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Abstract

Several generalizations and extensions of fuzzy sets have been introduced in the literature, for
example, Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets, etc. Using
the Torra’s hesitant fuzzy sets, the notions of Sup-hesitant fuzzy ideals in BCK/BCI-algebras are
introduced, and its properties are investigated. Relations between Sup-hesitant fuzzy subalgebras
and Sup-hesitant fuzzy ideals are displayed, and characterizations of Sup-hesitant fuzzy ideals are
discussed.
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1. Introduction

Uncertainty can be considered of different types such as randomness (Nillsson (1986)), fuzziness
(Zadeh (1965)), indistinguishability (Pawlak (1982)), and incompleteness (McDermott and Doyle
(1980)). Fuzzy set theory has been widely and successfully applied in many different areas to han-
dle uncertainties. But it presents limitations to deal with imprecise and vague information when
different sources of vagueness appear simultaneously. In order to overcome such limitations, dif-
ferent extensions of fuzzy sets have been introduced in the literature such as intuitionistic fuzzy
sets (Atanassov (1986)), type-2 fuzzy sets (Dubois and Prade ( 2000)), interval-valued fuzzy sets
(Bustince et al. (2013); Türksen (2013)), fuzzy multisets (Yager (1986)), and so forth.

Despite the previous extensions overcome in different ways, Torra (2010) introduced a new exten-
sion of fuzzy sets, so-called hesitant fuzzy sets, which has an important role for solving uncertain-
ties. Torra and Narukawa (2009) and Torra (2010) discussed the relationship between hesitant fuzzy
sets and intuitionistic fuzzy sets. Hesitant fuzzy sets are applied to algebraic structures (Aldhafeeri
and Muhiuddin (2019); Jun (2018); Jun and Ahn (2016); Jun et al. (2017); Jun and Song (2014);
Muhiuddin (2016); Muhiuddin and Aldhafeeri (2018); Jun et al. (2016); Jun et al. (2014)), de-
cision making problems (Chen et al. (2016); Faizi et al. (2017); Krishankumar et al. (2019);
Liao et al. (2014); Liu and Rodriguez (2014); Rashid et al. (2018); Rodriguez et al. (2012);
Wang et al. (2014); Wei (2012); Xia and Xu (2011)), and distance and similarity measures (Liao et
al. (2014); Xu and Xia (2011a); Xu and Xia (2011b)).

Using the hesitant fuzzy set theory which is introduced by Torra (2010), Muhiuddin and Jun (2019)
introduced the notion of sup-hesitant fuzzy subalgebras in BCK/BCI-algebras and investigated
several related properties. Also, Muhiuddin et al. studied the notion of hesitant fuzzy sets on the
various aspects (for example, see Muhiuddin et al. (2016), Muhiuddin et al. (2017), Muhiuddin
and Al-roqi (2018)). The ideal theory of BCK/BCI-algebras has been studied on different field
(e.g., Jun et al. (2017), Muhiuddin et al. (2019), Muhiuddin and Aldhafeeri (2019), Muhiuddin et
al. (2017), Tapan et al. (2019)).

Motivated by a lot of work on ideal theory in BCK/BCI-algebras, in this paper we introduce sup-
hesitant fuzzy ideals in BCK/BCI-algebras and investigate related properties. We discuss relations
between sup-hesitant fuzzy subalgebras and sup-hesitant fuzzy ideals. We consider characteriza-
tions of Sup-hesitant fuzzy ideals.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was ex-
tensively investigated by several researchers.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

(I) (∀a, b, c ∈ X) (((a ∗ b) ∗ (a ∗ c)) ∗ (c ∗ b) = 0),
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(II) (∀a, b ∈ X) ((a ∗ (a ∗ b)) ∗ b = 0),
(III) (∀a ∈ X) (a ∗ a = 0),
(IV) (∀a, b ∈ X) (a ∗ b = 0, b ∗ a = 0 ⇒ a = b).

If a BCI-algebra X satisfies the following identity,

(V) (∀a ∈ X) (0 ∗ a = 0),

then X is called a BCK-algebra. A BCK-algebra X is said to be

• positive implicative if it satisfies

(∀a, b, c ∈ X) ((a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c)) , (1)

• implicative if it satisfies

(∀a, b ∈ X) (a = a ∗ (b ∗ a)) . (2)

Any BCK/BCI-algebra X satisfies the following conditions:

(∀a ∈ X) (a ∗ 0 = a) , (3)
(∀a, b, c ∈ X) (a ≤ b ⇒ a ∗ c ≤ b ∗ c, c ∗ b ≤ c ∗ a) , (4)
(∀a, b, c ∈ X) ((a ∗ b) ∗ c = (a ∗ c) ∗ b) , (5)
(∀a, b, c ∈ X) ((a ∗ c) ∗ (b ∗ c) ≤ a ∗ b) , (6)

where a ≤ b if and only if a ∗ b = 0.

Any BCI-algebra X satisfies the following conditions:

(∀a, b, c ∈ X) (0 ∗ (0 ∗ ((a ∗ c) ∗ (b ∗ c))) = (0 ∗ b) ∗ (0 ∗ a)) , (7)
(∀a, b ∈ X) (0 ∗ (0 ∗ (a ∗ b)) = (0 ∗ b) ∗ (0 ∗ a)) , (8)
(∀a ∈ X) (0 ∗ (0 ∗ (0 ∗ a)) = 0 ∗ a) . (9)

A subset S of a BCK/BCI-algebra X is called a subalgebra of X if a ∗ b ∈ S for all a, b ∈ S. A
subset A of a BCK/BCI-algebra X is called an ideal of X if it satisfies:

0 ∈ A, (10)
(∀a ∈ X) (a ∗ b ∈ A, b ∈ A ⇒ a ∈ A) . (11)

We refer the reader to the books by Huang (2006) and Meng and Jun (1994) for further information
regarding BCK/BCI-algebras.

Torra (2010) introduced a new extension for fuzzy sets to manage those situations in which several
values are possible for the definition of a membership function of a fuzzy set.
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Let X be a reference set. Then we define the hesitant fuzzy set on X in terms of a functionH that
when applied to X returns a subset of [0; 1] (see Torra and Narukawa (2009) and Torra (2010)).

In what follows, the power set of [0, 1] is denoted by P([0, 1]) and

P∗([0, 1]) = P([0, 1]) \ {∅}.
For any element Q ∈ P∗([0, 1]), the supremum of Q is denoted by supQ. For any hesitant fuzzy
setH on X and Q ∈ P∗([0, 1]), consider the set

Sup[H;Q] := {a ∈ X | supH(a) ≥ supQ} .

Definition 2.1. (Muhiuddin and Jun (2019))

Let X be a BCK/BCI-algebra. Given an element Q ∈ P∗([0, 1]), a hesitant fuzzy set H on X is
called a Sup-hesitant fuzzy subalgebra of X related to Q (briefly, Q-Sup-hesitant fuzzy subalgebra
of X) if the set Sup[H;Q] is a subalgebra of X . If H is a Q-Sup-hesitant fuzzy subalgebra of X
for all Q ∈ P∗([0, 1]), then we say thatH is a Sup-hesitant fuzzy subalgebra of X .

Lemma 2.2. (Muhiuddin and Jun (2019))

Every Sup-hesitant fuzzy subalgebraH of a BCK/BCI-algebra X satisfies:

(∀a ∈ X) (supH(0) ≥ supH(a)) . (12)

3. Sup-hesitant fuzzy ideals

Definition 3.1.

Let X be a BCK/BCI-algebra. Given an element Q ∈ P∗([0, 1]), a hesitant fuzzy set H on X is
called a Sup-hesitant fuzzy ideal of X related to Q (briefly, Q-Sup-hesitant fuzzy ideal of X) if the
set Sup[H;Q] is an ideal of X . If H is a Q-Sup-hesitant fuzzy ideal of X for all Q ∈ P∗([0, 1]),
then we say thatH is a Sup-hesitant fuzzy ideal of X .

Example 3.2.

(1) Let X = {0, a, b, c} be a BCK-algebra with the following Cayley table:

∗ 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

LetH be a hesitant fuzzy set on X defined by Table 1.

It is routine to verify thatH is a Sup-hesitant fuzzy ideal of X .

(2) Let (Y, ∗, 0) be a BCI-algebra and (Z,+, 0) an additive group of integers. Let (Z,−, 0) be the
adjoint BCI-algebra of (Z,+, 0) and let X := Y ×Z. Then (a,⊗, (0, 0)) is a BCI-algebra where
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Table 1. Tabular representation of H

X 0 a b c

H(x) (0.8, 1] (0.3, 0.4) ∪ {0.8} [0.5, 0.6] (0.3, 0.5) ∪ {0.6}

the operation ⊗ is given by

(∀(a,m), (b, n) ∈ X) ((a,m)⊗ (b, n) = (a ∗ b,m− n)) .

For a subset A := Y × N0 of X where N0 is the set of nonnegative integers, let H on X be a
hesitant fuzzy set on X defined by

H : X → P([0, 1]), x 7→
{
(0.3, 0.9], if x ∈ A,
[0.4, 0.7], otherwise.

ThenH is a Sup-hesitant fuzzy ideal of X .

(3) Let X = {0, a, b, c, d} be a BCK-algebra with the following Cayley table:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c b a 0 0
d d d d d 0

LetH be a hesitant fuzzy set on X defined by Table 2.

Table 2. Tabular representation of H

X 0 a b c d

H(x) [0.8, 0.9] (0.2, 0.4) (0.1, 0.3] [0.4, 0.6] [0, 0.1]

If Q1 := [0.3, 0.5), then Sup[H;Q1] = {0, c} which is not an ideal of X since b ∗ c = 0 ∈
Sup[H;Q1] but b /∈ Sup[H;Q1]. ThusH is not a Q1-Sup-hesitant fuzzy ideal of X . We can easily
verify thatH on X is a Q2-Sup-hesitant fuzzy ideal of X with Q2 = [0, 0.25].

Theorem 3.3.

A hesitant fuzzy set H on a BCK/BCI-algebra X is a Sup-hesitant fuzzy ideal of X if and only if
it satisfies (12) and

(∀a, b ∈ X) (supH(a) ≥ min{supH(a ∗ b), supH(b)}) . (13)

Proof:

LetH be a Sup-hesitant fuzzy ideal of X . If (12) is false, then there exists Q ∈ P∗([0, 1]) and a ∈
X such that supH(0) < supQ ≤ supH(a). It follows that a ∈ Sup[H;Q] and 0 /∈ Sup[H;Q].
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This is a contradiction, and so (12) is valid. Now assume that (13) is false. Then there exist a, b ∈ X

and K ∈ P∗([0, 1]) such that

supH(a) < supK ≤ min{supH(a ∗ b), supH(b)},

which implies that a ∗ b ∈ Sup[H;K], b ∈ Sup[H;K] but a /∈ Sup[H;K]. This is a contradiction,
and thus (13) holds.

Conversely, suppose thatH satisfies two conditions (12) and (13). Let K ∈ P∗([0, 1]) be such that
Sup[H;K] 6= ∅. Obviously, 0 ∈ Sup[H;K]. Let a, b ∈ X be such that a ∗ b ∈ Sup[H;K] and
b ∈ Sup[H;K]. Then supH(a ∗ b) ≥ supK and supH(b) ≥ supK. It follows from (13) that

supH(a) ≥ min{supH(a ∗ b), supH(b)} ≥ supK

and that a ∈ Sup[H;K]. Hence Sup[H;K] is an ideal of X for all K ∈ P∗([0, 1]), and therefore
H is an Sup-hesitant fuzzy ideal of X . �

Theorem 3.4.

LetH be a hesitant fuzzy set on X defined by

H : X → P([0, 1]), x 7→
{
Q, if x ∈ B,
D, if x ∈ X \B,

where B is the BCK-part of X and Q,D ∈ P∗([0, 1]) with supQ ≥ supD. Then, H is a Sup-
hesitant fuzzy ideal of X .

Proof:

Since 0 ∈ B, we have supH(0) = supQ ≥ supH(a) for all a ∈ X . Let a, b ∈ X . If a ∈ B, then
it is clear that

supH(a) ≥ min{supH(a ∗ b), supH(b)}.

Assume that a ∈ X \ B. Since B is an ideal of X , it follows that a ∗ b ∈ X \ B or b ∈ X \ B.
Hence,

supH(a) = min{supH(a ∗ b), supH(b)}.

ThereforeH is a Sup-hesitant fuzzy ideal of X by Theorem 3.3. �

Proposition 3.5.

Every Sup-hesitant fuzzy idealH of a BCK/BCI-algebra X satisfies

(∀a, b ∈ X) (a ≤ b ⇒ supH(a) ≥ supH(b)) . (14)

Proof:

Let a, b ∈ X be such that a ≤ b. Then a ∗ b = 0, and so

supH(a) ≥ min{supH(a ∗ b), supH(b)} = min{supH(0), supH(b)} = supH(b),

by (13) and (12). �
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Theorem 3.6.

LetH be a hesitant fuzzy set on a BCK/BCI-algebra X which satisfies the condition (12). ThenH
is a Sup-hesitant fuzzy ideal of X if and only if the following assertion is valid,

(∀a, b, c ∈ X) (a ∗ b ≤ c ⇒ supH(a) ≥ min{supH(b), supH(c)}) . (15)

Proof:

Assume thatH is a Sup-hesitant fuzzy ideal of X and let a, b, c ∈ X be such that a ∗ b ≤ c. Then,
(a ∗ b) ∗ c = 0, and thus,

supH(a ∗ b) ≥ min{supH((a ∗ b) ∗ c), supH(c)}
= min{supH(0), supH(c)}
= supH(c).

It follows that supH(a) ≥ min{supH(a ∗ b), supH(b)} ≥ min{supH(b), supH(c)}.

Conversely, suppose that the condition (15) is valid. Since a ∗ (a ∗ b) ≤ b for all a, b ∈ X , we have
supH(a) ≥ min{supH(a ∗ b), supH(b)} for all a, b ∈ X . Therefore, H is a Sup-hesitant fuzzy
ideal of X . �

Proposition 3.7.

For any Sup-hesitant fuzzy idealH of a BCK/BCI-algebra X , the following assertions are equiva-
lent:

(1) (∀a, b ∈ X) (supH((a ∗ b) ∗ b) ≤ supH(a ∗ b)),
(2) (∀a, b, c ∈ X) (supH((a ∗ b) ∗ c) ≤ supH((a ∗ c) ∗ (b ∗ c))).

Proof:

Assume that (1) holds. Note that

((a ∗ (b ∗ c)) ∗ c) ∗ c = ((a ∗ c) ∗ (b ∗ c)) ∗ c ≤ (a ∗ b) ∗ c,

for all a, b, c ∈ X . It follows from (14), (1) and (5) that

supH((a ∗ b) ∗ c) ≤ supH(((a ∗ (b ∗ c)) ∗ c) ∗ c)
≤ supH((a ∗ (b ∗ c)) ∗ c)
= supH((a ∗ c) ∗ (b ∗ c)),

(16)

for all a, b, c ∈ X .

Conversely, suppose that (2) is valid and if we put c := b in (2), then

supH((a ∗ b) ∗ b) ≤ supH((a ∗ b) ∗ (b ∗ b))
= supH((a ∗ b) ∗ 0)
= supH(a ∗ b)

(17)

for all a, b ∈ X . �
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We consider a relation between a Sup-hesitant fuzzy ideal and a Sup-hesitant fuzzy subalgebra in
BCK-algebras.

Theorem 3.8.

In a BCK-algebra X , every Sup-hesitant fuzzy ideal is a Sup-hesitant fuzzy subalgebra.

Proof:

Let H be a Sup-hesitant fuzzy ideal of a BCK-algebra X . Using (13), (5), (III), (V) and (12), we
have

supH(a ∗ b) ≥ min{supH((a ∗ b) ∗ a), supH(a)}
= min{supH((a ∗ a) ∗ b), supH(a)}
= min{supH(0 ∗ b), supH(a)}
= min{supH(0), supH(a)}
≥ min{supH(a), supH(b)},

for all a, b ∈ X . Therefore,H is a Sup-hesitant fuzzy subalgebra of X . �

The converse of Theorem 3.8 is not true in general as seen in the following example.

Example 3.9.

Let X = {0, a, b, c, d} be a BCK-algebra with the following Cayley table:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 0 0 0
b b a 0 0 0
c c c c 0 0
d d c c a 0

LetH be a hesitant fuzzy set on X defined by Table 3.

Table 3. Tabular representation of H

X 0 a b c d

H(x) {0.8, 0.9} [0.2, 0.3) (0.7, 0.8] {0.4} ∪ (0.5, 0.6) [0.1, 0.2]

Then H is a Sup-hesitant fuzzy subalgebra of X (see Muhiuddin and Jun (2019)). But, it is not a
Sup-hesitant fuzzy ideal of X since

supH(d) = 0.1 < 0.5 = min{supH(d ∗ b), supH(b)}.

In a BCI-algebra X , Theorem 3.8 is not true. In fact, the Sup-hesitant fuzzy ideal H of X in
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Example 3.2(2) is not a Sup-hesitant fuzzy subalgebra of X since

supH((0, 0)⊗ (0, 1)) = supH(0,−1) = 0.4

< 0.5 = min{supH(0, 0), supH(0, 1)}.

LetH be a hesitant fuzzy set on a BCK-algebra X . For any a, b ∈ X and n ∈ N, let

Sup[b; an] := {x ∈ X | supH((x ∗ b) ∗ an) = supH(0)}

where (x ∗ b) ∗ an = ((· · · ((x ∗ b) ∗ a) ∗ a) ∗ · · · ) ∗ a in which a appears n-times. Obviously,
a, b, 0 ∈ Sup[b; an].

Proposition 3.10.

LetH be a hesitant fuzzy set on a BCK-algebra X in which the condition (12) is valid and

(∀a, b ∈ X) (supH(a ∗ b) = max{supH(a), supH(b)}) . (18)

For any a, b ∈ X and n ∈ N, if x ∈ Sup[b; an] then x ∗ y ∈ Sup[b; an] for all y ∈ X .

Proof:

Let x ∈ supH[b; an]. Then supH((x ∗ b) ∗ an) = supH(0), and thus

supH(((x ∗ y) ∗ b) ∗ an) = supH(((x ∗ b) ∗ y) ∗ an)
= supH(((x ∗ b) ∗ an) ∗ y)
= max{supH((x ∗ b) ∗ an), supH(y)}
= max{supH(0), supH(y)} = supH(0),

for all y ∈ X . Hence, x ∗ y ∈ supH[b; an] for all y ∈ X . �

Proposition 3.11.

LetH be a hesitant fuzzy set on a BCK-algebra X . If an element a ∈ X satisfies

(∀x ∈ X) (x ≤ a) , (19)

then Sup[b; an] = X = Sup[a; bn] for all b ∈ X and n ∈ N.

Proof:

Let b, x ∈ X and n ∈ N. Then,

supH((x ∗ b) ∗ an) = supH(((x ∗ b) ∗ a) ∗ an−1)

= supH(((x ∗ a) ∗ b) ∗ an−1)

= supH((0 ∗ b) ∗ an−1)

= supH(0),

by (5), (19) and (V), and so x ∈ Inf[b; an], which shows that Sup[b; an] = X . Similarly
Sup[a; bn] = X . �



346 G. Muhiuddin et al.

Corollary 3.12.

If H is a hesitant fuzzy set on a bounded BCK-algebra X , then Sup[b;un] = X = Sup[u; bn] for
all b ∈ X and n ∈ N where u is the unit of X .

Proposition 3.13.

LetH be a Sup-hesitant fuzzy subalgebra of a BCK-algebra X satisfying the condition (14). Then
the following assertion is valid:

(∀a, b, c ∈ X) (∀n ∈ N) (b ≤ c ⇒ Sup[b; an] ⊆ Sup[c; an]) . (20)

Proof:

Let b, c ∈ X be such that b ≤ c. For any a ∈ X and n ∈ N, if x ∈ Sup[b; an], then,

supH(0) = supH((x ∗ b) ∗ an) = supH((x ∗ an) ∗ b)
≤ supH((x ∗ an) ∗ c) = supH((x ∗ c) ∗ an),

by (4), (5) and (14), and so supH((x ∗ c) ∗ an) = supH(0). Thus x ∈ Sup[c; an], and therefore,
Sup[b; an] ⊆ Sup[c; an] for all a ∈ X and n ∈ N. �

Corollary 3.14.

Every Sup-hesitant fuzzy idealH of a BCK-algebra X satisfies the condition (20).

The following example shows that there exists a Sup-hesitant fuzzy ideal H of a BCK-algebra X
such that the set Sup[b; an] is not an ideal of X for some a, b ∈ X and n ∈ N.

Example 3.15.

Let X = {0, a, b, c} be a BCK-algebra with the following Cayley table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b

c c c c 0

LetH be a hesitant fuzzy set on X defined by Table 4.

Table 4. Tabular representation of H

X 0 a b c

H(x) [0.5, 0.8] (0.3, 0.6) [0.5, 0.6] [0.1, 0.2) ∪ {0.3}

ThenH is a Sup-hesitant fuzzy ideal of X and

Sup[a; cn] = {a ∈ X | supH((x ∗ a) ∗ cn) = supH(0)} = {0, a, c},

which is not an ideal of X for any n ∈ N since b ∗ a = a ∈ Sup[a; cn] but b /∈ Sup[a; cn].
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We now consider conditions for a set Sup[b; an] to be an ideal of X .

Theorem 3.16.

LetH be a hesitant fuzzy set on a BCK-algebra X such that

(∀x, y ∈ X) (supH(x) = supH(y) ⇒ x = y) . (21)

If X is positive implicative, then Sup[b; an] is an ideal of X for all a, b ∈ X and n ∈ N.

Proof:

Let a, b, x, y ∈ X and n ∈ N be such that x ∗ y ∈ Inf[b; an] and y ∈ Sup[b; an]. Then supH((y ∗
b) ∗ an) = supH(0), which implies from (21) that (y ∗ b) ∗ an = 0. Hence

supH(0) = supH(((x ∗ y) ∗ b) ∗ an)
= supH((((x ∗ y) ∗ b) ∗ a) ∗ an−1)

= supH((((x ∗ b) ∗ (y ∗ b)) ∗ a) ∗ an−1)

= supH(((((x ∗ b) ∗ a) ∗ ((y ∗ b) ∗ a)) ∗ a) ∗ an−2)

= · · ·
= supH(((x ∗ b) ∗ an) ∗ ((y ∗ b) ∗ an))
= supH(((x ∗ b) ∗ an) ∗ 0)
= supH((x ∗ b) ∗ an),

which shows that x ∈ Sup[b; an]. Therefore, Inf[b; an] is an ideal of X for all a, b ∈ X and n ∈ N.�

Corollary 3.17.

Let H be a hesitant fuzzy set on a BCK-algebra X satisfying (21). If X is implicative, then
Sup[b; an] is an ideal of X for all a, b ∈ X and n ∈ N.

Proof:

It is straightforward since every implicative BCK-algebra is a positive implicative BCK-algebra.�

Theorem 3.16 is illustrated by the following example.

Example 3.18.

Let X = {0, a, b, c} be a set with the following Cayley table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b b 0 b
c c c c 0

Then X is a positive implicative BCK-algebra. LetH be a hesitant fuzzy set on X defined by Table
5.
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Table 5. Tabular representation of H

X 0 a b c

H(x) [0.5, 0.6] (0.3, 0.7) [0.2, 0.4] {0.1, 0.2}

Then H satisfies the condition (21), but it does not satisfy the condition (12). Hence H is not a
Sup-hesitant fuzzy ideal of X . Note that

Sup[0 : 0n] = {0}, Sup[0; an] = {0, a}, Sup[0; bn] = {0, a, b}, Sup[0; cn] = {0, c},

Sup[a; 0n] = {0, a}, Sup[a; an] = {0, a}, Sup[a; bn] = {0, a, b}, Sup[a; cn] = {0, a, c},

Sup[b; 0n] = {0, a, b}, Sup[b; an] = {0, a, b}, Sup[b; bn] = {0, a, b}, Sup[b; cn] = X ,

Sup[c; 0n] = {0, c}, Sup[c; an] = {0, a, c}, Sup[c; bn] = X , Sup[c; cn] = {0, c},

and they are ideals of X .

Proposition 3.19.

Let H be a hesitant fuzzy set on a BCK-algebra X in which the condition (21) is valid. If J is an
ideal of X , then the following assertion holds.

(∀a, b ∈ J) (∀n ∈ N) (Sup[b; an] ⊆ J) . (22)

Proof:

For any a, b ∈ J and n ∈ N, let x ∈ Sup[b; an]. Then,

supH(((x ∗ b) ∗ an−1) ∗ a) = supH((x ∗ b) ∗ an) = supH(0),

and so ((x ∗ b) ∗ an−1) ∗ a = 0 ∈ J by (21). Since J is an ideal of X , it follows from (11)
that (a ∗ b) ∗ an−1 ∈ J . Continuing this process, we have x ∗ b ∈ J and thus x ∈ J . Therefore,
Sup[b; an] ⊆ J for all a, b ∈ J and n ∈ N. �

Theorem 3.20.

Let H be a hesitant fuzzy set on a BCK-algebra X . For any subset J of X , if the condition (22)
holds, then J is an ideal of X .

Proof:

Suppose that the condition (22) is valid. Note that 0 ∈ Sup[b; an] ⊆ J . Let x, y ∈ X be such that
x ∗ y ∈ J and y ∈ J . Taking b := x ∗ y implies that

supH((x ∗ b) ∗ yn) = supH((x ∗ (x ∗ y)) ∗ yn)
= supH(((x ∗ (x ∗ y)) ∗ y) ∗ yn−1)

= supH(((x ∗ y) ∗ (x ∗ y)) ∗ yn−1)

= supH(0 ∗ yn−1) = supH(0),
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and so x ∈ Sup[b; yn] ⊆ J with b = x ∗ y. Therefore, J is an ideal of X . �

Theorem 3.21.

IfH is a Sup-hesitant fuzzy ideal of a BCK/BCI-algebra X , then the set

Ha := {x ∈ X | supH(a) ≤ supH(x)},

is an ideal of X for all a ∈ X .

Proof:

Let x, y ∈ X be such that x ∗ y ∈ Ha and y ∈ Ha. Then, supH(a) ≤ supH(x ∗ y) and
supH(a) ≤ supH(y). It follows from (12) and (13) that

supH(0) ≥ supH(x) ≥ min{supH(x ∗ y), supH(y)} ≥ supH(a).

Hence 0 ∈ Ha and x ∈ Ha. Therefore,Ha is an ideal of X for all a ∈ X . �

Corollary 3.22.

IfH is a Sup-hesitant fuzzy ideal of a BCK/BCI-algebra X , then the set

H0 := {x ∈ X | supH(0) = supH(x)},

is an ideal of X .

Theorem 3.23.

Let a ∈ X and letH be a hesitant fuzzy set on a BCK/BCI-algebra X . Then

(1) IfHa is an ideal of X , thenH satisfies

supH(a) ≤ min{supH(x ∗ y), supH(y)} ⇒ supH(a) ≤ supH(x), (23)

for all x, y ∈ X .
(2) IfH satisfies two conditions (12) and (23), thenHa is an ideal of X .

Proof:

(1) Assume thatHa is an ideal of X and let x, y ∈ X be such that

supH(a) ≤ min{supH(x ∗ y), supH(y)}.

Then x ∗ y ∈ Ha and y ∈ Ha, which imply that x ∈ Ha, that is, supH(a) ≤ supH(x).

(2) Assume that a hesitant fuzzy set H on X satisfies two conditions (12) and (23). Then 0 ∈
Ha. Let x, y ∈ X be such that x ∗ y ∈ Ha and y ∈ Ha. Then supH(a) ≤ supH(x ∗ y) and
supH(a) ≤ supH(y), and so supH(a) ≤ min{supH(x ∗ y), supH(y)}. It follows from (23)
that supH(a) ≤ supH(x), that is, x ∈ Ha. Therefore,Ha is an ideal of X . �
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4. Conclusions

We have introduced the notion of Sup-hesitant fuzzy ideals in BCK/BCI-algebras in the frame-
work of Torra’s hesitant fuzzy set theory, and have investigated their properties. We have discussed
relations between Sup-hesitant fuzzy subalgebras and Sup-hesitant fuzzy ideals. We have con-
sidered characterization of Sup-hesitant fuzzy ideal. Future research will focus on applying the
notions/contents to other types of ideals in BCK/BCI-algebras and related algebraic structures.
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