated. We design a flexible
computational EM algorithm to calculate the maximum likelihood estimation of parameters. Also,
several simulation studies are represented to evaluate the efficiency of the EM algorithm. Finally,
we analyze three real datasets and compare the BPHRG models with the BPHR models.

Keywords: Dependent Lives; EM Algorithm; Life Insurance; Longevity; Proportional Hazard
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1. Introduction

In recent years, the proportional hazard rate models have been considered by many authors. This
class of models was principally designed by Cox (1997) and has been spaciously discussed in the
statistical literature. The hazard rate and reliability function of this family of distributions have
many different forms. Therefore, by selecting the special formation of the baseline cumulative
distribution, this family can be applied in many applications of quality control, survival, insurance,
and failure time modeling. Also, the simple partial likelihood function is another advantage of this
model. For further details on PHRM, we suggest that readers refer to Marshall and Olkin (2007),
Ahmadi et al. (2009b), Ahmadi et al. (2009a), and Asgharzadeh and Valiollahi (2010).

As we know, there are various methods for the modeling of longevity. In many fields of science,
including statistics and life insurance, it is assumed that the remainder of a person’s or components’
lives is independent. But applying this assumption is not always correct. Because sometimes there
may be common risk factors for a pair of individuals, and individuals are exposed to the same risk
factors. For example, in the case of twins, the same risk factors may be genetic, or in the case of
married couples, these factors may come from the environment.

One of the classic models of dependent lives, which is very popular and widely used by many
researchers recently, is the common shock model. To structure these models, it is assumed that the
lifespan of the two individuals is independent of each other unless a common accident causes their
death that the time of the disaster should be used in the modeling of survival data. In this regard, we
can mention Marshall and Olkin (1967), Sarhan and Balakrishnan (2007), Al-Khedhairi and El-
Gohary (2008), and Kundu and Gupta (2010). This structure has many applications and is widely
used, especially in actuarial theory, finance, reliability theory in the competing risk and shock
models, as well as medical and demographic studies.

In the field of actuarial theory and life insurance, as we know, pensions guarantee the payment
of regular periodic income during the life of the pensioner. Therefore, these dependent models
are beneficial for estimating the probabilities of a couple’s survival and reviewing and evaluating
their annual contracts. The reason for applying the dependent model has been described in Frees
et al. (1996). In actuarial calculations to determine the insurance benefits, retirement benefits, and
premiums payable in the joint life, people’s lives are considered as a status and according to the
terms of the insurance contract, the random variables of the time-until failure are defined by the
first death or the last survivor. Therefore, common shock models can be easily used in calculations
related to annuity and life insurance. In actuarial science, competing risk models actually repre-
sent multiple reductions, and a person may die from one of several possible causes (cancer, heart
disease, accident, etc.). Similar common shock models are used in finance and reliability theory. A
detailed study of this issue and modeling of credit and insurance losses was performed by Giesecke
(2003) and Lindskog and McNeil (2003).

Another structure for modeling longevity data was provided by Marshall and Olkin (1997) in
the case of univariate distributions. In this structure, new univariate distributions were presented
through minimizing and maximizing independent and identically distributed continuous random
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variables by assuming a geometric distribution is selected for the sample size. So, a parameter was
added to the models that made the models more flexible. For further details, researchers can refer
to the work of Silva et al. (2013), Ghitany et al. (2005), Ghitany et al. (2007), Pham and Lai (2007),
and Barreto-Souza (2012), Kundu and Gupta (2014), and Shoaee and Khorram (2019).

According to this content, we assume that the remainder of the lifetime belongs to the proportional
hazard rate family. Thus, a family of bivariate survival distributions is introduced based on the
dependent lives models. This new family of bivariate distributions is called the bivariate propor-
tional hazard rate (BPHR) family. For this new family of survival distributions, we examine the
various properties which are very important and applicable. Also, our main purpose of this re-
search is to generalize the family of bivariate survival distributions of dependent lives. Thus, a new
class of family of dependent life distributions is obtained. This extension is obtained by minimiz-
ing independent and identically distributed continuous random variables by assuming a geometric
distribution is selected for the sample size.

It is necessary to mention, the use of this structure to generalize bivariate models is not as
widespread as the use of this structure in univariate models. Therefore, this generalized class con-
tains the family of bivariate proportional hazard rate distributions (BPHR) and is called the bi-
variate proportional hazard rate-geometric (BPHRG) class of distributions. Also, the marginal and
conditional distributions of this generalized family of distributions are obtained, which can be seen
that these distributions belong to the univariate proportional hazard rate-geometric distributions
(UPHRG) family. Besides, different properties of the BPHRG models have been investigated.

We obtain the estimation of the BPHRG model parameters using the maximum likelihood method,
but we find that there are no explicit expressions for them. Because there are nonlinear equations
that need to be solved simultaneously, we can use techniques that have been proposed in the past
to solve this problem, including Newton-Raphson and Gauss-Newton methods. However, in these
methods, it is essential to select the appropriate initial values for the convergence of these algo-
rithms. In this paper, it is suggested to use the missing value method and an EM algorithm for
parameter estimation. In this proposed EM algorithm, only one nonlinear one-dimensional equa-
tion is solved at each “E-step”. We also find that the performance of the proposed algorithm is
very desirable and easy to use. Therefore, it is possible to estimate the parameters of this family
of distributions using this algorithm and deduce and analyze this family of models. Therefore, a
family of alternative survival models is derived that can be fitted better than existing models.

The present paper is organized as follows: A family of bivariate survival distributions based on
the structure of dependent lives that are very applicable is presented in Section 2. In the following
section, we describe several features of this new model family. A useful and practical extension
of this new family of bivariate survival models is provided in Section 3, and the properties and
characteristics of this new family of bivariate models are studied in this section. Inference about the
unknown parameters of this family, the estimation method, and the proposed algorithm structure
are presented in Section 4. In Section 5, the simulation study to evaluate the efficiency of the
designed algorithm and analysis of three real datasets for comparing the new models are presented.
Finally, the conclusions and results are described in Section 6.
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2. Marshall–Olkin Bivariate Proportional Hazard Rate Models

In this section, we will introduce a family of the bivariate proportional hazard rate distributions.
Therefore, at the beginning of this section, we will define the structure of the proportional hazard
rate family.

Definition 2.1.

The family of random variables is called the proportional hazard rate (PHR) family, if its the hazard
rate function has the form of {λhB(.) : λ > 0}, where hB(.) is the hazard rate.

In other words, we can say that, if Z is a member of the proportional hazard rate family, then the
cumulative distribution function becomes

FPHRM(z;α, λ) = 1− [F̄B(z, α)]
λ
, −∞ ≤ b1 < z < b2 ≤ ∞, λ > 0, (1)

where F̄B(.) = 1−FB(.) is the baseline survival function with FB(b1) = 0 and FB(b2) = 1. There-
fore, by selecting the special formation of the baseline cumulative distribution, this family can be
applied in many applications of quality control, survival, insurance, and failure time modeling.
Another advantage of the proportional hazard rate model is the simple partial likelihood.

We can obtain the probability density function (PDF) from the model (1) as

fPHRM(z;α, λ) = λfB(z, α)[F̄B(z, α)]λ−1, −∞ ≤ b1 < z < b2 ≤ ∞, λ > 0, (2)

where fB(.) is the PDF of FB(.). Table 1 shows some useful quantities for some distributions
belonging to the proportional hazard rate family (Weibull, Lomax, Chen, and Gompertz).

Now let’s assume that Ti follows (∼) PHRM(α, λi), for i = 0, 1, 2, and also they are indepen-
dent. Define Xi = min{T0, Ti}, for i = 1, 2. Then, the random vector X = (X1, X2) belong
to the bivariate proportional hazard rate distributions family. This family of distributions has four
parameters and is denoted by the symbol BPHR(α, λ0, λ1, λ2). We discuss some of the important
functions and consequences of this family of distributions.

Table 1. Some useful quantities for some distributions belonging to the proportional hazard rate family

Distribution F̄B(x, α) fB(x, α) ln F̄B(x, α) ln
fB(x, α)

F̄B(x, α)

Weibull e−x
α

αxα−1e−x
α

−xα lnα+ (α− 1) lnx

Lomax
1

1 + αx

α

(1 + αx)2
− ln(1 + αx) lnα− ln(1 + αx)

Chen e1−e
xα

αxα−1ex
α

e1−e
xα

1− ex
α

lnα+ (α− 1) lnx+ xα

Gompertz e−(eαx−1) αeαxe−(eαx−1) −(eαx − 1) lnα+ αx
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Theorem 2.1.

Suppose X ∼ BPHR(α, λ0, λ1, λ2). Then, the joint survival function can be obtained for
z = max{x1, x2} as follows:

F̄X1,X2
(x1, x2) =


F̄PHRM(x1, α, λ1 + λ0)F̄PHRM(x2, α, λ2), if x2 < x1,

F̄PHRM(x1, α, λ1)F̄PHRM(x2, α, λ2 + λ0), if x1 < x2,

F̄PHRM(x, α, λ0 + λ1 + λ2, λ), if x1 = x2 = x.

(3)

Proof:

To calculate the joint survival function, we have:

FX1,X2
(x1, x2) = P (X1 > x1, X2 > x2)

= P (min{T0, T1} > x1,min{T0, T2} > x2)

= P (T1 ≥ x1, T2 ≥ x2, T0 ≥ z) = P (T1 > x1)P (T2 > x2)P (T0 > z)

= F̄PHRM(x1, α, λ1)F̄PHRM(x2, α, λ2)F̄PHRM(z, α, λ0),

where z = max{x1, x2}. Therefore, the desired result is obtained. �

Theorem 2.2.

Suppose X ∼ BPHR(α, λ0, λ1, λ2). Then, the joint probability density function of X is expressed
as follows:

fX1,X2
(x1, x2) =


f1(x1, x2), if x2 < x1,
f2(x1, x2), if x1 < x2,
f0(x), if x1 = x2 = x,

(4)

where

f1(x1, x2) = fPHRM(x1, α, λ1 + λ0)fPHRM(x2, α, λ2),

f2(x1, x2) = fPHRM(x1, α, λ1)fPHRM(x2, α, λ2 + λ0),

f0(x) =
λ0

λ0 + λ1 + λ2

fPHRM(x, α, λ0 + λ1 + λ2).

Proof:

We obtain the phrases f1(x1, x2) and f2(x1, x2) through −∂2F̄X1,X2 (x1,x2)

∂x1∂x2
for x1 < x2 and x2 < x1

respectively. For the expression f0(x) we cannot use the same method and to calculate it we need
to consider the following relation:∫ ∞

0

f0(x)dx+

∫ ∞
0

∫ ∞
x2

f1(x1, x2)dx1dx2 +

∫ ∞
0

∫ ∞
x1

f2(x1, x2)dx2dx1 = 1.

We compute,∫ ∞
0

∫ ∞
x2

f1(x1, x2)dx1dx2 = λ2

∫ ∞
0

[F̄B(x2, α)]λ0+λ1+λ2−1fB(x2, α)dx2 =
λ2

λ0 + λ1 + λ2

,
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and similarly,∫ ∞
0

∫ ∞
x1

f2(x1, x2)dx2dx1 = λ1

∫ ∞
0

[F̄B(x1, α)]λ0+λ1+λ2−1fB(x1, α)dx1 =
λ1

λ0 + λ1 + λ2

.

Therefore, we should have:∫ ∞
0

f0(x)dx = λ0

∫ ∞
0

[F̄B(x, α)]λ0+λ1+λ2−1fB(x, α)dx =
λ0

λ0 + λ1 + λ2

.

So, the desired result is achieved. �

Regarding Theorem 2.2, we see that this family of models has an absolutely continuous part and a
singular part. In other words, Theorem 2.2 expresses the density function of this family. The first
two terms represent the density function with respect to the two-dimensional Lebesgue measure.
The third expression represents the density function according to the one-dimensional Lebesgue
measure, see Bemis et al. (1972). In this family of distributions, the singular part indicates that
X1 and X2 are continuous random variables, and the probability of being equal is positive, see
Marshall and Olkin (1967). Theorem 2.3 provides a better explanation of the absolutely continuous
and singular parts in this family of distributions.

Theorem 2.3.

Suposse X ∼ BPHR(α, λ0, λ1, λ2). Then,

F̄X1,X2
(x1, x2) =

λ1 + λ2

λ0 + λ1 + λ2

F̄a(x1, x2) +
λ0

λ0 + λ1 + λ2

F̄s(x1, x2), (5)

where

F̄s(x1, x2) = [F̄B(z, α)](λ0+λ1+λ2),

and

F̄a(x1, x2) =
λ0 + λ1 + λ2

λ1 + λ2

[F̄B(x1, α)]λ1 [F̄B(x2, α)]λ2 [F̄B(z, α)]λ0

− λ0

λ0 + λ1 + λ2

[F̄B(z, α)](λ0+λ1+λ2).

Proof:

We use the same method as provided by Muhammed (2016). Suppose event A is as follows:

A = {T0 < T1} ∩ {T0 < T2}.
Therefore, P (A) = λ0/(λ0 + λ1 + λ2) and P (A′) = 1 − P (A) = (λ1 + λ2)/(λ0 + λ1 + λ2).
Therefore,

F̄X1,X2
(x1, x2) = P (X1 ≥ x1, X2 ≥ x2|A)P (A) + P (X1 ≥ x1, X2 ≥ x2|A′)P (A′).

In addition, we know that for z = max{x1, x2}
P (X1 ≥ x1, X2 ≥ x2|A) = [P (A)]−1P (T1 ≥ T0, T2 ≥ T0, T0 ≥ z)

= [F̄B(z, α)](λ0+λ1+λ2).
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So, the expression P (X1 ≥ x1, X2 ≥ x2|A′) is calculated through the subtraction. In fact,
[F̄B(z, α)](λ0+λ1+λ2) represents a singular part because it can be seen that the mixed second partial
derivatives are zero when x1 6= x2. Therefore, P (X1 ≥ x1, X2 ≥ x2|A′) represents the absolutely
continuous part because its mixed second partial derivatives is a bivariate density function. �

Using Theorem 2.3 and 2.2, the joint probability density function for z = max{x1, x2} can be
written as follows:

fX1,X2
(x1, x2) =

λ1 + λ2

λ0 + λ1 + λ2

fa(x1, x2) +
λ0

λ0 + λ1 + λ2

fs(z), (6)

where

fa(x1, x2) =
λ1 + λ2

λ0 + λ1 + λ2


fPHRM(x1, α, λ0 + λ1)fPHRM(x2, α, λ2), if x2 < x1,

fPHRM(x2, α, λ1)fPHRM(x2, α, λ0 + λ2), if x1 < x2,

and

fs(z) = fPHRM(z, α, λ0 + λ1 + λ2),

where fa(x1, x2) is the absolutely continuous part, and fs(z) is the singular part, respectively.

From Theorem 2.3 we can conclude that F̄X1,X2
(x1, x2)→ [F̄B(x1, α)]λ1 [F̄B(x2, α)]λ2 for fixed λ1

and λ2 when λ0 → 0. In fact, we can say that X1 and X2 become independent. Also, if we define
an event A as before, we have

A = (T0 < T1) ∩ (T0 < T2) = {min{T1, T2} > T0} = {X1 = X2}.
Therefore, P (A) = λ0

λ0+λ1+λ2
= P (X1 = X2)→ 1 when λ0 →∞. So, it can be concluded that X1

and X2 are asymptotically almost surely equal. The final result is that corr(X1, X2) changes from
zero to one for fixed λ1 and λ2, and when λ0 changes from zero to infinity.

We can obtain the absolutely continuous bivariate proportional hazard rate (ACBPHR) family of
models by removing the singular part and keeping the absolutely continuous part.

fACBPHR(x1, x2) =


cfPHRM(x1, α, λ0 + λ1)fPHRM(x2, α, λ2), if x2 < x1,

cfPHRM(x2, α, λ1)fPHRM(x2, α, λ0 + λ2), if x1 < x2,
(7)

where c = λ0+λ1+λ2

λ1+λ2
is the normalizing constant.

2.1. Various Features

In this subsection, we describe the useful features of this family of models. We first obtain the
marginal and conditional functions of this family. In the following section, we describe the con-
cepts of positive and negative dependence, see for example, Balakrishnan and Lai (2009). We also
explain the properties of aging and the bivariate hazard gradient for this family, see Johnson and
Kotz (1975).
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Proposition 2.1.

Assume that the random vector X belongs to the bivariate proportional hazard rate family, i.e.,
X ∼ BPHR(α, λ0, λ1, λ2). Then,

I: Xi ∼ PHRM(α, λ0 + λi), i = 1, 2.
II: P (X1 < X2) = λ1

λ0+λ1+λ2
.

III: min{X1, X2} ∼ BPHR(α,
∑2

i=0 λi).

Proof:

I: To prove this part, we use the cumulative distribution function for variable X1 as follows:

FXi(x) = P (Xi < x) = 1− P (min{T0, Ti} > x)

= 1− F̄PHRM(x, α, λ0)F̄PHRM(x, α, λi)

= 1− [F̄B(x, α)]λ0 [F̄B(x, α)]λi

= FPHRM(x, α, λ0 + λi).

II: The proof of this part is as follows:

P (X1 < X2) =

∫ ∞
x1

∫ ∞
0

fPHRM(x1, α, λ1)fPHRM(x2, α, λ0 + λ2)dx1dx2

=

∫ ∞
0

fPHRM(x1, α, λ1)F̄PHRM(x1, α, λ0 + λ2)dx1

=

∫ ∞
0

λ1[F̄B(x1, α)]λ1−1[F̄B(x1, α)]λ0+λ2fB(x1, α)dx1

=
λ1

λ0 + λ1 + λ2

.

III: The proof of this part is as follows:

P (min{X1, X2} < x) = P (X1 < x,X2 < x) = 1− P (T0 > x)P (T1 > x)P (T2 > x)

= 1− F̄PHRM(x, α, λ0)F̄PHRM(x, α, λ1)F̄PHRM(x, α, λ2)

= 1− [F̄B(x1, α)]λ0+λ1+λ2

= FPHRM(x, α, λ0 + λ1 + λ2). �

Proposition 2.2.

If the random vector X belongs to the bivariate proportional hazard rate family. Then,

I: The conditional survival function of X1 given X2 ≥ x2 can be computed as follows:

P (X1 ≥ x1|X2 ≥ x2) = F̄X1|X2≥x2
(x1) =


[F̄B(x1, α)]λ0+λ1 [F̄B(x2, α)]−λ0 , if x2 < x1

[F̄B(x1, α)]λ1 , if x1 < x2.

(8)

It is clearly seen that this function is absolutely continuous.
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II: The conditional survival function was presented in relation (8) can be rewritten as follows:

F̄X1|X2≥x2
(x1) = pG(x1) + (1− p)H(x1),

where,

G(x1) =
1

p


[F̄B(x1, α)]λ0+λ1 [F̄B(x2, α)]−λ0 , if x2 < x1,

[F̄B(x1, α)]λ1 − λ0

λ0+λ2
[F̄B(x2, α)]λ1 , if x1 < x2,

H(x) =

{
1, if x < x2,

0, if x > x2,

and

p = 1− λ0

λ0 + λ2

[F̄B(x2, α)]λ1 .

Proof:

I: For x2 < x1, we express the calculations, and for x1 < x2 it can be calculated similarly.

P (X1 ≥ x1|X2 ≥ x2) =
P (X1 ≥ x1, X2 ≥ x2)

P (X2 ≥ x2)
=
F̄X1,X2

(x1, x2)

F̄X2
(x2)

=
F̄PHRM(x1, α, λ0 + λ1)F̄PHRM(x2, α, λ2)

F̄PHRM(x2, α, λ0 + λ2)

= F̄PHRM(x1, α, λ0 + λ1)
[F̄B(x2, α)]λ2

[F̄B(x2, α)]λ0+λ2

= F̄PHRM(x1, α, λ0 + λ1)[F̄B(x2, α)]−λ0 .

II: For x2 < x1, we see that H(x1) = 0 and the desired result is obtained. Also for the case
x2 > x1 because H(x1) = 1 and 1− p = λ0

λ0+λ2
[F̄B(x2, α)]λ1 , the result can be achieved. �

Now we will provide the dependency properties between the two variables. Lehmann (1966) ex-
plained two random variables X1 and X2 to be positive quadrant dependent (PQD), if for all x1

and x2,

P (X1 ≤ x1, X2 ≤ x2) ≥ P (X1 ≤ x1)P (X2 ≤ x2).

Proposition 2.3.

Assume that the random vector X belongs to the bivariate proportional hazard rate family. Then,
the random vector X is

I: a positive upper orthant dependent.
II: a positive quadrant dependent.
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Proof:

I: Since the random vector X belongs to the bivariate proportional hazard rate family, so P (X1 ≥
x1, X2 ≥ x2) ≥ P (X1 > x1)P (X2 > x2) for all x1 > 0 and x2 > 0. Therefore, the random
vector X is positive upper orthant dependent.

II: Since the random vector X belongs to the bivariate proportional hazard rate family, so
F̄X(x1, x2) ≥ F̄X1

(x1)F̄X2
(x2) for all x1, x2. Now, we can conclude that FX(x1, x2) ≥

FX1
(x1)FX2

(x2) for all x1, x2. So, the random vector X is a positive quadrant dependent. It
should be noted that the last inequality is verified by the relation between the joint distribution
function and the joint survival in the bivariate distributions as follows:

F̄X(x1, x2) = 1− FX1
(x1)− FX2

(x2) + FX(x1, x2).

An essential and practical consequence of Part II is that for each pair of increasing functions h1(.)
and h2(.) we conclude that Cov(h1(X1), h2(X2)) > 0 (see Barlow and Proschan (1981)). �

Proposition 2.4.

Assume that the random vector X belongs to the bivariate proportional hazard rate family. Then,
the random vector X has

I: The right tail increasing (RTI) property.
II: The right corner set increasing (RCSI) property.

Proof:

I: Since the random vector X belongs to the bivariate proportional hazard rate family, then,
P (Xi > xi|Xj > xj) is a non-decreasing in xj for all xi > 0 and i 6= j. Therefore, the desired
result is obtained.

II: Since the random vector X belongs to the bivariate proportional hazard rate family, then,
P (X1 > x1, X2 > x2|X1 ≥ x̃1, X2 ≥ x̃2) increases in x̃1, x̃2 for any value (x1, x2). Therefore,
the desired result is obtained. �

Proposition 2.5.

Assume that the random vector X belongs to the bivariate proportional hazard rate family. Then,

I: The random vector X has the multivariate increasing failure rate (MIFR) property.
II: The components of the bivariate hazard gradient are increasing functions of x1 and x2.

Proof:

I: To prove this property, we can see that P (X1>x1+t,X2>x2+t)
P (X1>x1,X2>x2)

decreases in x1 and x2 for t > 0 and
fB(xi, α)/fB(xi + t, α) < F̄B(xi, α)/F̄B(xi + t, α), i = 1, 2. So, this family of distributions
has a MIFR property.
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II: Using the structure provided for bivariate gradient by Johnson and Kotz (1975) and the fact
that the random vector X belongs to the bivariate proportional hazard rate family, both the
components of hX(x1, x2) = (− ∂

∂x1
,− ∂

∂x2
) lnP (X1 > x1, X2 > x2) are increasing functions

of x1 and x2, for f ′B(xi, α) > 0, i = 1, 2 and all value of x1, x2 > 0. �

3. Generalization: Bivariate Proportional Hazard Rate–Geometric
Models

In this section, the class of BPHR models is generalized, and the bivariate proportional hazard
rate-geometric distributions are presented. For this extension, let {(X11, X21), . . . , (X1n, X2n)} be
independent and identically distributed (i.i.d) random variables with the joint distribution function
FX(., .). Also, suppose N is a random variable independent of {(X11, X21), . . . , (X1n, X2n)} that
represents the number of failures, and it has a geometric distribution. Which is indicated by N ∼
Ge(θ). In the following, we define the random variable Y = (Y1, Y2) as follows:

Yi = min{Xi1, . . . , XiN}, i = 1, 2.

For given N = n, the joint survival function of Y can be computed as follows:

F̄Y1,Y2|N(y1, y2|n) = (F̄X(y1, y2))n. (9)

Using Equation (9), the joint survival function of Y can be computed as follows:

ḠY(y1, y2) =
∞∑
n=1

P (Y1 > y1, Y2 > y2|N = n)P (N = n)

=
∞∑
n=1

[F̄X(y1, y2)]nθ(1− θ)n−1 =
θF̄X(y1, y2)

1− (1− θ)F̄X(y1, y2)
. (10)

Therefore, the joint survival function of Y can be written as follows:

ḠY(y1, y2) =
∞∑
n=1

pnF̄BPHR(y1, y2;α, nλ0, nλ1, nλ2), (11)

where pn = P (N = n) = θ(1− θ)n−1.

So, the random vector Y has a bivariate F-geometric (BFG) distribution. Therefore, the marginal
survival function Yi is as follows:

F̄Yi(yi) =
θF̄Xi(yi)

1− (1− θ)F̄Xi(yi)
, i = 1, 2, (12)

where F̄Xi is the marginal survival functions of F̄X. This method was presented in the univariate
distributions by Marshall and Olkin (1997). In the proposed method, a parameter was added to the
model, which resulted in greater flexibility. Many authors have used this method in a univariate
case. But this generalization has not been examined for bivariate distributions.
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Now suppose that the distribution F in Equation (10) belongs to the bivariate proportional hazard
rate family then, the joint survival function of Y becomes:

ḠY(y1, y2) =


θF̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)

1− (1− θ)F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)
, if y2 ≤ y1,

θF̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)

1− (1− θ)F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)
, if y1 < y2.

(13)

Therefore, the random variable Y has a bivariate proportional hazard rate-geometric distribu-
tion. This family of new distributions has five parameters, and we represent it with the symbol
BPHRG(θ, α, λ0, λ1, λ2).

Theorem 3.1.

Suppose Y ∼ BPHRG(θ, α, λ0, λ1, λ2). Then, the joint probability density function of Y is

gY(y1, y2) =


g1(y1, y2), if y2 < y1,
g2(y1, y2), if y1 < y2,
g0(y), if 0 < y1 = y2 = y,

where

g1(y1, y2) =
θfPHRM(y1, α, λ0 + λ1)fPHRM(y2, α, λ2)

[1− (1− θ)F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)]3

× {1 + (1− θ)F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)},

g2(y1, y2) =
θfPHRM(y1, α, λ1)fPHRM(y2, α, λ0 + λ2)

[1− (1− θ)F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)]3

× {1 + (1− θ)F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)},

g0(y) =
λ0

λ0 + λ1 + λ2

× θfPHRM(y, α, λ0 + λ1 + λ2)

[1− (1− θ)F̄PHRM(y, α, λ0 + λ1 + λ2)]2
.

Proof:

We obtain the expressions g1(y1, y2) and g2(y1, y2) through −∂2ḠY(y1,y2)
∂y1∂y2

for y2 6= y1 and the ex-
pression g0(x) we cannot use the same method and to calculate it we need to consider the following
relation: ∫ ∞

0

g0(y)dy +

∫ ∞
0

∫ ∞
y1

g2(y1, y2)dy2dy1 +

∫ ∞
0

∫ ∞
y2

g1(y1, y2)dy1dy2 = 1.

We compute,∫ ∞
0

∫ ∞
x2

g1(y1, y2)dy1dy2 = λ2

∫ ∞
0

θ[F̄B(y2, α)]λ0+λ1+λ2−1fB(y2, α)

[1− (1− θ)[F̄B(y2, α)]λ0+λ1+λ2]2
dy2 =

λ2

λ0 + λ1 + λ2

,
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and similarly,∫ ∞
0

∫ ∞
x2

g1(y1, y2)dy2dy1 = λ1

∫ ∞
0

θ[F̄B(y1, α)]λ0+λ1+λ2−1fB(y1, α)

[1− (1− θ)[F̄B(y1, α)]λ0+λ1+λ2]2
dy1 =

λ1

λ0 + λ1 + λ2

.

Therefore, we should have:∫ ∞
0

g0(y)dy = λ0

∫ ∞
0

θfPHRM(y, α, λ0 + λ1 + λ2)

(λ0 + λ1 + λ2)[1− (1− θ)F̄PHRM(y, α, λ0 + λ1 + λ2)]2
dy =

λ0

λ0 + λ1 + λ2

.

So, the desired result is achieved. �

Using Equation (11) and Theorem 3.1, the following relation can be immediately obtained for the
joint probability density function of Y.

gY(y1, y2) =


g1(y1, y2), if y2 < y1,
g2(y1, y2), if y1 < y2,
g0(y), if 0 < y1 = y2 = y,

where

g1(y1, y2) =
∞∑
n=1

pnfPHRM(y1, α, n(λ0 + λ1))fPHRM(y2, α, nλ2),

g2(y1, y2) =
∞∑
n=1

pnfPHRM(y1, α, nλ1)fPHRM(y2, α, n(λ0 + λ2)),

g0(y) =
λ0

λ0 + λ1 + λ2

∞∑
n=1

pnfPHRM(y, α, n(λ0 + λ1 + λ2)),

and pn = P (N = n) = θ(1 − θ)n−1 and fPHRM(., nλ) is the probability density function of
PHR models. It should be noted, if the independent random variables Ui’s belong to the propor-
tional hazard rate family with parameters α and λ, then the random variable min(U1, . . . , Un) ∼
fPHRM(., nλ).

The joint probability density function of the BPHRG distribution provided in Theorem 3.1 can be
rewritten as

gY(y1, y2) =
λ1 + λ2

λ0 + λ1 + λ2

ga(y1, y2) +
λ0

λ0 + λ1 + λ2

gs(y),

here

ga(y1, y2) =
λ0 + λ1 + λ2

λ1 + λ2

×


g1(y1, y2), if y2 < y1,

g2(y1, y2), if y1 < y2,

and

gs(y) =
θfPHRM(y, α, λ0 + λ1 + λ2)

[1− (1− θ)F̄PHRM(y, α, λ0 + λ1 + λ2)]2
, if y1 = y2 = y,

where, ga(y1, y2) represents the absolutely continuous part, and gs(y) denotes the singular part.
Now, if λ0 = 0, then the distribution function of this family will be absolutely continuous. Also, if
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θ = 1, the bivariate proportional hazard rate distributions family (BPHR) will be a particular state
of the bivariate proportional hazard rate-geometric distribution family (BPHRG).

Theorem 3.2.

Suppose Y ∼ BPHRG(θ, α, λ0, λ1, λ2) and N ∼ Ge(θ). Then, the joint probability density
function of Y and N can be obtained as follows:

fY1,Y2,N(y1, y2, n) =


θ(1− θ)n−1f1n(y1, y2), if y2 < y1,

θ(1− θ)n−1f2n(y1, y2), if y1 < y2,

θ(1− θ)n−1f0n(y), if y1 = y2 = y,

(14)

where,

f1n(y1, y2) = n2fPHRM(y1, α, λ0 + λ1)fPHRM(y2, α, λ2)

× [F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)]n−1,

f2n(y1, y2) = n2fPHRM(y1, α, λ1)fPHRM(y2, α, λ0 + λ2)

× [F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)]n−1,

f0n(y) =
λ0

λ0 + λ1 + λ2

nfPHRM(y, α, λ0 + λ1 + λ2)

× [F̄PHRM(y, α, λ0 + λ1 + λ2)]n−1. (15)

Proof:

Note that for the random vector Y, we have

P (Y1 > y1, Y2 > y2, N = n) = P (Y1 > y1, Y2 > y2|N = n)P (N = n)

= {F̄ (y1, y2)}nθ(1− θ)n−1

=


θ(1− θ)n−1{F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)}n, if y2 ≤ y1

θ(1− θ)n−1{F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)}n, if y1 < y2.

Therefore, the desired joint function is obtained by simple calculations. �

Theorem 3.3.

Suppose Y ∼ BPHRG(θ, α, λ0, λ1, λ2) and N ∼ Ge(θ). Then, the conditional probability mass
function of N given Y1 = y1 and Y2 = y2 can be obtained as follows:
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fN(n|y1, y2) =
c1(y1, y2)n2(1− θ)n−1[F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)]n−1, if y2 < y1,

c2(y1, y2)n2(1− θ)n−1[F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)]n−1, if y1 < y2,

c0(y)n(1− θ)n−1[F̄PHRM(y, α, λ0 + λ1 + λ2)]n−1, if y1 = y2 = y,

(16)

where,

c1(y1, y2) =
[1− (1− θ)F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)]3

[1 + (1− θ)F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2)]
,

c1(y1, y2) =
[1− (1− θ)F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)]3

[1 + (1− θ)F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2)]
,

c0(y) = [1− (1− θ)F̄PHRM(y, α, λ0 + λ1 + λ2)]2.

Proof:

To prove this case, the structure of the conditional probability mass function must be used. The
conditional probability mass function of N given Y1 = y1 and Y2 = y2 is fN(n|y1, y2) =
fY1,Y2,N (y1,y2,n)

fY1,Y2 (y1,y2)
. Now the numerator and the denominator are replaced by the results presented in

Theorems 3.2 and 3.1, respectively. Finally, using simple calculations and simplifications, the re-
sult is obtained. �

So, the conditional probability mass function expressed in Equation (16) can be rewritten as fol-
lows:

fN(n|y1, y2) =



[1− ξ1(y1, y2, θ, γ)]3

[1 + ξ1(y1, y2, θ, γ)]
n2ξn−1

1 (y1, y2, θ, γ), if y2 < y1,

[1− ξ1(y1, y2, θ, γ)]3

[1 + ξ2(y1, y2, θ, γ)]
n2ξn−1

2 (y1, y2, θ, γ), if y1 < y2,

[1− ξ0(y1, y2, θ, γ)]2nξn−1
0 (y1, y2, θ, γ), if 0 < y1 = y2 = y,

where γ(α, λ0, λ1, λ2) and

ξ1(y1, y2, θ, γ) = (1− θ)F̄PHRM(y1, α, λ0 + λ1)F̄PHRM(y2, α, λ2),

ξ2(y1, y2, θ, γ) = (1− θ)F̄PHRM(y1, α, λ1)F̄PHRM(y2, α, λ0 + λ2),

ξ0(y1, y2, θ, γ) = (1− θ)F̄PHRM(y, α, λ0 + λ1 + λ2).
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Proposition 3.1.

Suppose Y ∼ BPHRG(θ, α, λ0, λ1, λ2) and N ∼ Ge(θ). Then, the conditional expectation of N
given Y1 = y1 and Y2 = y2 is

E(N |y1, y2) =



(1− ξ1(y1, y2, θ, γ))2 − 6(1− ξ1(y1, y2, θ, γ)) + 6

1− (ξ1(y1, y2, θ, γ))2
, if y2 < y1,

(1− ξ2(y1, y2, θ, γ))2 − 6(1− ξ2(y1, y2, θ, γ)) + 6

1− (ξ2(y1, y2, θ, γ))2
, if y1 < y2,

1 + ξ0(y1, y2, θ, γ)

1− ξ0(y1, y2, θ, γ)
, if y1 = y2 = y.

Proof:

This result can be obtained using the conditional function presented in Theorem 3.3 and the struc-
ture of conditional expectation. For y2 < y1 and y1 = y2 = y, we express the calculations, and for
y1 < y2 it can be calculated in a similar way. For y2 < y1, we have:

E(N |y1, y2) =
∞∑
n=1

nfN(n|y1, y2) =
∞∑
n=1

n3 (1− ξ1(y1, y2, θ, γ))3

1 + ξ1(y1, y2, θ, γ)
(ξ1(y1, y2, θ, γ))n−1

=
(1− ξ1(y1, y2, θ, γ))3

1 + ξ1(y1, y2, θ, γ)

∞∑
n=1

n3(ξ1(y1, y2, θ, γ))n−1

=
(1− ξ1(y1, y2, θ, γ))3

1 + ξ1(y1, y2, θ, γ)
× (1− ξ1(y1, y2, θ, γ))2 − 6(1− ξ1(y1, y2, θ, γ) + 6

(1− ξ1(y1, y2, θ, γ))4

=
(1− ξ1(y1, y2, θ, γ))2 − 6(1− ξ1(y1, y2, θ, γ) + 6

1− (ξ1(y1, y2, θ, γ))2
.

Also, we can show that for the case of y2 = y1 = y:

E(N |y1, y2) =
∞∑
n=1

nfN(n|y1, y2) =
∞∑
n=1

n2(1− ξ0(y1, y2, θ, γ))2(ξ0(y1, y2, θ, γ))n−1

= (1− ξ0(y1, y2, θ, γ))2

∞∑
n=1

n2(1− ξ0(y1, y2, θ, γ))n−1

= (1− ξ0(y1, y2, θ, γ))2 1 + ξ0(y1, y2, θ, γ)

(1− ξ0(y1, y2, θ, γ))3
=

1 + ξ0(y1, y2, θ, γ)

1− ξ0(y1, y2, θ, γ)
. �

Proposition 3.2.

Let Y ∼ BPHRG(θ, α, λ0, λ1, λ2). Then,

I: Each Yi belongs to the univariate proportional hazard rate-geometric family (UPHRG) with
parameters α, λ0 + λi and θ.
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II: The random variable Y = min(Y1, Y2) belongs to the UPHRG family with parameters∑2
i=0 λi, α, and θ.

III: P (Y1 < Y2) = λ1

λ0+λ1+λ2
.

Proof:

To illustrate these parts, we can use the relationships described in the article and the basic expres-
sions.

I: To prove this part, we use Equation (12). The function F̄Xi in the Equation (12) must be
calculated as follows:

F̄X1
(y1) = P (min{T0, T1} > y1) = P (T0 > y1, T1 > y1)

= F̄PHRM(y1, α, λ0)F̄PHRM(y1, α, λ1) = F̄PHRM(y1, α, λ0 + λ1).

II: To prove this part, we use Equation (10). The function F̄X in the Equation (10) has the uni-
variate proportional hazard rate models with parameters α and λ0 + λ1 + λ2.

III: The proof of this part is as follows:

P (Y1 < Y2) =
∞∑
n=1

P (Y1 < Y2, N = n)

=
∞∑
n=1

∫ ∞
0

∫ ∞
y1

θ(1− θ)n−1f2n(y1, y2)dy2dy1

=
∞∑
n=1

θ(1− θ)n−1

∫ ∞
0

∫ ∞
y1

f2n(y1, y2)dy2dy1

= θ
∞∑
n=1

(1− θ)n−1 λ1

λ0 + λ1 + λ2

=
λ1

λ0 + λ1 + λ2

. �

4. Estimation of Parameters

In this section, we estimate the parameters of the bivariate proportional hazard rate-geometric
distributions family by the maximum likelihood method. But it can be seen that this method cannot
obtain explicit expressions for parameter estimations. Therefore, we recommend using an EM
algorithm to estimate our parameters. Now, we describe this algorithm in detail.

To estimate the parameters of this family, suppose that {(y11, y21), . . . , (y1m, y2m)} is a random
sample from the bivariate proportional hazard rate-geometric distributions family. We also know
that this family has five parameters as Θ = (θ, α, λ0, λ1, λ2). Next, consider the following notation:
I0 = {i : y1i = y2i = yi}, I1 = {i : y1i > y2i} and I2 = {i : y1i < y2i}. Also, |I0| = m0,
|I1| = m1, |I2| = m2 and m = m0 +m1 +m2.
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Given the notation above and the functions g0(y), g1(y1, y2) and g2(y1, y2) which were presented
in Theorem 3.1, we can obtain the maximum likelihood function as follows:

`(Θ) =
∑
i∈I0

ln g0(yi) +
∑
i∈I1

ln g1(y1i, y2i) +
∑
i∈I2

ln g2(y1i, y2i), (17)

To estimate the parameters in this method, we need to maximize the likelihood function `(Θ) in
(17) in terms of parameters. Given the likelihood function, it can be seen that explicit expressions
for parameter estimation cannot be obtained. Therefore, to obtain parameter estimates, five non-
linear equations must be solved simultaneously. This is a complicated procedure, and also it is
very difficult to select the initial values for each parameter to converge algorithms such as Newton-
Rephson or Gauss-Newton. Therefore, in this case, the use of the EM algorithm for parameter
estimation is suggested, and it can be seen that the proposed algorithm performs well.

We use the idea of the missing data problem for this algorithm. For this purpose, using the joint
probability density function of (Y1, Y2, N) which is presented in Equation (14), we can conclude
that

(Y1, Y2|N) ∼ BPHR(α, nλ0, nλ1, nλ2).

So, let’s take a random sample of complete data as {(y1i, y2i, ni); i = 1, ...,m}. In the following,
the conditional likelihood function is obtained using the functions f0ni , f1ni , and f2ni which were
introduced in Equation (15) as follows:

`1(α, λ0, λ1, λ2) =
∑
i∈I0

ln f0ni(yi) +
∑
i∈I1

ln f1ni(y1i, y2i) +
∑
i∈I2

ln f2ni(y1i, y2i).

Then, the parameter estimation is computed by maximizing the conditional log-likelihood function.
To investigate the missing data by the EM algorithm, we need to consider the new random variable.
For given N = n, the independent random variables {Ui|N = n} for i = 0, 1, 2 belong to the
proportional hazard rate family with parameters α and nλi. Therefore,

{Ui|N = n} ∼ PHRM(α, nλi), i = 0, 1, 2. (18)

Hence,

{Yi|N = n} = min{T0, Ti}|N = n, i = 1, 2.

Now, a corresponding random vector for Y = (Y1, Y2) can be defined as follows:

(∆1,∆2) =


(0, 0), if Y1 = T0, Y2 = T0 ,

(0, 1), if Y1 = T0, Y2 = T2 ,
(1, 0), if Y1 = T1, Y2 = T0 ,

(1, 1), if Y1 = T1, Y2 = T2 .

(19)

Now to continue the computation, we must consider a sample size m of the complete observa-
tions from (Y1, Y2,∆1,∆2, N). Then, the parameter estimation in this method is obtained by one-
dimensional optimization.

As mentioned, a vector (∆1,∆2) is related to every (Y1, Y2). But it may not always be known.
Note that, if Y1 = Y2, then ∆1 = ∆2 = 0, is known. If Y1 > Y2 or Y2 > Y1, then (∆1,∆2) is not
known and is missing. In other words, if (Y1, Y2) ∈ I1, then the possible values of (∆1,∆2) are



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 819

(0,1) or (1,1), and if (Y1, Y2) ∈ I2, then the values of (∆1,∆2) are (1, 0) or (1, 1), with positive
probabilities, see for example Kundu and Dey (2009). Using this information we can describe
how the EM algorithm is implemented. In this algorithm, the conditional ‘pseudo’ log-likelihood
function must first be computed. We compute this function by conditioning on N , and the next
step, N will be replaced through E(N |Y1, Y2). This step of the algorithm is called “E-step”. In
“E-step,” we should consider the following points:

I: If all observations belong to I0 because the associated (∆1,∆2) with them is entirely known,
then the log-likelihood contribution is complete. Then, the log-likelihood contribution of an
observation y ∈ I0 can be obtained as follows:

lnn+ lnλ0 + [n(λ0 + λ1 + λ2)− 1] ln F̄B(y, α) + ln fB(y, α).

As mentioned, n and lnn are missing and at this point need to be replaced by E(N |y1, y2) and
E(lnN |y1, y2), respectively.

II: If observations belong to I1 because the associated (∆1,∆2) with them is unknown, therefore,
all observations are missing. Then, “pseudo-observations” are created. In this case, (y1, y2)
should be divided to two partially complete “pseudo-observations” of the form (y1, y2, ui(Θ))
for i = 1, 2, where ui(Θ) are the conditional probabilities that (∆1,∆2) takes the values of
(0,1) and (1,1), respectively. Therefore,

u1(Θ) =
λ0

λ0 + λ1

, u2(Θ) =
λ1

λ0 + λ1

.

So, the “pseudo” log-likelihood contribution of an observation (y1, y2) ∈ I1 becomes

2 lnn+ lnλ2 + u1 lnλ0 + u2 lnλ1 + (nλ2 − 1) ln F̄B(y2, α) + ln fB(y2, α)

+ [n(λ0 + λ1)− 1] ln F̄B(y1, α) + ln fB(y1, α).

As before, the missing values of n and lnn are replaced.
III: If observations belong to I2 because the associated (∆1,∆2) with them is unknown, therefore,

all observations are missing. Then, “pseudo-observations” are created. In this case, (y1, y2)
should be divided to two partially complete “pseudo-observations” of the form (y1, y2, vi(Θ))
for i = 1, 2, where vi(Θ) are the conditional probabilities that (∆1,∆2) takes the values of
(1,0) and (1,1), respectively. Then,

v1(Θ) =
λ0

λ0 + λ2

, v2(Θ) =
λ2

λ0 + λ2

.

As before, the “pseudo” log-likelihood contribution of an observation (y1, y2) ∈ I2 can be
computed

2 lnn+ lnλ1 + v1 lnλ0 + v2 lnλ2 + (nλ1 − 1) ln F̄B(y1, α) + ln fB(y1, α)

+ [n(λ0 + λ2)− 1] ln F̄B(y2, α) + ln fB(y2, α).

Similar to the previous entries, the missing values of n and lnn should be replaced.

For a better understanding of this step of the algorithm, see Dinse (1982) or Kundu (2004) articles.
We can also use the observations in Table 2 for more comfortable and better implementation of
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Table 2. All possible states for observations (∆1,∆2), and associated probabilities

Different Case probability (∆1,∆2) Y1&Y2 Set

T0 < T1 < T2
λ1λ0

(λ1+λ2)(λ0+λ1+λ2)
(0, 0) Y1 = Y2 I0

T0 < T2 < T1
λ2λ0

(λ1+λ2)(λ0+λ1+λ2)
(0, 0) Y1 = Y2 I0

T1 < T0 < T2
λ1λ0

(λ0+λ2)(λ0+λ1+λ2)
(1, 0) Y1 < Y2 I2

T1 < T2 < T0
λ1λ2

(λ0+λ2)(λ0+λ1+λ2)
(1, 1) Y1 < Y2 I2

T2 < T0 < T1
λ0λ2

(λ0+λ1)(λ0+λ1+λ2)
(0, 1) Y2 < Y1 I1

T2 < T1 < T0
λ1λ2

(λ0+λ1)(λ0+λ1+λ2)
(1, 1) Y2 < Y1 I1

the “E”-step algorithm. Therefore, the steps of the proposed EM algorithm can be presented as
follows:

E-Step: The “pseudo” log-likelihood function in the k-th step is as follows:

`pseudo(Θ) = constant+ (m0 + 2m1 + 2m2) lnλ0 + (m2 +m1u
(k)
2 ) lnλ1 + (m2v

(k)
2 +m1) lnλ2

+ λ0{
∑
i∈I0

a
(k)
i ln F̄B(yi, α) +

∑
i∈I2

a
(k)
i ln F̄B(y2i, α) +

∑
i∈I1

a
(k)
i ln F̄B(y1i, α)}

+ λ1{
∑
i∈I0

a
(k)
i ln F̄B(yi, α) +

∑
i∈I2

a
(k)
i ln F̄B(y1i, α) +

∑
i∈I1

a
(k)
i ln F̄B(y1i, α)}

+ λ2{
∑
i∈I0

a
(k)
i ln F̄B(yi, α) +

∑
i∈I2

a
(k)
i ln F̄B(y2i, α) +

∑
i∈I1

a
(k)
i ln F̄B(y2i, α)}

+
∑
i∈I0

ln
fB(yi, α)

F̄B(yi, α)
+
∑
i∈I2

ln
fB(y1i, α)

F̄B(y1i, α)
+
∑
i∈I2

ln
fB(y2i, α)

F̄B(y2i, α)

+
∑
i∈I1

ln
fB(y2i, α)

F̄B(y2i, α)
+
∑
i∈I1

ln
fB(y1i, α)

F̄B(y1i, α)
+m ln

θ

1− θ
+ ln(1− θ)

m∑
i=1

a
(k)
i , (20)

where, Θ(k) = (α(k), λ
(k)
0 , λ

(k)
1 , λ

(k)
2 ), E(N |y1i, y2i,Θ

(k)) = a
(k)
i , u1(Θ(k)) = u

(k)
1 , u2(Θ(k)) =

u
(k)
2 , v1(Θ(k)) = v

(k)
1 and v2(Θ(k)) = v

(k)
2 .

M-Step: The “M-step” in the EM algorithm involves maximizing the ‘pseudo’ log-likelihood
function in terms of parameters. Therefore, if we assume that α is fixed, then the estimation of
the parameters that maximize Equation (20) is obtained as follows:

λ̂0(α) = − m0 +m2v
(k)
1 +m1u

(k)
1∑

i∈I0 a
(k)
i ln F̄B(yi, α) +

∑
i∈I2 a

(k)
i ln F̄B(y2i, α) +

∑
i∈I1 a

(k)
i ln F̄B(y1i, α)

, (21)
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λ̂1(α) = − m2 +m1u
(k)
2∑

i∈I0 a
(k)
i ln F̄B(yi, α) +

∑
i∈I2 a

(k)
i ln F̄B(y1i, α) +

∑
i∈I1 a

(k)
i ln F̄B(y1i, α)

, (22)

λ̂2(α) = − m1 +m2v
(k)
2∑

i∈I0 a
(k)
i ln F̄B(yi, α) +

∑
i∈I2 a

(k)
i ln F̄B(y2i, α) +

∑
i∈I1 a

(k)
i ln F̄B(y2i, α)

, (23)

and θ̂ is

θ̂ =
m∑m

i=1 a
(k)
i

. (24)

Finally, to estimate the parameter α, we need to maximize the pseudo-profile log-likelihood func-
tion in terms of parameter α. For this purpose, a nonlinear equation with respect to α can be solved.
In other words, the α̂ can be computed by solving the following Equation,

∂

∂α
`pseudo(α, λ̂0(α), λ̂1(α), λ̂2(α)) = 0. (25)

It should be noted that, if we obtain the second derivative of the ‘pseudo” log-likelihood function
with respect to α, it is seen that the “pseudo” log-likelihood function is a unimodal function, so the
estimation of the parameter α is obtained uniquely.

Finally, the proposed EM algorithm for estimating the parameters of this family of distributions is
as follows:

ALGORITHM

• Step 1: Select the initial values for each parameter, say Θ(0) = (θ(0), α(0), λ
(0)
0 , λ

(0)
1 , λ

(0)
2 ).

• Step 2: Compute a(0)
i = E(N |y1i, y2i; Θ(0)).

• Step 3: Calculate each of the values of ui, and vi for i = 1, 2.
• Step 4: Determine the value of α̂ by solving Equation (25), and say α̂(1).
• Step 5: Calculate λ̂(1)

i = λ̂i(α̂
(1)), i = 0, 1, 2 using Equations (21)-(23).

• Step 6: Determine the value of θ̂ using Equation (24).
• Step 7: Replace Θ(0) by Θ(1) = (θ(1), α(1), λ

(1)
0 , λ

(1)
1 , λ

(1)
2 ) then, go back to step 1 and repeat

the process to converge the algorithm.

5. Data Analysis and Comparison Study

In this section, we investigate the family of introduced distributions as well as the efficiency of
the proposed EM algorithm for parameter estimations. In this regard, the Monte-Carlo simulation
method and three real datasets are used.
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5.1. Numerical Experiments

At the beginning of this section, the Monte-Carlo simulation studies are used to evaluate the effi-
ciency of the proposed algorithm. As we know, the proportional hazard rate-geometric distribution
family contains different distributions. So for better consideration, we use the different distribu-
tions in this family. Also, the following algorithm can be used to simulate this family.

ALGORITHM

• Generate a value of n from Ge(θ).
• Generate {ui1, . . . , uin} from PHRM(α, λi), for i = 0, 1, 2.
• Obtain xik = min{u0k, uik} for k = 1, . . . , n and i = 1, 2.
• Compute the desired (y1, y2) as yi = min{xi1, . . . , xin} for i = 1, 2.

As mentioned, this family comprises a large class of distributors. Different models of this family
can be considered to simulate this family of distributions. We examine four sub-models in this
simulation, which are: (i) Bivariate Weibull-geometric (BWG), (ii) Bivariate Lomax-geometric
(BLG), (iii) Bivariate Chen-geometric (BCHG) and (iv) Bivariate Gompertz-geometric (BGG).
Therefore, the estimate of parameters is computed by the presented EM algorithm in Section 4.
We use the following parameter values for our simulation studies:

Θi = (θi, α, λ0, λ1, λ2) = (θi, 3, 1, 1, 1), i = 1, 2, 3,

where θi = 0.3, 0.5, 0.7 for i = 1, 2, 3, respectively. To start the implementation of the EM algo-
rithm, consider the initial values as follows:

Θ
(0)
i = (θ

(0)
i , α(0), λ

(0)
0 , λ

(0)
1 , λ

(0)
2 ) = (θ

(0)
i , 1, 1, 1, 1), i = 1, 2, 3,

where, θ(0)
i = 0.2, 0.4, 0.6 for i = 1, 2, 3, respectively. It should also be noted that when the

absolute value of the difference between the sequence of values of two steps is less than 10−5, the
repetition of the algorithm stops. This process is repeated 1000 times and the absolute value of the
bias estimates and the associated mean squared errors (MSEs) are calculated at each iteration. The
results of these simulations are presented in Table 3. The results of this simulation study are useful,
and it is observed that as n increases, the biases and the MSEs decrease. This represents that the
maximum likelihood estimators are consistent.

5.2. Data Analysis

In the second part of this section, we examine three real datasets. Similar to the previous sec-
tion, four different sub-models of this family are considered. These four distributions are fitted to
these three real datasets. The parameter estimates in these distributions are calculated using the
maximum likelihood method and the proposed EM algorithm. For each of these distributions, the
parameter estimates, the Akaike Information Criterion (AIC), the Bayesian Information Criterion
(BIC), the Kolmogorov-Smirnov (K-S) test and the corresponding p-values are calculated. We also
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Table 3. Simulation study results (|Bias| and MSE) for four sub-models of the BPHRG family

BWG
Θ n α λ0 λ1 λ2 θ

|Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE
50 0.0480 0.0385 0.3102 0.1105 0.3014 0.1144 0.3070 0.1182 0.1031 0.0107

Θ1 100 0.0305 0.0195 0.2143 0.1054 0.2288 0.1112 0.2287 0.1175 0.1006 0.0098
200 0.0282 0.0130 0.2010 0.1075 0.2008 0.1164 0.2052 0.1195 0.0098 0.0108
50 0.0454 0.0406 0.1798 0.0487 0.1731 0.0545 0.1801 0.0574 0.1165 0.0139

Θ2 100 0.0260 0.0198 0.1786 0.0399 0.1641 0.0491 0.1711 0.0514 0.1140 0.0121
200 0.0260 0.0125 0.1781 0.0372 0.1521 0.0444 0.1539 0.0452 0.1129 0.0120
50 0.0683 0.0395 0.1031 0.0293 0.1089 0.0354 0.1208 0.0392 0.1164 0.0143

Θ3 100 0.0652 0.0231 0.1029 0.0215 0.1079 0.0269 0.1162 0.0257 0.1128 0.0135
200 0.0570 0.0143 0.0096 0.0186 0.0095 0.0218 0.1105 0.0228 0.1096 0.0136

BLG
50 0.2062 1.3807 0.1482 0.1734 0.1452 0.1909 0.1516 0.1929 0.1071 0.0115

Θ1 100 0.1846 0.9930 0.1396 0.1257 0.1374 0.1503 0.1401 0.1461 0.1070 0.0095
200 0.1543 0.7011 0.1299 0.0094 0.1346 0.1106 0.1355 0.1131 0.1052 0.0095
50 0.3913 0.8319 0.1078 0.1095 0.0245 0.1186 0.0266 0.1127 0.1232 0.0153

Θ2 100 0.3275 0.5999 0.0483 0.0546 0.0514 0.0616 0.0547 0.0661 0.1137 0.0154
200 0.2992 0.4588 0.0394 0.0323 0.0408 0.0415 0.0409 0.0399 0.1037 0.0154
50 0.4046 0.6781 0.0232 0.0563 0.0190 0.0643 0.0200 0.0653 0.1250 0.0159

Θ3 100 0.4022 0.4857 0.0090 0.0321 0.0096 0.0423 0.0094 0.0409 0.1245 0.0157
200 0.4007 0.4143 0.0066 0.0255 0.0059 0.0316 0.0094 0.0306 0.1046 0.0157

BCHG
50 0.0489 0.0487 0.3072 0.1112 0.2970 0.1163 0.3027 0.1202 0.1032 0.0107

Θ1 100 0.0314 0.0244 0.2166 0.1079 0.2298 0.1207 0.2301 0.1203 0.1027 0.0108
200 0.0307 0.0162 0.2045 0.1101 0.2037 0.1191 0.2081 0.1121 0.1019 0.0108
50 0.0537 0.0479 0.1710 0.0489 0.1640 0.0553 0.1732 0.0573 0.1169 0.0140

Θ2 100 0.0361 0.0243 0.1547 0.0394 0.1582 0.0469 0.1528 0.0472 0.1127 0.0140
200 0.0295 0.0162 0.1502 0.0375 0.1478 0.0442 0.1411 0.0450 0.1081 0.0140
50 0.0916 0.0520 0.0870 0.0281 0.0872 0.0355 0.0861 0.0375 0.1186 0.0148

Θ3 100 0.0663 0.0268 0.0831 0.0197 0.0783 0.0246 0.0845 0.0258 0.1091 0.0146
200 0.0652 0.0202 0.0717 0.0170 0.0700 0.0209 0.0785 0.0210 0.0098 0.0140

BGG
50 0.5230 2.1612 0.1979 1.8370 0.2275 1.5689 0.2285 1.5304 0.0736 0.0057

Θ1 100 0.4391 1.0392 0.1635 0.1999 0.1763 0.1946 0.1756 0.1937 0.0732 0.0055
200 0.3544 0.7256 0.1508 0.1848 0.1606 0.1783 0.1620 0.1799 0.0732 0.0054
50 0.6264 1.5728 0.2524 0.2488 0.2738 0.2312 0.2645 0.2373 0.0446 0.0022

Θ2 100 0.4684 0.7541 0.2420 0.1378 0.2541 0.1339 0.2569 0.1398 0.0443 0.0021
200 0.4260 0.5540 0.2357 0.1251 0.2476 0.1236 0.2479 0.1226 0.0424 0.0020
50 0.6306 1.2627 0.2421 0.1766 0.2457 0.1666 0.2414 0.1624 0.2569 0.0299

Θ3 100 0.4793 0.6624 0.2367 0.1121 0.2436 0.1103 0.2425 0.1090 0.1590 0.0142
200 0.4204 0.4575 0.2347 0.0932 0.2429 0.0909 0.2406 0.0930 0.0071 0.0099

select the best distribution for these three real datasets from the four distributions that belong to
this family. Finally, the existence of an additional parameter in the model is considered. For this
purpose, the likelihood ratio (LRT) test and its associated p-value are applied.

First Data Set: These data include the remaining lifetime information of 218 persons from the pop-
ulation of couples in the age range of 30 – 70 years at an insurance company in Tehran. This data
set is provided on the https://www.researchgate.net/publication/341480134_Mortality_Data_Set.

Second Data Set: This data set contains 50 observations on the burr. In the first component, the
hole diameter is 12 mm, and the sheet thickness is 3.15 mm. In the second component, the hole
diameter is 9 mm, and the sheet thickness is 2 mm. These two datasets for components are derived
from two different machines. This data set was used by Dasgupta (2011), and it is represented
in Table 4. Before analyzing this data, all data is multiplied by 10. It should be noted that these
changes will not affect our analysis and are for computational reasons only.
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Table 4. Burr data set

S.N. Y1 Y2 S.N. Y1 Y2 S.N. Y1 Y2 S.N. Y1 Y2 S.N. Y1 Y2

1 0.04 0.06 11 0.24 0.16 21 0.24 0.12 31 0.24 0.14 41 0.02 0.16
2 0.02 0.12 12 0.04 0.12 22 0.22 0.24 32 0.16 0.06 42 0.18 0.32
3 0.06 0.14 13 0.14 0.24 23 0.12 0.06 33 0.32 0.04 43 0.22 0.18
4 0.12 0.04 14 0.16 0.06 24 0.18 0.02 34 0.18 0.14 44 0.14 0.24
5 0.14 0.14 15 0.08 0.02 25 0.24 0.18 35 0.24 0.22 45 0.06 0.22
6 0.08 0.16 16 0.26 0.18 26 0.32 0.22 36 0.22 0.14 46 0.04 0.04
7 0.22 0.08 17 0.32 0.22 27 0.16 0.14 37 0.16 0.06 47 0.14 0.14
8 0.12 0.26 18 0.28 0.14 28 0.14 0.02 38 0.12 0.04 48 0.26 0.26
9 0.08 0.32 19 0.14 0.22 29 0.08 0.18 39 0.24 0.16 49 0.18 0.18
10 0.26 0.22 20 0.16 0.16 30 0.16 0.22 40 0.06 0.24 50 0.16 0.16

Table 5. Cholesterol levels at 5 and 25 weeks after treatment in 30 patients

S.N. 5-th 25-th S.N. 5-th 25-th S.N. 5-th 25-th
1 325 246 2 278 245 3 257 212
4 192 192 5 276 325 6 262 294
7 309 232 8 287 287 9 304 245
10 215 261 11 217 252 12 248 305
13 225 225 14 287 208 15 233 217
16 198 198 17 229 179 18 310 352
19 214 274 20 253 209 21 316 283
22 243 245 23 305 272 24 197 197
25 243 247 26 315 283 27 205 205
28 315 255 29 263 215 30 210 271

Third Data Set: This data set contains cholesterol levels at 5 and 25 weeks after treatment in 30
patients. These data are presented in Table 5. Before analyzing this data, we apply transformation
(X − 150)/100 to all data. As shown in the secound data description, this transformation will not
affect our analysis and are for computational reasons only.

For the purposes of this article, we first draw the proposed TTT plots by Aarset (1987) for each
marginal in three datasets. These plots are shown in Figure 1. As can be seen, both diagrams
are concave, so it can be concluded that the marginal hazard functions are increasing functions.
Another significant result is that the correlation between the marginals is positive. Therefore, the
proposed family of bivariate distributions can be used for analyzing these datasets.

The purpose of this section is to examine these four sub-models (BWG, BLG, BCHG, and BGG)
for these three datasets. To this purpose, we first fit four models, Weibull, Lomax, Chen and Gom-
pertz to the marginals as well as their minimums for three datasets, separately.

For each data set, the maximum likelihood estimation (MLE), the associated Kolmogorov-Smirnov
statistics, and their p-values are obtained. These values are provided in Table 6. Based on this in-
formation the Weibull, Chen, and Gompertz distributions cannot be rejected for the marginals and
the minimum also. We observe that the Lomax distribution is not suitable for these three datasets.

Now we will fit the BPHRG models. Therefore, three special cases of BPHRG distributions are
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Figure 1. The TTT plots for three datasets

Table 6. The MLEs of parameters, the standard error of estimation in parentheses, the Kolmogorov-Smirnov (K-S), and
the corresponding p-values for three datasets

Model Variables α λ K-S P-value
Y1 2.1376 (0.8269) 0.0096 (0.0200) 0.0937 0.1881

Weibull Y2 2.1768 (0.8030) 0.0079 (0.0141) 0.0823 0.2949
min{Y1, Y2} 2.1229 (0.8065) 0.0103 (0.0200) 0.0902 0.2382

Y1 979.0625 (3.0992) 0.1142 (0.0005) 0.0534 1.9069× 10−33

Lomax Y2 977.5625 (3.0948) 0.1135 (0.0005) 0.5331 6.8134× 10−35

Mortality Data Set min{Y1, Y2} 979.0625 (3.0990) 0.1145 (0.0005) 0.5300 2.0984× 10−32

Y1 0.6159 (0.0010) 0.0195 (0.0002) 0.0682 0.5520
Chen Y2 0.6068 (0.0030) 0.0189 (0.0007) 0.0748 0.4069

min{Y1, Y2} 0.6158 (0.0010) 0.0208 (0.0002) 0.0653 0.6277
Y1 0.2297 (0.0012) 0.1305 (0.0020) 0.0599 0.7118

Gompertz Y2 0.2141 (0.0011) 0.1388 (0.0021) 0.0680 0.5277
min{Y1, Y2} 0.2296 (0.0012) 0.1395 (0.0021) 0.0588 0.7498

Y1 2.1195 (0.0346) 0.2754 (0.0100)) 0.1994 0.5666
Weibull Y2 2.0050 (0.0331) 0.3420 (0.0100) 0.1921 0.6556

min{Y1, Y2} 1.7812 (0.0294) 0.6283 (0.0153) 0.1571 0.9108
Y1 503.9063 (6.9132) 0.1529 (0.0307) 0.5068 7.4113× 10−4

Lomax Y2 503.9063 (6.9116) 0.1552 (0.0098) 0.5120 0.0011
Burr Data Set min{Y1, Y2} 503.9063 (6.7634) 0.1628 (0.0103) 0.5288 0.0021

Y1 1.0174 (0.0109) 0.1599 (0.0051) 0.1801 0.6897
Chen Y2 1.0213 (0.0357) 0.1865 (0.0057) 0.1815 0.7210

min{Y1, Y2} 1.0619 (0.0140) 0.3144 (0.0084) 0.1441 0.9522
Y1 1.0221 (0.0247) 0.1571 (0.0106) 0.1769 0.7102

Gompertz Y2 1.0327 (0.0257) 0.1796 (0.0120) 0.1786 0.7385
min{Y1, Y2} 1.0945 (0.0316) 0.2781 (0.0202) 0.1361 0.9703

Y1 2.8926 (0.0781) 0.5723 (0.0244) 0.1569 0.4499
Weibull Y2 2.2805 (0.0565) 0.7355 (0.0282) 0.1238 0.7201

min{Y1, Y2} 2.0927 (0.0678) 1.0927 (0.0374) 0.1714 0.3640
Y1 318.7500 (7.2706) 0.1737 (0.0184) 0.5733 7.1559× 10−9

lomax Y2 329.6250 (7.5178) 0.1754 (0.01861) 0.5514 1.6649× 10−8

Cholesterol Data Set min{Y1, Y2} 321.6250 (7.5147) 0.1796 (0.0190) 0.5599 3.3779× 10−8

Y1 1.6586 (0.0374) 0.2906 (0.0141) 0.1584 0.4382
Chen Y2 1.1827 (0.0231) 0.4908 (0.0161) 0.1012 0.8991

min{Y1, Y2} 1.6038 (0.0360) 0.5723 (0.0200) 0.1544 0.4929
Y1 2.3610 (0.0800) 0.0530 (0.0208) 0.1523 0.4877

Gompertz Y2 1.3631 (0.0556) 0.2454 (0.0244) 0.1122 0.8198
min{Y1, Y2} 2.2794 (0.0793) 0.1117 (0.0101) 0.1501 0.5287

considered: BWG, BCHG, and BGG. So, these three sub-models are fitted to these three datasets.
The MLEs of parameters, the corresponding log-likelihood values, the AIC, and the BIC are cal-
culated. These results are presented in Table 7.
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Table 7. The MLEs of parameters, the standard error of estimation in parentheses, the corresponding log-likelihood,
AIC, and BIC for three datasets

Data Set Model α̂ λ̂0 λ̂1 λ̂2 θ̂ Log(`) AIC BIC
BWG 2.2320 0.0042 7.9279× 10−4 4.1529× 10−4 0.5256 -855.5175 1721 1738

(0.2740) (0.0032) (0.0024) (0.0015) (0.2702)

M
or

ta
lit

y
D

at
a

Se
t BCHG 0.4844 0.0362 0.0065 0.0035 0.7334 -885.7717 1781.5 1798.5

(0.0469) (0.0146) (0.0046) (0.0032) (0.0346)
BGG 0.2276 0.0709 0.0136 0.0070 0.6018 -841.3176 1692.6 1709.6

(0.0583) (0.0031) (0.0141) (0.0100) (0.0223)
BWG 2.1541 0.0512 0.1440 0.1825 0.2668 -137.9229 285.8458 295.4059

(0.1951) (0.0360) (0.0768) (0.0948) (0.0911)

B
ur

r
D

at
a

Se
t BCHG 1.0744 0.0259 0.0756 0.0990 0.6158 -136.3488 282.6976 292.2577

(0.1216) (0.0173) (0.0400) (0.0500) (0.0806)
BGG 1.1516 0.0209 0.0609 0.0796 0.7528 -141.4662 292.9324 302.4925

(0.1808) (0.0173) (0.0387) (0.0489) (0.1161)
BWG 2.8984 0.1341 0.2722 0.3066 0.3003 -47.3445 104.6890 111.6950

(0.3067) (0.0911) (0.1539) (0.1734) (0.1157)

C
ho

le
st

er
ol

D
at

a
Se

t BCHG 1.5812 0.0387 0.0843 0.0887 0.2815 -47.3223 104.6646 111.6706
(0.1288) (0.0264) (0.0458) (0.0500) (0.0932)

BGG 2.0344 0.0188 0.0405 0.0402 0.6829 -55.9395 121.8790 128.8850
(0.2088) (0.0141) (0.0244) (0.0264) (0.1783)

Table 8. The Kolmogorov-Smirnov (K-S) and the associated p-values for the marginals and the minimum of these three
sub-models in three datasets

Data Set Model Y1 Y2 min{Y1, Y2}
K-S p-value K-S p-value K-S p-value

BWG 0.0923 0.2012 0.0920 0.1847 0.1025 0.1293
Mortality Data Set BCHG 0.1254 0.0297 0.1252 0.0250 0.1254 0.0336

BGG 0.0923 0.2011 0.0882 0.2230 0.0865 0.2821
BWG 0.2343 0.3676 0.2375 0.3936 0.2829 0.2848

Burr Data Set BCHG 0.1838 0.6660 0.1772 0.7467 0.1489 0.9386
BGG 0.2085 0.5128 0.2056 0.5728 0.1859 0.7779
BWG 0.1627 0.4056 0.1578 0.4223 0.1669 0.3955

Cholesterol Data Set BCHG 0.1239 0.8215 0.1303 0.6610 0.1193 0.7945
BGG 0.1360 0.6291 0.1730 0.3137 0.1519 0.5134

To evaluate the performance of these three sub-models in three datasets, the Kolmogorov-Smirnov
(K-S) and the associated p-values for the marginals and their minimum are obtained, which Propo-
sition 3.2 must be used for this purpose. The results of this study are presented in Table 8.

In the following, the existence and necessity of an additional parameter in the family are examined.
So, we test the BPHR models against the BPHRG models. In other words, we test the null hypoth-
esis H0 : BPHR against the alternative hypothesis H1 : BPHRG. Therefore, three sub-models
of the proportional hazard rate distributions family should be considered. These three sub-models
are BWE, BCH, and BG. For this purpose, we apply the likelihood ratio (LRT) test. The LRT test
statistics and the associated p-values are presented in Table 9. Therefore, based on the results pre-
sented in Table 9, it can be concluded that the models presented in the null hypothesis are rejected
in favor of the models presented in the alternative hypothesis for each significant level α.

Based on the results presented in Tables 8 and 9, it can be seen that BGG distribution has the best
performance for mortality data set, and BCHG distribution is the best option for Burr data set and
and cholesterol data set.
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Table 9. The information of the likelihood ratio (LRT) test to evaluate the existence of additional parameters in these
three sub-models

Data set Test Models
BWG BWE BCHG BCH BGG BG

AIC 1721 1744.6 1781.5 1801.2 1692.6 1724.3
BIC 1738 1758.1 1798.5 1814.7 1709.6 1737.9

Mortality Data Set log(`) -855.5175 -868.3016 -885.7717 -896.5773 -841.3176 -858.1611
LTR 25.5682 21.6112 33.6870

P-value 4.2702× 10−7 3.3390× 10−6 6.4732× 10−9

AIC 285.8458 321.0396 282.6976 313.5012 292.9324 313.5968
BIC 295.4059 330.5997 292.2577 323.0613 302.4925 323.1569

Burr Data Set log(`) -137.9229 -155.5198 -136.3488 -151.7506 -141.4662 -151.7984
LRT 35.1938 30.8036 20.6644

p-value 2.9847× 10−9 2.8551× 10−8 5.4724× 10−6

AIC 104.6890 127.1864 104.6646 135.5496 121.8790 136.6472
BIC 111.6950 134.1924 111.6706 142.5556 128.8850 143.6532

Cholesterol Data Set log(`) -47.3445 -58.5932 -47.3223 -62.7748 -55.9395 -63.3236
LRT 22.4974 30.9050 14.7682

p-value 2.1043× 10−6 2.7097× 10−8 1.2157× 10−4

6. Conclusions

This paper focuses on modeling dependent longevity due to the existence of common risk factors.
Accordingly, a new family of distributions was first introduced. Then, assuming that the sample
size was geometrically distributed, this family of models was generalized, creating a broader and
more flexible class of longevity models for dependent lives. Also, the parameters of this family
of distributions are also estimated by the MLE method. However, it is not possible to provide an
explicit form for estimating the parameters. Therefore, an EM algorithm was designed and imple-
mented to estimate the parameters. Also, the performance of this proposed algorithm was examined
by simulation studies. Also, three data sets were examined and different tests were performed to
evaluate and determine the best model.

But the classic method of the maximum likelihood for estimating parameters is not always avail-
able. For example, suppose {(x1i, x2i); i = 1, 2, ..., n} is a data set and x1i ≤ x2i for all i = 1, ..., n,
then, MLEs do not exist. Another important issue is the convergence of the EM algorithm, which
is highly dependent on the initial value selection. Finally, it should be noted that calculating the
exact confidence interval for MLEs is not easy. The constructed confidence interval based on the
maximum likelihood method is determined using the asymptotic property of MLEs. But in the es-
timation of parameters by the Bayesian method, it can be seen that the Bayesian method does not
require an initial value to estimate the parameters and the convergence of the proposed method is
guaranteed by the strong law of large numbers. Also, HPD credible intervals are calculated even
for small sample sizes using Bayes estimates. Therefore, it is suggested that in future studies, these
models focus on using the Bayesian method to estimate the parameters.
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