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Abstract

In this paper, we consider the conformable fractional Volterra integral equation. We study the
existence of a resolvent kernel corresponding to conformable fractional Volterra integral equation.
The technique of proof involves Lebesgue dominated convergence theorem. Our results improve
and extend the results obtained in literature.
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1. Introduction

Fractional calculus is a generalization of classical differentiation and integration into an arbitrary
(non-integer) order and it is as old as calculus. The theory goes back to mathematicians like
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Leibniz (1646-1716), Liouville (1809-1882), Riemann (1826-1866), Letnikov (1837-1888),
Grunwald (1838-1920) and others. Since the last three centuries fractional calculus, like all fields
of science, engineering and mathematics, is one of the most intensively developed fields of
mathematical assessment. Due to its numerous applications in engineering, economics and
finance, signal processing, earthquake dynamics, geology, probability and statistics, chemical
engineering, physics, splines, thermodynamics, neural networks and so on (see Carvalho et al.
(2018), Sweilam and Al-Mekhlafi (2016)), the fractional calculus has always drawn researcher ’s
interest (see Anderson and Camrud (2019), Carvalho et al. (2018), Gao et al. (2020), Gao et al.
(2019) and Khalil et al. (2014)). There are several definitions of fractional operators like
Riemann-Liouville, Caputo and Grinwald-Letnikov, Weyl, Hadamard, Marchaud and Riesz (see
Khalil et al. (2014), Miller (1971)). But it should be noted that these types of derivatives do not
meet the fundamental formulas of the product derivative (the quotient) of two functions and the
chain rule etc.

Recently, Khalil et al. (2014) has introduced a new well-behaved simple fractional derivative that
is called the conformable fractional derivative based on the basic limit definition of the derivative.
Under this definition, all the classical characteristics of the derivative retain and satisfy the chain
rule. This new definition attracted many researchers and some results were obtained for the
fundamental properties of the conformable fractional derivative in Abdeljawad (2015). For further
features, also see ( Abdeljawad et al. (2017), Al-Rifae et al. (2017), and Jarad et al. (2017)).

In the literature survey, there are some articles on the existence, uniqueness and boundedness of
the solutions of integral equation on time scale Svetlin (2016). Kulik and Tisdell (2008) discussed
the qualitative and quantitative properties of the solutions of Volterra integral equations on time
scale. Whereas, in Adivar and Raffoul (2010) the existence of a resolvent Kernel corresponding to
the Volterra integral equations on time scale has been discussed and its special cases are integral,
summation and q-integral equations, which are also part of this reference. But there is no
remarkable literature for existence of resolvent of Volterra integral equations on conformable
fractional calculus. In this assertion, we extend the theory established in Adivar and Raffoul
(2010) to the conformable fractional VVolterra integral equations. The generalized Volterra integral
equations arise in many scientific applications such as the population dynamics, spread of
epidemics and semi-conductor devices. Resolvents are used to express the solutions of Volterra
integral equations. For some recent paper on the qualitative behaviors of solutions of Volterra
integro-differential equations (see Tung (2016; 2017), Tung and Tung (2017; 2018; 2019) and the
bibliography therein).

2. Basic notions

Given a function f:[a, ) — R, a = 0, the conformable fractional integral of f is defined by

(ij)(t):.[;f (x)d&x:j;(x—a)g’f1 f(x)dx ,

where the integral is the usual Riemann improper integral, and a € (0,1) (see Abdeljawad
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(2015)).

Assume that f:[a, o) — R is continuous and 0 < a < 1. Then, for all t > a we have

[12f ()] = £ (1),
(see Abdeljawad (2015)).
Assume that f: (a,b) —» R be differentiable and 0 < a < 1. Then, forall t > a we have
128 (1) = f (1)~ f (a),
(see Abdeljawad (2015)).

Assume f, g: (a, ) - R be a-differentiable functions, where 0 < a < 1. Let h(¢t) = f(g(t)).
Then h(t) is a-differentiable and for all ¢t with ¢t > a we have

h (t)=f'(g(t)).g'(t).(t-a) ™.

If moreover, and g(t) # a or g is one-to-one, then

and

(see Abdeljawad (2015)).

3. Construction of the resolvent equation

Firstly, chain rule for conformable fractional derivative of a function of two variables is discussed
below.

Lemma 3.1.

Consider that f:(0,00) > R and g:(0,0) » R are « -differentiable functions, where «a €
(0,1]. Let

h(x)=G(f(x),9(x)). @
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Then, h(x) is a-differentiable Vv x with x # 0, and we have

S Sl
where h@(x) is conformable fractional derivative.
Proof:
For t # 0 and a € (0,1], we have
. oG( f(x oG(g(x
h) (x) = x"*h ™) = x* 85‘ ()(() ) "(x)+ Gg%i))) 9'(x)
and, hence, the result follows. |

To differentiate the iterated integrals, we will employ the following theorem.
Theorem 3.2.

Let k(x,t) be continuous, g(x) and h(x) are «-differentiable with g(x) =0, h(x) =0,
where « € (0,1] and

K(x)=[0 Kk (x )t &)
Then,
K ()= (x-a) “k(x g ()% T-9(x)
" (4)
l-a l-a d
~(x=a)" “k(xh(x))(h(x)-a) " < h(x)
9(x) 0°
| , 8axk(x’t)d“t
Proof:
Let
G, (ux)=[k(xt)d,t, 5)
where u = h(x), a = 0, and
Gz(x,w):jjvk(x,t)dat, (6)
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where w = g(x), a = 0. Evaluating partial derivatives of equations (5) and (6) with respect to u
and w, respectively, and applying Lemma 3.1, we get our required result. m

Corollary 3.3.
1. If
K (%) =[k(xt)d,t,
Then,
x d“
K (x)= k(xt)d t+k(x,x).
(9= gk (xd,trk(x0)
2. If
K (x)=[k(xt)d,t,
Then,

@ a d”
< )(X)=IXd X

a

k(xt)d,t—k(x,x).

Here, we use some characteristics of multiple a-conformable fractional integrals to develop the
resolvent equations related to the integral equations for linear and nonlinear systems.

Consider interval [0, M] and let

E ={(xy)eMxM:0<x<y,0<y<v}.
Theorem 3.4.

Suppose h: R x R — R be a continuous mapping. Then,

[,y h(xy)d,x=['d,x]"(x, y)d, .
That is,

['Th(xy)d,xd,y=["['h(xy)d,yd,x
Proof:

Let
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=[[heey)dd,y=[ [h(xy)d,yd,x (7)

Now, we take the conformable fractional derivative of G(v), i.e., G(* (v). We now consider the
results of Corollary 3.3. If

Then,
IOEQ (t,7)d,z+9g(t.t).
Let
J.Zh(x,y)day:g(x,v)
and
f(v):.[;g(x,v)dax.
That is,

= J‘OJ.Xh (x,y)d,yd,x.
Hence, it follows that

a v o”
fl )(v):joa Vg(x,v)dax+g(v,v).
That is,
a v o*
f )(v)— oy Uh(x y)d, y}d X+I (v,y)d,y
v O X
- 0;‘!\/Uoh(x,y)day—joh(x,y)day}dmx.

By fundmental theorem of conformable fractional calculus we have
@ (v ["
f1(v) _Ioh(x,v)dax.
Now, we have to solve the following integral
vy v
Jojoh(x, y)d, xd,y= '[OL(y)day, (8)

where

L(y)=[h(xy)d,x
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When we calculate the a-conformable fractional derivative of the integral (8), it follows that

ILm)dy=L

and
da

Fx\/'{:ﬁh(x y)d,xd,y :j:h(x,v)dax.

Equation (7) shows that
G (v)= .[;h(x,v) d x— I:h (x,v)d,x,
that is,
G (v)=0.

The last equalitiy implies that G(v) = C. Consider the initial value problem
G'*) (v)=0with G(0)=0.
Thus G(v) =0, V v € R. That s,
vey VeV
J.O.[Oh(x, y)d,xd,y :J.OJ.Xh(x, y)d,yd,x,

which gives the desired result. |

Consider the linear conformable fractional Volterra integral equation of the following form:
¢(v):g(v)+ﬁb(v,x)¢(x)dax. (9)
The corresponding resolvent equation related with kernel b(v, x) is mentioned by
R(v,x):—b(v,x)+J.ZR(v,y)b(y,x)day. (10)

If the corresponding resolvent equation (10) has a solution R(v, x), then the solution of the linear
system (9) can be written in terms of g as below:

$(v)=9(v)-[R(v.y)g(y)d,y. (11)

To see this equality, we multiply both sides of equation (9) by R(v, x) to obtain
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[Rv.Y)¢(y)d,y=[R(v,y)g(y)d,y=[R(v,y)[b(y.x)8(x)d,xd,y,

which implies that
IOR(v,y)gﬁ(y)day—_[oR(v,y y)d,y= j {J. b(y,x)d, y}¢( )d,x.
Equation (10) gives that
I:R(v, y)b(y,x)d,y =R(v,x)+b(v,x). (12)
Therefore, by using equation (12), we have

IZR(V' y)¢(Y)day—ﬁR(v,y y)d,y= I (v,x)+b(v, X)}¢(x)dax,

which implies that

['b(v.x)g(x)d,x=-[R(v,y)g(y)d,y. (13)

Hence equation (9) becomes

Thus, we arrive at equation (11).

On the other hand, one may also show, by using equation (13), that equation (11) implies equation
(9) as follows.

In fact, by equation (13), we obtain

which is equation (9).
We now consider the following nonlinear conformable fractional integral equation:

\

é (v)= g(v)+JOb(v,x){g5 (x)+ L(x,¢7 (x))}dax, (14)

where L(v, $) refers to the higher-order terms of .
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If the solution ¢ of equation (14) is known, then this equation can be redefined as

¢ (v)=H (v)+J;b(v,x);5 (x)d,x

where

H(v)=g (v)+j:b(v, X) L(x,¢ (x))dax.

If the resolvent R(v,x) is known, then we obtain

~ v

¢ (v)=H (v)—IOR(v, X)H (x)d,x.

Hence, it follows that

that is,

By equation (10), we find
gZ(v)zg(v)—IVR(v x)g(x)d X+Ivb(v,x)L(x,</5(x))dax
~[{R(v.y)+b(v, y)}L(y.4(y))d.Y

which implies that

(V)= g(v)—j:R(v,x)g(x)dax—I;R(v, y)L(y,q? (y))day. (15)

$ (V)=4(v)-[R(v.Y)L(v.4 (v))d,y. (16)

By making use of equations (15), (9) and (11), one can easily check that equation (16) infers
equation (14).

In the next portion, we examine the existence of resolvent R(v, x) corresponding to the linear
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integral equation (9). We also use Theorems 4.6 and 4.8 to demonstrate that
JROuy)b(y.X)d,y = [b(vy)R(y.x)d, .
This allows us to rewrite equation (10) as
R(V,X) =—b(v,x)+_|‘ib(v, y)R(y,x)d,y. (17)
4. Existence of resolvent

Let Q={(v,x) ERXR:0<x <v<M},and 1 < p,q < oo such that %+3= 1. We indicate
the matrix norm for any n x n matrix E by |E| such that

[E| =sup||Ex],

[x|<1

where ||Ex|| refers to the vector norm of E.

We now define the following functions:

=)=,

b(v,x)["d,x,ved,F(v)= I:A b(x,v)"d,x,vel, (18)

and

\

E(y)"d,y,(v,x)eQ. (19)

a(v,x)z_[

Next, we define a class of m x m matrix-valued functions g:Q — R™*™ such that the
following conditions are fulfilled:

X

(C.1) g(v,x) is measurable in (v,x) € Q with g(v,x) = 0, which holds almost everyehere
when x > v.

(C.2) For almost all v in J, the integral fOM |g(v, x)|9dx exists, and for almost all x in ], the
integral fOM lg(v, x)|Pd,v exists.

q/

(C.3) The numbersj:I {j:l lg (v, x)[* dax}p/q d,vand J.(:A {J‘:I g (v.x)[" dav} p d,x are both finite.

Definition 4.1.

An m x m matrix-valued function g(v,x) is said to be of type (LP,M) iff the conditions
(C.1)-(C.3) hold.
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Example 4.2.

Any function g(v, x), which is continuous in (v, x) for (v,x) € , is of type (L?, M) for each
p>1and M > 0.

Definition 4.3.

An m X m matrix-valued function g(v, x) is called of type LL,, iff forall M > 0, g(v,x) is of
type (LP,M).

Assume the kernel b(v,x) be of type (L?, M). Describe the sequence {R,, (v, x)nen} Via

R, (v, x)=b(v,x), (20)

Roa (V%) = [ b(v, )R, (v,%)d,, (21)

for (w,x) eQ and R,,(v,x) =0for 0 <v<x <M.
The following lemma plays a significant role in the proof of an inequality to be given.
Lemma 4.4.

Assume 1 < p < oo and the kernel b(v, x) is of type (LP, M). Then the equality

{a(v’ X)m }(Of)V . (V)p/q a(v, X)m—l

22
m! (m-1)! (22)
is valid for every positive integers m > 1 and (v, x) € Q.
Proof:
We benefit from the following formula:
m+ (@) a m
{g l(v)} =(m+1)g' (v)(a(v)) - (23)

As b(v,x) is of type (LP, M), itis clear that
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a(v,x)= jiE(y)p/q d,y
_I{“by, ‘dx}p d,v,(v,x)eQ,
is a-conformable fractional differentiable in both of its variables and
a“" (v,x)=E(v)"",a'“" (v,x) =—E(x)"".

It follows that a increases in v and decreases in x. Thus from equation (23) we obtain

{ [a(v,x }mfl alh (v,x)},

This completes the proof. [ ]

Lemma 4.5.

Assume 1 < p < oo and the kernel b(v,x) = R, (v, x) is of type (LP, M). Then, for all positive
integer m > 1, the function R,,(v,x) is of type (LP,M). Furthermore, for all nonnegative
integer m > 0 and for (v, x) € 0, the following inequality

m 1/p
a(v,x
‘Rmz (v, x)‘ < E(v)l/q F(x)l/p{—(m!) } , (24)
is valid.

Proof:

If 0 <v<x<M,then R,,,,(v,x) =0 and equation (24) holds.

Assume that x < v for each (v,x) € Q. We continue through induction. For m = 0, we derive
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[R, (v, )| =U (v, y)Ri(%X)dy\
sj:‘b(v, y)R(y.x)|d,y.
Since R,(y,x) = b(y, x), then we have
R, (vx)| < [ Jo(v. y)b(y, 0)d, ¥
<[ Jo(v.y)p(y. ).y

By the Holder’s inequality (See Sarikaya and Budak (2017), Lemma 1), we find that

IR, (v,x)|< {ji b(v,y)"d, y}l/q {I: b(y.x)"d, y}llp .

We also derive the following inequalities:

E(v)=[,b(v.y) dy=[ b(v.y) d.y
and
F (x):Jiﬂ ‘b(y,x)‘p dayzjz‘b(y,x)‘p dy.

Therefore, we obtain
R,(v,x)<E (v)l/q F (x)l/p .

Since the kernel b(v,x) is of type (LP, M), therefore E(v), F(x) are of (LP,M) type, the
product of E(v)F(x) is of (LP, M) type. Hence R,(v,x) is of (LP, M) type.

Suppose that Ry, Ry, -+, R;41 are all kernels of type (LP, M) and the equation (24) holds for
m — 1. Then, it follows that

[Rvo (v X)| = [ D(V, Y) Ryua (¥, X)dl, y

S.[:‘b(v’ y) Rm+1(y,X)‘day.

By the Holder’s inequality (see Sarikaya and Budak (2017), Lemma 1), it is derived that

\

[Ru.a (v, )| < {I b(v,y)[ day}uq {I Ry (¥:%)]° day}ﬂp -

X
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This inequality implies that
1/q v p Up
R (V. X)| < E(V) {J'X‘Rmﬂ(y, X) day} . (25)

Therefore, equation (25) becomes:

R (v 0] ()" {IIE<V>"“F<X>W{%}‘”}

(m-1)!
<E()” F(x)l"’{ JEW™ —""((;'_?; day} .

SE<v>““{F<x> Jre(yy 20 day}

By using the equality

(m-1)1°
from equation (25), we obain
o (“)y 1/p
\Y a y’X
AR PO AT [t LGl M
m 1Up
SE<v>”‘*F<x>”"{%} -

It implies that R,,,, is of type (LP, M). Hence, Lemma 4.5. is proved.

Theorem 4.6.

If 1 < p < oo and the kernel b(v,x) be of type (LP, M), then 3 a kernel R(v,x) is of type
(LP, M) which satisfies the resolvent equation (17) for almost all in (v, x) € 0.

Proof:

Suppose
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R(V,x)= —Zw:Rm (v,x) for (v,x)eQ (26)

m=1

and R(v,x) =0 if 0 < v < x < M. Taking modulus on both sides of equation (26), we get the
following equalities:

Rvn|= | 3R, )= SR, (1)
:‘Rl(v,x)‘+i‘Rm (v.x)|

From equation (24), we obtain

IR (v, x)[<]o (v, x)|+E(v)" F(x)"* Z{(;_z)'} :
where
c:j:JAE(y)p/q dy.

Hence, it follows that

IR(v, )| <[o(v,x)|+E(v)" F (x)"" i{ﬂ} p . (27)

me (M!

o cm 1/p cm+1 1/p .
Forany ¢ > m itisclear that, a,, = {5} y Qg1 = {m} . Hence , we derive

Up
m+1
m+l _ c xﬂ!
a, [(m+1)r c"

~ c Up
A m+1)
Taking the limit m — oo, we obtain

a c 1p
Iimﬁzlim{—} =0<1.
m-—»c0 am m-oo [ m4+1

This suggests that the series in equation (27) converges through the ratio test. We know that

E(v)= mb(v X)[d,x,
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and
F(v)=] p(v.x) d,xve[oM]
Since E(v), F(x) and b(v,x) are finite, then R(v,x) is well defined for almost all and

measurable in (v,x) for (v,x) € Q. From equation (27), we conclude that R(v,x) is of type
(LP, M). Finally, we attempt the “Lebesgue dominated convergence theorem” to obtain

[ VIR = [y -3, (50| .y
=3[ D% YR (7:X)0,y =D R (v

= R(v,x)+b(v, X).
Consequently,
R(v,x)=-b(v, x)+_|.ib(v, y)R(y,x)d,y.
This indicates that R defined in equation (26) solves resolvent equation (17). [ ]
Lemma 4.7.

If R,(v,x) = b(v,x) be of type (LP, M), then, for all positive integers ¢ and d with c +d =
m+1,

Ry (V. X)= j:RC (v, ¥)Ry (v, x)d,y. (28)
Proof:

The proof is trivial for m = 1. That is,

v

R, (v,x):IXR(v, y)R(y,x)d,y,
where ¢ =d =1 suchthat c+d =1+ 1 = m + 1, which implies that
c+d=2=m+1.

Let equation (28) be true for ¢ + dy <m, m > 1. That is, ¢, + d, < 1. Given ¢, d = 1 such
that ¢ + d = m + 1, define

I(c.d):= _|.1RC (V,¥)Ry (v, x)d,y. (29)
We know that
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Ryt (V. X)= j:b (v,y)R, (y,x)d,y.

By using R,,+1(v,x) in equation (29), we have

I (c,d):.[:RC (v, y){J.Zb(y,u)Rd1(u,x)dau}day
~['T’Ro (v Y)b(y,U)Ry.s (1. X)d,ud, y
'R (v )b(y,u)Ry (0,3,

[R(v, y)b(y’U)day} Ry (u,x)d,u.

Since

'

RC+1(v,u):J.uRC (v,y)b(y,u)d,y,
then we get

I (c,d):IiRC+1 (V,u)Ry (u,x)d,u
=1 (c+1,d —1).
Hence, we arrive at

I(Lm)=1(2,m-1)=1(3,m-3)=L =1(m,1).
This relation proves the result for m + 1. ]

Theorem 4.8.

If b(v,x) be akernel of type LL,, then there exists a kernel R(v,x) of type LL, that satisfies
both resolvent equations (10) and (17) for almost every (v, x) € Q.

Proof:
By Theorem 4.6, we deduce that the kernel R (v, x) is of type LL, with the property that R(v, x)

satisfies equation (17) for almost all (v,x) € Q. Now, we have to prove that R(v, x) satisfies
equation (10) for almost all (v, x) € Q. By using equation (26), we obtain

IZR(V, y)b(y,x)d,y =ji{—an (v, y)}b(y,x)day
-3 R (Ly)b(y)d,y.
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where the “Lebesgue dominated convergence theorem” allows us to interchange summation and
integration. Since b(y,x) = R,(y, x), then we derive that

[R(v.y)b(y.x)d,y= —ifiRn (v, y)R (y,x)d,y.

By Lemma 4.7, we have
IXR (v,y)b(y,x)d,y=->R, (v, x). (30)

By equation (26), we know that

R(v,x)= _gR” (v, x).

Replacing n by n + 1, it follows that

This equality implies that

—iRM (v,x)=R(v,x)+b(v,x).
n=1
Therefore, equation (30) becomes

'[\;R(V, y)b(y,x)d,y =R(v,x)+b(t,x).
Then, we have

R(v,x)=-b(v, x)+_[iR(v, y)b(y,x)d,y.
Hence, R(v, x) satisfies equation (10). The proof is complete. [ ]

Example 4.9.

We now solve the comfortable integral equation y(x)= sinx+I;eX“y(t)dat . Let

R (x,t)=b(x,t)=e"".

It is known that
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R, (x.t)=[b(x,2)R,(z.t)d,z
Hence, for m = 2, we have

R, (xt)=[b(x,2)R,(21t)d,z

X X
= Ite*’ze“daz = jtex"daz

= e“j: (z-t)" " dz=¢"" (

For m = 3, it is obvious that
R,(x.t)=[b(x,2)R, (z,)d,z

z-t
:IXeH ¢ (z-t)"d,z

t o

X e a
:.[t - (z-t)"d,z

For n = 4, we get

A. Younus et al.
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so that
et (Z—t)3a
R, (x,t
(%) 20°| 3a t
eX7t a eX7t 3a
As a result, we obtain
(X_t)(m—l)a exft

Therefore, it is clear that

R(x,t)==> R, (xt)

m=1

=—[ R (% t)+R, (x,t)+-]

(x-t)*
R(x,t)=—€ « e'=—e @

We now obtain the solution of the given integral equation as

y(x)= sinx—j:R(x,t) f(t)d,t.

y(x)=sinx+J

Hence, we have
X (x=t)* +ar(x-t)
e ¢ sint (t“‘l)dt.
0

For a = % equation (31) implies that
X 1 1
y(x) :sinx+J'(e2(Xt)”(“)jsint [t 2Jdt.
0

which is the solution of the given conformable fractional VVolterra integral equation.
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5. Conclusion

The solutions of Volterra integral equations have a significant role in the field of science and
engineering. We have discussed the existence of a resolvent kernel corresponding to conformable
fractional Volterra integral equation by using a strategy which is different from other authors
approach. The notion of the resolvent equation to study boundedness and integrability of the
solutions of the Conformable fractional Volterra integral equation. In particular, the existence of
bounded solutions with various LP properties has have been studied under suitable conditions on
the functions involved in the above Volerra integral equation. Our results improved and extended
the results obtained in the literature.
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