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Abstract

This investigation deals with a nonlinear Volterra integro-differential equation with infinite retar-
dation (IDDE). We will prove three new results on the stability, uniformly stability (US) and square
integrability (SI) of solutions of that IDDE. The proofs of theorems rely on the use of an appro-
priate Lyapunov-Krasovskii functional (LKF). By the outcomes of this paper, we generalize and
obtain some former results in mathematical literature under weaker conditions.
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1. Introduction

In the last 50 years, the studies on various qualitative properties of solutions of integral equations,
integro-differential equations without and with retardations, impulsive differential equations and so
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on have attracted attention from numerous mathematicians, physicists and engineers (for instance,
see the books or the papers of Becker (2006), Becker (2007), Becker (2009), Burton (1993), Burton
(2005), Burton (2010), Burton and Haddock (2009), Burton and Mahfoud (1983), Burton and
Mahfoud (1984), Burton and Mahfoud (1985), Chang and Wang (2011), Chen et al. (2017), Graef
and Tunç (2015), Graef et al. (2016), Raffoul and Rai (2016), Slyn’ko and Tunç (2019), Tunç
(2016a), Tunç (2016b), Tunç (2016c), Tunç (2017a), Tunç (2017b), Tunç (2017c), Tunç (2018),
Tunç and Akbulut (2018), Tunç and Tunç (2018a), Tunç and Tunç (2018b), Tunç and Tunç (2018b),
Tunç and Tunç (2018d), Tunç and Tunç (2019), Tunç (2020), Tunç and Golmankhaneh (2020) and
the available bibliography in these sources).

It should be insisted that IDEs and IDDEs have proved to be valuable tools in modeling of many
physical phenomena in various fields of science, medicine, engineering and new different branches
raised under these areas. When we check the available mentioned literature on the qualitative struc-
tures of solutions of IDEs and IDDEs, it can be followed that different mathematical models of
IDEs and IDDEs are considered and stability, uniformly stability, asymptotic stability, globally
asymptotic stability, boundedness, square integrability of solutions of that IDEs and IDDEs are
discussed by researchers, without solving that IDEs and IDDEs. Through the available bibliog-
raphy of this paper, it is seen that the techniques or methods used in the proofs depend on the
Lyapunov’s second method, the Lyapunov-Krasovskii functional approach, fixed point method,
inequality techniques and so on. All of these techniques determine and make available a proper
decision related to the stability, uniformly stability, and asymptotic stability, globally asymptotic
stability, boundedness, square integrability of solutions, etc., without analytically solving IDEs and
IDDEs under discussion.

This fact raises a significant advantage in the course of researches on the mentioned concepts. The
motivation of this paper has been inspired from the mentioned bibliography. The target of this
work is to generalize and to get some former results in bibliography of this paper under weaker
conditions. In fact, we generalize and obtain the results of Raffoul and Rai (2016) under weaker
condition. Next, we try to do a contribution to do bibliography of this paper. Thus, it is worthwhile
to investigate qualitative behaviors of solutions of nonlinear IDDEs with infinite retardation.

2. Stability

Raffoul and Rai (2016) considered the following nonlinear IDDE with unbounded delay:

dx

dt
= Px(t) +

∫ t

−∞
g(x(s))C(t, s)ds. (1)

They presented some criteria for the US and SI of solutions of IDDE (1) by using a LKF.

In this paper, motivated by the results of Raffoul and Rai (2016), we have the following nonlinear
IDDE with unbounded retardation:

dx

dt
= −a(t)x+

∫ t

−∞
C(t, s)g(s, x(s))ds, (2)
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where t, x ∈ <, < = (−∞,∞), a ∈ C(<, [0,∞), C ∈ C(<2,<) and g ∈ C(<,<) with −∞ <

s ≤ t < ∞, g(s, 0) = 0, are continuous functions. So IDDE (2) includes the zero solution
x(t) ≡ 0.

When we compare IDDE (2) with IDDE (1) it follows that IDDE (2) includes IDDE (1). In fact,
let a(t) = P , P ∈ <, and g(t, x) be depend only on x. Then IDDE (2) reduces to IDDE (1).

Further, ϕ ∈ C(<,<) is a continuous function. Let us show the norm of this function by

sup
s∈<
|ϕ(s)| = ‖ϕ‖.

We have the initial segment Et0 = (−∞, t0] . Then, it is assumed that ψ : Et0 → < is an initial
function, which is bounded and continuous.

Suppose that x(t, t0, φ) is a solution of IDDE (2) having the initial function φ ∈ C((−∞, t0],<),
t0 ≥ 0.

Then, IDDE (2) can be expressed as the following:

dx

dt
= −a(t)x− A(t, t)g(t, x(t)) + d

dt

∫ t

−∞
g(s, x(s))A(t, s)ds,

where the function A(.) is defined by

A(t, s) =

∫ t−s

−∞
C(u+ s, s)du, t− s ≥ 0.

2.1. Assumptions

We have the assumptions below through the paper.

(A1) Let λ1, λ2 ∈ <, λ1 > 0, λ2 > 0. Further, it is assumed that

g(t, 0) = 0, λ2x
2 ≤ xg(t, x), x 6= 0,∀t, x ∈ <,

|g(t, x)| ≤ λ1|x|,∀t, x ∈ <,

and

A(t, t) > 0, ∀t ∈ [0,∞).

(A2) Let γ, ρ ∈ <, γ > 0, ρ > 0 with

a(t) + 2A(t, t)λ2 − A2(t, t)λ21 − γλ21
∫ ∞
t

|A(u, t)|du ≥ ρ,

(a(t) + 1)

∫ t

−∞
|A(t, s)|ds− γ ≤ 0,
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1− λ1
∫ t

−∞
|A(t, s)|ds > 0,

and ∫ ∞
0

|A(u, t)|du <∞.

Theorem 2.1.

The null solution of IDDE (2) is stable if assumptions (A1) and (A2) hold:

Proof:

We construct a LKF V (t) = V (t, x) by

V (t) = (x−
∫ t

−∞
g(s, x(s))A(t, s)ds)2 + γ

∫ t

−∞

∫ ∞
t

|A(u, z)|g2(z, x(z))dudz. (3)

Note that V (t, 0) = 0 and V (t, x) > 0 if x 6= 0. Now, the calculation of the derivative of the LKF
(3) along IDDE (2) gives

V ′(t) =− 2a(t)x2 − 2A(t, t)xg(t, x(t)) + 2a(t)x

∫ t

−∞
A(t, s)g(s, x(s))ds

+ 2A(t, t)xg(t, x(t))

∫ t

−∞
A(t, s)g(s, x(s))ds+ γ

∫ ∞
t

|A(u, t)|g2(t, x(t))du

− γ
∫ t

−∞
|A(t, z)|g2(z, x(z))dz. (4)

By using the Schwarz inequality, we can observe

2a(t)x

∫ t

−∞
A(t, s)g(s, x(s))ds ≤ a(t)x2 + a(t)[

∫ t

−∞
A(t, s)g(s, x(s))ds]2

= a(t)x2 + a(t)[

∫ t

−∞
|A(t, s)|

1

2 |A(t, s)|
1

2 g(s, x(s))ds]2

≤ a(t)x2 + a(t)

∫ t

−∞
|A(t, s)|ds

∫ t

−∞
|A(t, s)|g2(s, x(s))ds. (5)

Similarly, we also get

2A(t, t)g(t, x(t))

∫ t

−∞
A(t, s)g(s, x(s))ds ≤ A2(t, t)g2(t, x(t)) +

[ ∫ t

−∞
A(t, s)g(s, x(s)ds

]2
≤ λ21A

2(t, t)x2 +

∫ t

−∞
|A(t, s)|ds

∫ t

−∞
|A(t, s)|g2(s, x(s))ds. (6)
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By putting inequalities (5) and (6) into (4) and using assumption (A2), we derive

V ′(t) ≤− [a(t) + 2A(t, t)λ21 − A2(t, t)λ2 − γλ21
∫ ∞
t

|A(u, t)|du]x2

+

[
(a(t) + 1)

∫ t

−∞
|A(t, s)|ds− γ

][ ∫ t

−∞
|A(t, s)|g2(s, x(s))ds

]
≤− ρ|x|2. (7)

Let ε > 0. Then, by the definition of the stability, it is obvious that we can find a constant δ > 0 so
that |x(t, t0, ψ| < ε, when [ψ ∈ Et0 → <, ‖ψ‖ < δ]. Since V ′(t, x) ≤ 0 in (7), then, this inequality
implies that the functional V is decreasing for t ≥ t0. If we integrate V ′(t, x) ≤ 0 and consider the
LKF V given by (3), we observe

V (t, x(t)) ≤ V (t0, ψ(t0))

= [ψ(t0)−
∫ t0

−∞
A(t, s)g(s, ψ(s)]2 + γ

∫ t0

−∞

∫ ∞
t0

A(u, z)g2(z, ψ(z))dudz

≤ [|ψ(t0)|+ λ1

∫ t

−∞
|A(t, s)|ψ(s)ds]2 + γλ21

∫ t0

−∞

∫ ∞
t0

|A(u, z)|ψ2(z)dudz

≤ δ2([1 + λ1

∫ t

−∞
|A(t, s)|ds]2 + γλ21

∫ t0

−∞

∫ ∞
t0

|A(u, z)|dudz).

Let

L2 = (1 + λ21

∫ t0

−∞
|A(t0, s)|ds)2 + λ21γ

∫ t0

−∞

∫ ∞
t0

|A(u, z)|dudz.

Then, we can get

V (t, x) ≤ δ2L2. (8)

By the functional (3), we can observe

V (t) ≥ (|x| − |
∫ t

−∞
g(s, x(s))A(t, s)|ds)2.

By these last two inequalities, we get

|x(t)| ≤ δL+

∫ t

−∞
|g(s, x(s))||A(t, s)|ds.

Since |x(t)| < ε, then, by assumption (A1), we can derive that

|x(t)| < δL+ ελ1

∫ t

−∞
|A(t, s)|ds,∀t ≥ t0.

Hence, if we choose δ < ε
L
(1− λ1

∫ t

−∞ |A(t, s)|ds), then, we can reach that

|x(t)| < ε.
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Note that by assumption (A2), we get 1 − λ1
∫ t

−∞ |A(t, s)|ds > 0. Thus, the last inequality with
respect to δ is valid. This finishes the proof of Theorem 2.1. �

The second theorem presents sufficient conditions for the square integrability of solutions.

Theorem 2.2.

If assumptions (A1) and (A2) of Theorem 2.1 are satisfied, then, all of solutions of IDDE (2) are
square integrable |x(t)|2 ∈ L[t0,∞), t0 ∈ Ek.

Proof:

We know that assumptions (A1) and (A2) imply that zero solution of IDDE (2) is stable. Then,
from the definition of stability, we can choose the constant δ such that |x(t, t0, ψ)| < 1. Since LKF
V is decreasing, by means of (7) and (3), we can derive

ρ

∫ t

t0

|x(s)|2ds ≤ ρ

∫ t

t0

|x(s)|2ds+ V (t, x) ≤ K.

Then, we can derive that ∫ ∞
t0

|x(s)|2ds ≤ ρ−1K <∞ as t→∞,

where K is positive constant.

Then, the proof of Theorem 2.2 is completed. �

Let a(t) = 0.

2.2. Assumption

We suppose the following assumptions hold through the paper.

(A3)

2A(t, t)λ2 − A2(t, t)λ21 − γλ21
∫ ∞
t

|A(u, t)|du ≥ ρ,

∫ t

−∞
|A(t, s)|ds− γ ≤ 0,

1− λ1
∫ t

−∞
|A(t, s)|ds > 0,
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and ∫ ∞
0

|A(u, t)|du <∞.

Theorem 2.3.

If assumptions (A1) and (A3) are satisfied, then, the trivial solution of IDDE (2) is stable and
|x(t)|2 ∈ L[t0,∞), t0 ∈ Ek,

Proof:

By using assumptions (A1) and (A3), we can easily finish the proof of Theorem 2.3. Therefore, we
omit the details.

For simplicity, let

J =

∫ t

−∞
|A(t, s)|ds. (9)

�

Theorem 2.4.

In addition to assumptions (A1) and (A2), let∫ t

−∞

∫ ∞
t

|A(u, z)|dudz ≤ R, (R > 0, R ∈ <). (10)

Then, the trivial solution of IDDE (2) is US.

Proof:

We benefit from functional V , which is defined in Theorem 2.1. Then, when we consider the
conditions of Theorem 2.3 and use (9), it is followed that

V (t) =x2(t) +

∫ t

−∞
A(t, s)g(s, x(s)ds)2

− 2x(t)

∫ t

−∞
A(t, s)g(s, x(s))ds

+ γ

∫ t

−∞

∫ ∞
t

|A(u, z)|g2(z, x(z))dudz

≤2x2(t) + 2λ21J

∫ t

−∞
|A(t, s)|x2(s)ds+ γλ21

∫ t

−∞

∫ ∞
t

|A(u, z)|x2(z)dudz, (11)

by assumptions (A1) and (A2).

We know that the time derivative of V satisfies dV
dt
≤ 0. Since V (t) is a decreasing functional, we

can derive

V (t) ≤ V (t0),∀t ≥ t0.
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Hence, since x(t) = φ(t) on Et0(−∞, t0), it can be derived that(
x−
∫ t0

−∞
A(t, s)g(s, x(s))ds

)2

≤ V (t) ≤ V (t0)

= φ2(t) +

(∫ t0

−∞
A(t, s)g(s, φ(s))ds

)2

− 2φ(t)

∫ t0

−∞
A(t, s)g(s, φ(s))ds

+ γ

∫ t0

−∞

∫ ∞
t0

|A(u, z)|g2(z, φ(z))dudz.

Then, in view of ‖φ(t)‖ < δ and assumption (A1), it follows that(
x−

∫ t0

−∞
A(t, s)g(s, x(s))ds

)2

≤ δ2 +

(∫ t0

−∞
|A(t, s)|ds

)2

λ21δ
2 + δ2 +

(∫ t0

−∞
|A(t, s)|ds

)2

λ21δ
2

+ γλ21 + δ2
∫ t0

−∞

∫ ∞
t0

|A(u, z)|dudz

= 2δ2 + 2λ21δ
2

(∫ t0

−∞
|A(t, s)|ds

)2

+ γδ2λ21

∫ t0

−∞

∫ ∞
t0

|A(u, z)|dudz

= δ2(2 + 2λ21J + γλ21R).

Given an ε > 0 and a fixed t0 ∈ Ek. Let δ > 0, 0 < δ < ε, such that√
(2 + 2λ21J + γλ21R) δ < ε(1− λ1J).

Also, we note that

|x| − λ1
∫ t

−∞
|A(t, s)||x(s)|ds ≤ |x−

∫ t

−∞
A(t, s)g(s, x(s))ds|.

Hence, we assert that |x(t)| < ε, ∀t ≥ t0. We know that |x(u)| < δ < ε, ∀u ∈ (−∞, t0]. If this
claim is not correct, hence, let t = t∗ be such that |x(t∗)| = ε and |x(s)| < ε for t0 ≤ s < t∗. Then,
by above information, we can get

ε(1− λ1J) = ε(1− λ1
∫ t

−∞
|A(t, s)|ds)

≤ |x(t∗)− λ1
∫ t∗

−∞
A(t∗, s)g(s, x(s))ds|

≤
√

(2 + 2λ21J + γλ21R) δ.

This result is a contradiction, that is, the above claim is not true. This outcome finishes the proof
of Theorem 2.4. �
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Example 2.5.

We have the following nonlinear IDDE, which is a modified equation of Example 3.1 in Raffoul
and Rai (2016):

dx

dt
= −(4 + 1

1 + t2
)x−

∫ t

−∞
16−1(t− s+ 1)−4x(s)

(
sin2 x(s) + sin2 s+ 1

6

)
ds. (12)

When we compare this equation with IDDE (2), we can derive the following expressions:

a(t) = 4 +
1

1 + t2
,

g(t, x) =
x(sin2 x+ sin2 t+ 1)

6
,

xg(t, x) >
x2

6
, x 6= 0,

λ1 =
1

2
, λ2 =

1

6
,

|g(t, x)| ≤ 1

2
|x|,

C(t, s) = −16−1(t− s+ 1)−4,

C(u+ s, s) = −16−1(u+ 1)−4,

A(t, s) =

∫ t−s

−∞
C(u+ s, s)ds = 4−1(t− s+ 1)−3.

The last equality satisfies that A(t, t) = 1
4
. It is also clear that∫ ∞

t

|A(u, t)|du =
3

4
,

∫ t

−∞
|A(t, s)|ds = 3

4
,

and ∫ t

−∞

∫ ∞
t

|A(u, z)|dudz =
∫ t

−∞

∫ ∞
t

4−1(u− z + 1)−3dudz

=
3

4

∫ t

−∞
(t− z + 1)−2dz

=
3

2
.
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We can also conclude that

µ(t) = a(t) + 2A(t, t)λ2 − A2(t, t)λ21 − γλ21
∫ ∞
t

|A(u, t)|du

= 4 +
1

1 + t2
+

1

12
− 1

64
− γ 3

16

≥ 4 +
1

12
− 1

64
− γ 3

16

=
781− 36γ

192
.

Let γ = 3. Then, we get

µ(t) =
781− 108

192
=

673

192
= ρ.

Thus, we can verify that the trivial solution IDDE (12) is US.

Figure 1. Trajectory of solution x(t) of Equation (12) in Example 1

3. Conclusion

In this paper, the authors investigate a nonlinear Volterra integro-differential equation with infinite
retardation. They discuss certain qualitative aspects of solutions of that nonlinear Volterra IDDE
such as stability, square integrability and uniform stability of solutions. Three new theorems are
presented on stability, square integrability and uniform stability of solutions. The constructed hy-
potheses through the theorems are recognized as sufficient conditions and they guarantee the men-
tioned qualitative properties of solutions of that Volterra IDDE with infinite delay. The technique
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used to proceed the proofs of the main results is known as the Lyapunov-Krasovskii functional
approach. For this approach, a new Lyapunov-Krasovskii functional is constructed. In particular
case, an example of IDDEs with the plots of the paths of solutions is given to verify and show
the applicability of the given results. It can be observed that the obtained results extend, include
and improve some results can be found in the bibliography of this paper. Finally, our findings have
contributions to the qualitative theory of integral and integro-differential equations.
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