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Abstract

We examine the convergence properties of a modified Newton-Raphson root method, by using a
simple complex polynomial equation, as a test example. In particular, we numerically investigate
how a parameter, entering the iterative scheme, affects the efficiency and the speed of the method.
Color-coded polynomiographs are deployed for presenting the regions of convergence, as well
as the fractality degree of the complex plane. We demonstrate that the behavior of the modified
Newton-Raphson method is correlated with the numerical value of the parameter α1. Additionally,
there are cases for which the method works flawlessly, while in some other cases we encounter the
phenomena of ill-convergence or even non-convergence.
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1. Introduction

Using numerical techniques for locating the position of roots of equations is, without any doubt,
one of the most interesting and inspiring problems of applied mathematics. For many years, the
issue of finding numerical solutions of nonlinear equations has been a very active field (Chun et
al. (2014); Chun and Neta (2015a); Chun and Neta (2015b); Chun and Neta (2015c); Chun and
Neta (2016); Chun and Neta (2017a); Chun and Neta (2017b); Chun and Neta (2018); Neta et
al. (2012)). The roots of an equation are directly associated with the convergence basins of the
iterative method. These convergence basins correspond to sets of points for which the numerical
method leads to the same numerical attractor (final state), or in other words to the same root of the
equation.

In Susanto and Karjanto (2009) (hereafter Paper I) the convergence properties of a modified
Newton-Raphson (NR) method have been numerically investigated. The family of the modified
NR method contains a free parameter which determines the behavior and the overall shape of the
convergence basins. In the same paper, it was demonstrated that the convergence basins, corre-
sponding even to the simplest iterative scheme, can be highly complicated.

However, our numerical experiments indicate that Paper I contains a couple of typos, along with
some errors regarding the behavior of the modified NR method. More precisely, the results pre-
sented in Paper I suggest that the modified NR iterative scheme works almost equally well for all
chosen initial conditions, which is not correct. The aim of our paper is to demonstrate the cor-
rect behavior of the numerical method, by conducting a systematic and thorough examination of
its convergence properties. The novelty of our work lies in the fact we will present quantitative
outcomes regarding the speed as well as the efficiency of the modified NR method. At the same
time, we will also determine how one of the main parameters of the iterative scheme influences the
degree of fractality of the complex plane, containing all the starting conditions of the numerical
iterator.

This new modified Newton-Raphson method converges faster, with respect to the classical version
of the Newton-Raphson method. In our analysis, we will conduct a systematic and thorough exam-
ination of the convergence properties of this new numerical method (using the same test example
as in Paper I) in an attempt to determine its behavior. In particular, we shall investigate how the free
parameter, entering the iterative scheme, affects the speed as well as the accuracy of the method,
by testing large sets of starting conditions and this is exactly the novelty of our work.

Our article’s organizations is the following: Section 2 illustrates the convergence basins of the
modified NR method, for several values of the free parameter, while in Section 3 we present the
influence of the free parameter on the fractal degree of the complex plane, by using quantitative
arguments, such as the (boundary) basin entropy. The last section of our paper is Section 4, where
the most interesting conclusions of our exploration are discussed and emphasized.
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Figure 1. The locations of the roots of the equation f(z) = z7−1 = 0 are pinpointed by blue dots. The red dashed line
indicates the circle of unity radius, which includes all the roots. (Color figure online).

2. Basins of convergence

The iterative scheme of the modified NR method is given by

zn+1 = zn −
f (zn) f

′ (zn)

α0 (f ′ (zn))
2 + α1f (zn) f ′′ (zn)

, (1)

where α0 and α1 are free real parameters.

Obviously, when α0 = 1 and α1 = 0 the iterative formula (1) is reduced to

zn+1 = zn −
f (zn)

f ′ (zn)
, (2)

which is the classical NR method, while when α0 = 1 and α1 = −1/2 it is reduced to

zn+1 = zn −
2f (zn) f

′ (zn)

2 (f ′ (zn))
2 − f (zn) f ′′ (zn)

, (3)

which is the Halley’s method.

Our aim is to elucidate the influence of α1 on the behavior of the modified NR method. For reasons
of simplicity and without the loss of the generality throughout the paper we set α0 = 1. As in Paper
I, the polynomial function f(z) = z7 − 1 will be used as a test example. The equation f(z) = 0
has one real root and six complex conjugate roots, which all lie on a circle of unity radius R = 1
(see Figure 1).

The iterative procedure works as follows: First, we provide an initial condition on the complex
plane in the form of a complex number z = R + iI. This initial condition actually activates the
code, which continues the iterations until we reach to a root of the polynomial function, of course
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Figure 2. Basin color diagrams for the (a-upper left): classical Newton-Raphson method and (c-lower left): Halley
method. The locations of the seven roots are pinpointed by black dots. The colors, corresponding to the seven
roots, is: R1 (green); R2 (orange); R3 (teal); R4 (purple); R5 (blue); R6 (magenta); R7 (red). (b) and (d):
The distributions of the number of required iterations. (Color figure online).

with the predefined accuracy. Here we would like to emphasize that generally not all starting points
lead to a root of the function. For obtaining the regions of convergence on the complex numbers
plane, we follow the numerical techniques and procedures that are described in detail in (Zotos
(2017); Zotos (2018)).

In parts (a) and (c) of Figure 2 we depict the basin diagrams for the classical NR and Halley
methods, respectively. As expected, the basin boundaries in the case of the Halley method are
more smooth and distinct, with respect to that of the NR method. The distributions of the respective
required number of iterationsN are shown in parts (b) and (d) of Figure 2. It is seen, that for starting
conditions in the close vicinity of the roots both methods require only a couple of iterations for
landing on a numerical attractor (root). On the contrary, for starting points with coordinates near
the basin boundaries the number of required iterations is very high (more than 15 iterations in the
case of the Halley method and more than 40 iterations in the case of the NR method). Especially
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Figure 3. Basin color diagrams for the modified Newton-Raphson method, when α1 > 0. (a): α1 = 1.5; (b): α1 = 0.5;
(c): α1 = 0.1; (d): α1 = 0.08; (e): α1 = 0.075; (f): α1 = 0.01. The color choice is the same as in Figure 2.
False converging starting conditions are shown in cyan, while for non-converging starting points we use white
color. (Color figure online).

initial conditions lying at the basin boundaries will never converge (although the points in the basin
boundaries are a set of Lebesgue measure zero (Royden (1988))). It should be noted that both these
methods display excellent convergence properties if we take into account that all the tested starting
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Figure 4. Basin diagrams where the color of the starting conditions is according to the number of required iterations, for
the six cases of Figure 3. For false and non-converging starting conditions we use white color. (Color figure
online).

conditions on the complex numbers plane finally reach to one of the numerical attractors (roots).
This means, that for the particular test function for both methods there are no non-converging or
false-converging starting points.
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Figure 5. Probability histograms for the six cases of Figure 3. The most probable number of iterations is indicated by
dashed, vertical, red lines, while the blue lines correspond to the best fitting curves. (Color figure online).

2.1. Case I: α1 > 0

The basin diagrams for the modified NR method, when α1 > 0, are depicted in Figure 3(a-f). In
panels (a-c) we observe that for relatively large positive numbers of the parameter α1 a substantial
amount of starting points displays a false convergence to zero (cyan regions). Using the term “false
convergence to zero", we mean that there exist starting conditions on the complex plane for which
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Figure 6. Basin diagrams for the modified Newton-Raphson method, when α1 < 0. (a): α1 = −0.1; (b): α1 = −0.8;
(c): α1 = −0.95; (d): α1 = −1; (e): α1 = −1.02; (f): α1 = −1.05; (g): α1 = −1.08; (h): α1 = −1.1;
(i): α1 = −1.5. The colors are as in Figure 2. False converging initial conditions are shown in blue, while
diverging starting points are shown in yellow. (Color figure online).

the numerical iterator leads to zero. However, the number zero is not a solution of the complex
equation f(z) = z7 − 1 = 0. Therefore, for these specific starting conditions the iterative scheme
reports, as a final converging point, a false root. With decreasing value of the parameter α1 the area
of the true convergence basins grows, while simultaneously several fractal structures are observed
mainly near the boundaries of the converge regions. So far, the use of term “fractal" is used qual-
itatively, implying that the corresponding regions exhibit a fractal-like geometry. However in the
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Figure 7. Basin diagrams where the color of the starting conditions is according to the number of required iterations, for
the six cases of Figure 6. For false and non-converging starting conditions we use white color. (Color figure
online).

next section quantitative arguments will be presented, regarding the influence of the parameter α1

on the fractal degree of the complex plane.

When α1 = 0.08 it is seen in part (d) of Figure 3 that all the false convergence regions have
disappeared, thus giving place to a very complicated mixture of starting points. Indeed, all the
regions between the convergence basins are covered by a complicated mixture of converging and
non-converging starting points. With a further decrease of the parameter α1 the amount of non-
converging starting conditions almost vanishes. In panel (e) of Figure 3, when α1 = 0.075 one can
observe that non-converging starting points are present only on the horizontal axis with I = 0.
In panel (f), where α1 = 0.01, the modified NR method works equally well for all tested starting
conditions, since there is no numerical indication of no or false convergence. Remember, that
α1 = 0.01 is very close to the value α1 = 0 which corresponds to the classical version of the NR
method.
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Figure 8. Probability histograms for the six cases of Figure 6. The most probable number of iterations is indicated by
dashed, vertical, red lines, while the blue lines correspond to the best fitting curves. (Color figure online).

In Figure 4(a-f) it is shown how the number of required iterations N is distributed on the complex
numbers plane, for several values of α1. Figure 5(a-f) shows the distributions of the corresponding
probability P = N0/Nt, where N0 is the number of the starting points which converge, while Nt

is the total number of starting points. According to the probability histograms, N∗ (the number of
iterations with the highest probability) is constantly reduced, as α1 decreases. For the fitting curves
of the histograms we use blue lines (in the following subsection 2.3 we will present more details
regarding the best fit of the histograms).
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Figure 9. (a-upper left): Basin diagram on the (R, α1) plane, for the modified Newton-Raphson methods, when −3 ≤
α1 ≤ +3. (c-lower left): Local magnification of the plot shown in panel (a). The colors are as in Figs. 3 and
6. Parts (b) and (d): Basin diagrams where the color of the starting conditions is according to the number of
required iterations. (Color figure online).

2.2. Case II: α1 < 0

Our numerical experiments show that the convergence properties of the modified NR method are
much more interesting in the case where α1 < 0. In Figure 6 we see that for negative values, close
to zero, the basin diagrams are very organized, while the regions with the fractal-like geometry are
reduced. When α1 = −1 we observe in panel (d) of Figure 6 a unique configuration of the basin of
convergence. However, according to panels (e) and (f) of the same figure, the convergence pattern
on the complex plane drastically changes.

For α1 = −1.08 a similar phenomenon to that seen in panel (d) of Figure 3 is observed. More
specifically, for a substantial amount of starting conditions on the complex numbers plane the
modified NR method does not converge, to any of the seven roots of the complex equation, even
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Figure 10. Parametric evolution of (a-c): |z| and (d-lower right): R, as a function of the number N of iterations. Panel
(a): α1 = 2, R = −1.5, I = 0, Panel (b): α1 = −2, R = −1.5, I = 0, Panels (c) and (d): α1 = −1.08,
R = 1.92, I = 0.

after 1000 iterations. In panels (h) and (i) of Figure 6 one can observe that most of the plane is
dominated by points for which the modified NR method displays a strange behavior. In particular,
for all these starting conditions the iterative scheme quickly diverges (Kellison (1975)), which is a
numerical indication of divergence to infinity. As the parameter α1 continues to drop (α1 < 1) the
area of the convergence basins is effectively reduced, while simultaneously all the fractal regions
disappear.

In panels (a-i) of Figure 7 we show the distributions of the number of required iterations, while in
panels (a-i) of Figure 8 the respective probability histograms are given. Now, the value of N∗ does
not seem to display a constant trend, since it fluctuates, as the value of the parameter α1 changes.

2.3. An overview analysis

For obtaining a more general view of the convergence properties of the modified NR method we
classified initial conditions on the (R, α1) plane, that is when the initial conditions of the iterative
method are real numbers. In part (a) of Figure 9 we illustrate the corresponding basin diagram. We
observe, that the plane is divided into the following four types of areas:
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Figure 11. Evolution of the (a): N∗, (b): diversity d, (c): differential entropy h, and (d): percentage of the area A(%)
on the complex numbers plane, covered by false and non-converging initial conditions, as a function of α1.
The dashed, vertical, red lines indicate the positions, where non-converging initial conditions mostly appear.
(Color figure online).

(1) Regions where the iterative formula converges to the real root z = 1 (green regions).
(2) Regions where the iterative formula displays a false convergence to z = 0 (blue regions).
(3) Regions where the iterative formula diverges quickly to extremely large numbers (yellow re-

gions).
(4) Regions where the iterative formula does not show any sign of convergence (white regions).

In part (c) of Figure 9 we illustrate a local magnification of the (R, α1), near the regions where the
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Figure 12. Evolution of the (a): Sb (basin entropy) and (b): Sbb (boundary basin entropy), as a function of α1. The
dashed, vertical, red lines indicate the positions, where non-converging initial conditions mostly appear,
while the critical value of log 2 is denoted by a horizontal, blue, dashed line. (Color figure online).

Figure 13. Evolution of the fractal dimension D0, as a function of α1. The dashed, vertical, red lines indicate the
positions, where non-converging initial conditions mostly appear. (Color figure online).

convergence properties change. Additional numerical computations indicate that the areas where
the numerical method displays non-convergence exist at about −1.084 < α1 < −1.064 and
0.064 < α1 < 0.085.

It should be emphasized, that in Paper I similar diagrams are presented in Figure 2. However, the
regions where the modified NR method displays ill behavior are not discussed. More precisely,
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the authors do not provide any evidence of ill behavior (false convergence of divergence to large
numbers) of the modified method. After communicating with the authors of Paper I it was revealed
that the observed differences are due to the fact that the stopping conditions of the iterative scheme
are different. In particular, in Paper I instead of |f(z)| < ε the authors used |g(z) = f(z)a0 ×
f ′(z)a1| < ε, which of course came with the expense that the zero of f ′(z), which is not necessarily
the zero of f(z), would be counted as well. Nevertheless, our outcomes coincide at least partially
with those of Paper I, since there are similar areas between our plots (see Figure 9) and those of
Figure 2 of Paper I.

In part (a) of Figure 10 the evolution of the complex norm |z| of the modified NR method is pre-
sented, as a function of the iterations. It is seen, that for this initial condition the iterative scheme
tends smoothly to zero. In part (b) we have the case of an initial condition for which the iterative
formula quickly diverges. In this case, the iterative procedure was stoped when |z| = 1010. Finally,
in panel (c) of Figure 10 we have the case of an initial condition for which the modified method
fails to converge. We observe that the complex norm oscillates without showing any signs of con-
vergence. In part (d) of Figure 10 we display the evolution of the real part of z. Here it becomes
more obvious why the method cannot converge. This is because the iterative procedure constantly
oscillates between the same positive and negative real numbers. The same behavior continues even
for larger values of iterations (N � 1000).

The numerical analysis suggests that when the parameter α1 is positive, there is a damping effect
that prevents some initial conditions from reaching one of the roots of the complex equation. On
the other hand, for negative values of the parameter α1, there is an anti-damping effect leading to
oscillatory or diverging behavior of some starting conditions.

The histograms shown in Figs. 5 and 8, with the probability distributions, may give additional
results about the properties of the modified NR method. For example, the right-hand side of the
histograms can be fitted by using the well-known Laplace distribution, which is the simplest and
most suitable choice (Motter and Lai (2001); Seoane et al. (2006); Seoane et al. (2008)).

The probability density function (PDF) of the Laplace distribution reads

P (N |l, d) = 1

2d

{
exp

(
− l−N

d

)
, if N < l,

exp
(
−N−l

d

)
, if N ≥ l,

(4)

where the quantities l and d > 0 are known as the location parameter and the diversity, respectively.
Since we are interested only for the tails of the probability histograms we need only the N ≥ l

part of the PDF. In the following Table 1, we provide the numerical values of both the location
parameter l as well as the diversity d, for all the cases presented in this section.

Note that the smaller the value of d the best is the fit of the Laplace distribution. For example, in
panels (d) and (g) of Figure 8 we have seen that the Laplace PDF does not fit very satisfactorily
the tails of the histograms. This is because for this cases the values of d are 12.41 and 11.38,
respectively.
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Table 1. Table containing the values of N∗, l, and d for all the probability histograms presented in this section.

Figure N∗ l d

5 (a) 24 N∗ − 2 4.14
5 (b) 17 N∗ − 1 2.71
5 (c) 14 N∗ 2.55
5 (d) 14 N∗ 4.98
5 (e) 14 N∗ 6.32
5 (f) 13 N∗ + 1 4.31
8 (a) 12 N∗ 2.28
8 (b) 8 N∗ 1.44
8 (c) 11 N∗ 2.46
8 (d) 37 N∗ − 5 12.41
8 (e) 13 N∗ + 1 3.57
8 (f) 9 N∗ + 2 4.02
8 (g) 12 N∗ + 6 11.38
8 (h) 8 N∗ + 2 3.12
8 (i) 9 N∗ + 2 3.59

3. Influence of the parameter α1

For determining how exactly the parameter α1 influences the convergence properties of the modi-
fied NR method we classified 200 sets of starting conditions (R, I) regularly distributed inside the
square region R = [−3, 3] × [−3, 3] on the complex numbers plane, for the range α1 ∈ [−2, 2].
Our outcomes are given in Figure 11(a-d).

In part (a) of Figure 11 we see howN∗ evolves, as a function of α1. It is seen, that when α1 < −1 it
fluctuates mostly around 8 and 9, while the most interesting behavior is displayed for α1 > −1/2.
Indeed, when α1 > −1/2 we observe that the value of N∗ increase gradually by following a
ladder-type growth. It should be noted, that the increase of N∗ starts exactly at the value of α1

which corresponds to the Halley method (α1 = −1/2). The evolution of the diversity d as well
of the differential entropy h = 1 + ln(2b) (Lazo and Rathie (1978)) is shown in parts (b) and (c)
of Figure 11, respectively. Both quantities exhibit a very similar pattern. In particular, the lowest
values of d and h exist in the interval −1 < α1 < 0, while at the boundaries of this interval we
observe sudden peaks. These two peaks appear for values of α1 where there exist non-converging
initial conditions. In part (d) of Figure 11 we show how the percentage A(%) of the area on the
plane of complex numbers, where the modified NR method displays an ill behavior, evolves as
a function of α1. One can observe that for α1 < −1 more than 90% of the plane is covered by
points for which the iterator quickly diverges. In the same vein, for α1 > 0 we have the appearance
of initial conditions which lead to false convergence to zero (z = 0). Apparently, in the region
−1 < α1 < 0 the modified method displays the optimum performance, as there is no evidence of
ill or non-converging starting conditions.

For obtaining a quantitative measure about the fractality of the convergence regions we will use
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the so-called basin entropy Sb tool (Daza et al. (2016); Daza et al. (2018)), which computes the
fractality of a diagram. The evolution of Sb, as a function of α1, is given in part (a) of Figure
12. We see that for α1 < −1 and α1 > 0, where the complex plane is filled by unified areas
of ill converging points the degree of fractality is low, while in the range −1 < α1 < 0 the
unpredictability is higher. Once more, we note that in the boundaries of this range there are sudden
peaks of Sb, simply because of the presence of the highly complicated mixture of converging and
non-converging starting points (see e.g., panel (d) of Figure 3 and panel (g) of Figure 6).

Another useful tool for the quantitative estimation of the fractal degree of a basin diagram is the
boundary basin entropy Sbb (Daza et al. (2016)). The evolution of Sbb is shown in part (b) of Figure
12. Furthermore, using the so-called “log 2 criterion", we can obtain quantitative information on
whether or not the basin boundaries are certainly fractal. This is true only when Sbb > log 2, while
the opposite argument is not always valid. As we see in part (b) of Figure 12 the boundaries of the
basins are highly fractal, when −1 < α1 < 0, while the overall pattern of the evolution of Sbb is
very similar to that of the basin entropy Sb.

Finally, one of the most convenient ways of measuring the degree of fractality of a basin diagram
is by computing the uncertainty or fractal dimension D0 (Ott (1993)), thus following the computa-
tional methodology used in (Aguirre et al. (2001); Aguirre et al. (2009)). At this point, we would
like to emphasize that the degree of fractality is an intrinsic property of the system and therefore
it does not depend on the particular initial conditions we use for its calculation. Figure 13 shows
the parametric evolution of the uncertainty dimension, as a function of the parameter α1. When the
fractal dimension is close to 1 it implies zero fractality, while when its value tends to 2 it suggests
total fractality of the respective basin diagram. It is seen, that D0 displays two main peaks near
the boundaries of the interval −1 < α1 < 0. In addition, one should certainly discuss the large
similarity on the parametric evolutionary pattern of D0 with respect to that of the basin entropy Sb.
We also note, that for a two-dimensional space, such as the complex plane the value of D0 lies in
the interval [1, 2].

4. Conclusion

The scope of this work was to unveil the behavior of the modified NR method. Using a simple com-
plex polynomial function as a test example, we obtained the convergence regions on the complex
numbers plane, by means of polynomiographs. Additionally, we investigated how the parameter
α1, entering the iterative scheme, influences the main characteristics (e.g., speed and the accuracy)
of the method. Moreover, we found how α1 affects the fractal degree of the complex plane, by
deploying modern indices, such as the (boundary) basin entropy and the fractal dimension.

A similar numerical analysis has been conducted in Paper I. However, as we described in detail in
our work, that paper contains some errors, about the convergence properties of the modified NR
method. In our article, we point out these mistakes, while we supplement the analysis given in
Paper I, by presenting additional quantitative novel information on the behavior of the modified
NR method.
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The most interesting outcomes of our exploration are listed below:

(1) When α1 < −1 most of the complex numbers plane is dominated by starting conditions for
which the numerical method diverges very quickly to large numbers (shoot to infinity).

(2) When α1 > 0 there are regions composed of points for which the numerical methods displays
a false convergence to zero (z = 0).

(3) In the intervals −1.084 < α1 < −1.064 and 0.064 < α1 < 0.085 there exists a considerable
amount of starting conditions for which the iterator does not converge.

(4) Our computations suggest that there are no values of the parameter α1 for which the method to
display simultaneously false and non-convergence. Each ill behavior exists in different ranges,
regarding the value of α1.

(5) We concluded that the optimum behavior of the method appears roughly when −1 < α1 < 0,
where there is no evidence of false or non-convergence.

The iterative NR algorithm was coded in the standard version of FORTRAN 77 (Press et al.
(1992)), while additional tests have been also conducted in other programming languages, for
verifying our results. For the classification of the sets of starting points on the complex numbers
plane, we required about 3 minutes of CPU time, per grid, using a Quad-Core i7 4.2 GHz proces-
sor. All the diagrams of the article have been constructing by using version 12.0 of Mathematicar

(Wolfram (2003)).
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