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Abstract

In this paper, the effect of small perturbations in the Coriolis and centrifugal forces on the exis-
tence and stability of the equilibrium point in the Robe’s restricted three-body problem (RR3BP)
by taking the smaller primary as a finite straight segment is introduced. In the present structure the
density ρ1 of the fluid filled in the bigger primary of massm∗1 and the density ρ3 of the infinitesimal
body of mass m3 are considered to be equal. It is worth mentioning that the location of the equilib-
rium point is affected by a small perturbation in the centrifugal force. The present model possesses
one equilibrium point L1 which is collinear with the center of mass of the primaries. It lies towards
the right or left of the center of the shell according as the perturbation π2 in the centrifugal force is
positive or negative. Further, the stability of L1 is analyzed. The range of stability is affected not
only by the perturbations in the Coriolis and centrifugal forces but also by the length of the finite
straight segment. For 0 < µ ≤ µ∗, L1 is unstable whereas for µ∗ < µ < 1 it becomes stable. It is
observed that the Coriolis force is a stabilizing force provided the centrifugal force is kept constant
while the centrifugal force is a destabilizing force when the Coriolis force is kept constant.

Keywords: Robe’s restricted three-body problem; Coriolis force; Centrifugal force; Finite
straight segment
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1. Introduction

The three-body problem is one of the most significant and most popularly research problem in
celestial mechanics having its applications ranging from astrodynamics, astrophysics, cosmology
and stellar dynamics to name a few. The problem attracts the attention of several researchers who
have done pioneer work analytically and numerically by considering various modifications of the
dynamical model. The general three-body problem focusses on the motion of three bodies moving
under their mutual gravitational attraction, whereas the restricted problem emphasizes on the mo-
tion of the infinitesimal body whose mass is negligible in comparison to the masses of the other
two primary bodies.

Robe (1977) permuted the restricted three-body problem by taking the shape of the massive pri-
mary as a rigid spherical shell in contrast to a point mass. The practicality of the dynamical setup
is in the study of the small oscillations of the Earth’s inner core due to the Moon’s attraction. His
analysis suggested that the center of the Earth is a stable position for the Earth’s core. This remark-
able contemplation of the RR3BP paved way for several researchers to follow his legacy. Plastino
and Plastino (1995) revisited the Robe’s problem by assuming the hydrostatic equilibrium figure
of the first primary as Roche ellipsoid (Chandrashekhar (1987)). An extensive investigation has
been done in this field henceforth by Giordano et al. (1997), Hallan and Rana (2001b), Singh and
Sandah (2012), Singh and Omale (2014), and Singh and Mohammed (2012, 2013) to name a few.

In the series of papers, a significant extension of the Robe’s problem to 2 + 2 body problem has
been done by Kaur and Aggarwal (2012, 2013a, 2013b), Aggarwal and Kaur (2014), and Aggarwal
et al. (2018) by considering the variations in the shapes of the primaries as oblate and triaxial. A
praiseworthy generalization of the Robe’s problem has been done by Singh and Leke (2013). They
investigated the linear stability of the equilibrium points of the infinitesimal mass in the framework
of Robe’s circular restricted three-body problem together with effect of variation in masses of the
primaries with time according to the combined Meshcherskii law.

The perturbations refer to the departure of the dynamical system from an idealized setup. The
resourcefulness of Szebehely (1967) in the investigation of the effect of a small perturbation in the
Coriolis force by leaving the centrifugal effect undisturbed suggested that the collinear equilibrium
points are always unstable. The range of stability of the non-collinear equilibrium points increase
or decrease according to the change in the Coriolis force is positive or negative. He established that
the Coriolis force is a stabilizing force. Motivated by the work done by Szebehely (1967), Subbarao
and Sharma (1975) extended their work by considering one of the primaries as an oblate spheroid.
They emphasized that the Coriolis force is not always a stabilizing force when the centrifugal force
is not considered as a constant.

The work of Szebehely (1967) and Subbarao and Sharma (1975) was unfolded by Bhatnagar and
Hallan (1978). They demonstrated that the range of stability of the non-collinear equilibrium points
increase or decrease depending upon whether the point (π1, π2) lies in one or the other of the two
parts in which the (π1, π2) plane is divided by the line 36π1 − 19π2 = 0. The stability of the
collinear equilibrium points are not influenced by the perturbations in the Coriolis and centrifugal



AAM: Intern. J., Vol. 15, Issue 1 (June 2020) 79

force and they remain unstable. Rigorous work on perturbations in the Robe’s problem has been
explored by Shrivastava and Garain (1991), Kaur et al. (2016), and Hallan and Mangang (2008) to
cite a few.

Riaguas et al. (2001) studied the non-linear stability of the equilibrium points in the gravity field
of the finite straight segment. Jain and Sinha (2014b, 2014a) explored the consequences on taking
both the primaries as finite straight segments on the locations and stability of the equilibrium points
and regions of motion in the linear and non-linear sense respectively. Revolutionary upgradation of
the ideas of Robe (1977) and Riaguas et al. (2001) were compassed by Kumar et al. (2019). They
investigated the existence and linear stability of the equilibrium points in the Robe-finite straight
segment framework.

In the realm of the innumerable endeavors of the authors, we draw inspiration to review the location
and stability of the equilibrium point in the Robe’s circular problem by taking into account the
effect of small perturbations in the Coriolis and centrifugal forces and the shape of the smaller
primary as a finite straight segment. In this structure, we have speculated that the density ρ1 of the
incompressible fluid is same as that of the density ρ3 of infinitesimal massm3. The present analysis
is very relevant considering that the several natural and artificial bodies are elongated.

The present paper is catalogued as follows. In Section 2, the description of the dynamical system
and the equations of motion are presented. In the subsequent section, the existence of the equilib-
rium point and its evolution on varying parameters are inspected. In Section 4, the effect of varying
parameters on the linear stability of the equilibrium point is conferred. Applications are included in
Section 5. Finally, in Section 6, the conclusion of the problem is drawn emphasizing the correlation
of our work with other authors.

2. Description of the dynamical system

In the present section, the effect of the small perturbations in the Coriolis and centrifugal forces
on the configuration of the Robe’s restricted three-body problem by taking the smaller primary as
a finite straight segment is deliberated. The massive primary m∗1 is taken to be a rigid spherical
shell filled with homogeneous incompressible fluid of density ρ1 and the smaller primary a finite
straight segment of mass m2 and length 2l outside the shell. The problem is known as restricted
since the third body of mass m3 is a small solid sphere of density ρ3 inside the shell and assumed
to have an infinitesimal mass and radius. The motion of m3 does not influence the motion of the
primaries but it itself is influenced by them.

In addition, we consider that the density ρ1 of the incompressible fluid is same as that of the
density ρ3 of m3, that is ρ1 = ρ3. The primary m2 describes a circular orbit around m∗1 with
constant angular velocity ω. The orbital plane of m2 around m∗1 is taken as the (x, y)-plane and the
origin of the coordinate system is at the center of mass O of the two finite bodies. It is assumed
that the synodic system of coordinates which is initially coincident with the inertial system also
rotate with angular velocity ω. We assume that the principal axes of m2 is parallel to the synodic
axes and their axes of symmetry be perpendicular to the plane of motion of the bodies. Since m2
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is revolving without rotation about m∗1 with the same angular velocity as that of the synodic axes,
the principal axes of m2 will remain parallel to them throughout the motion (Figure 1).

The gravitational force between m∗1 and m2 is given by the following expression

F =G
m∗1m2

((b1 + b2)2 − l2)
,

where G is the universal gravitational constant; b1 and b2 are the distances of m∗1 and m2, respec-
tively, from the center of mass O.

Since m2 is moving in circular orbit around m∗1, therefore,

ω2(b1 + b2) =G(m∗1 +m2)

(
1

(b1 + b2)2 − l2

)
.

Further, we consider the units such that the sum of the masses of the primaries and the distance
between them are 1 unit. The unit of time is chosen such thatG becomes unity. Thus, on neglecting
third and higher order terms of l, the expression of the mean motion is obtained as follows

ω2 = 1 + l2, where 0 < l << 1.

Figure 1. Configuration of the RR3BP in the synodic coordinate system

The dynamics of m3 in non-dimensional synodic coordinate system is given by

ẍ− 2ωẏ − ω2x = Ux,

ÿ + 2ωẋ− ω2y = Uy,

z̈ = Uz,
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where

U(x, y, z) =
µ

2l
log

(
r1 + r2 + 2l

r1 + r2 − 2l

)
,

µ =
m2

m∗1 +m2

, 0 < µ < 1,

r21 = (x− 1 + µ+ l)2 + y2 + z2,

r22 = (x− 1 + µ− l)2 + y2 + z2.

Here Ux, Uy and Uz represent the first order partial derivatives of U(x, y, z) with respect to x, y
and z, respectively.

Introducing the small perturbations in the Coriolis and centrifugal forces with the help of parame-
ters α = 1 + π1, (| π1 |� 1) and β = 1 + π2, (| π2 |� 1), respectively. The unperturbed values
of α and β are unity. Consequently, the equations of motion are

ẍ− 2ωαẏ − ω2βx = Ux, (1a)
ÿ + 2ωαẋ− ω2βy = Uy, (1b)

z̈ = Uz. (1c)

The Equations (1a)-(1c) can be rewritten as

ẍ− 2ωαẏ = Wx, (2a)
ÿ + 2ωαẋ = Wy, (2b)

z̈ = Wz, (2c)

where

W (x, y, z) =
1

2
ω2β(x2 + y2) +

µ

2l
log

(
r1 + r2 + 2l

r1 + r2 − 2l

)
,

and Wx, Wy and Wz are the first order partial derivatives of W (x, y, z) with respect to x, y and z,
respectively. If the length of the smaller primary is zero, Equations (2a)-(2c) coincide with Hallan
and Rana (2001a). And when α = β = 1, Equations (2a)-(2c) agree with Kumar et al. (2019)
provided k = 0.

3. The location of the equilibrium point

The points at which the velocity and acceleration of m3 are zero are called the equilibrium points.
These points are the solutions of the equations

Wx(x, y, z) = Wy(x, y, z) = Wz(x, y, z) = 0.
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Therefore, the coordinates of the equilibrium points can be retrieved by solving the following
system of equations

ω2βx− 2µ

[(r1 + r2)2 − 4l2]

(
(x− 1 + µ+ l)

r1
+

(x− 1 + µ− l)
r2

)
= 0,

y

[
ω2β − 2µ

[(r1 + r2)2 − 4l2]

(
1

r1
+

1

r2

)]
= 0,

z

[
2µ

[(r1 + r2)2 − 4l2]

(
1

r1
+

1

r2

)]
= 0,

simultaneously. Therefore, the equilibrium points are the real solutions of the following system of
equations

ω2βx− 2µ

[(r1 + r2)2 − 4l2]

(
(x− 1 + µ+ l)

r1
+

(x− 1 + µ− l)
r2

)
= 0, (3a)

y = 0, (3b)
z = 0, (3c)

and

ω2βx− 2µ

[(r1 + r2)2 − 4l2]

(
(x− 1 + µ+ l)

r1
+

(x− 1 + µ− l)
r2

)
= 0, (4a)

ω2β − 2µ

[(r1 + r2)2 − 4l2]

(
1

r1
+

1

r2

)
= 0, (4b)

z = 0. (4c)

The system of Equations (4a)-(4c) has no solution. The solution of Equations (3a)-(3c) correspond
to the collinear equilibrium points lying on the x−axis. The abscissae of these points obtained by
taking y = z = 0 are the solutions of the equation

ω2βx− 2µ

[(r1 + r2)2 − 4l2]

(
(x− 1 + µ+ l)

r1
+

(x− 1 + µ− l)
r2

)
= 0, (5)

where r1 = |x− 1 + µ+ l| and r2 = |x− 1 + µ− l|.

Since x < 1− µ− l, we have r1 = −(x− 1 + µ+ l) and r2 = −(x− 1 + µ− l). Equation (5) can
be recast into the following form by putting these values of r1 and r2,

(1 + l2)βx+
µ

[(x− 1 + µ)2 − l2]
= 0. (6)

For the sake of notational convenience, we denote the left hand side of the above equation by f(x).
The derivative of f with respect to x, denoted by f ′

f ′(x) = (1 + l2)β − 2µ(x− 1 + µ)

[(x− 1 + µ)2 − l2]2
,

is strictly positive for x < 1− µ. Since l > 0, therefore, f ′(x) > 0 for x < 1− µ− l. We have the
following observations for the function f
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(1) f is strictly increasing in (−∞, 1− µ− l),
(2) lim

x→−∞
f(x) = −∞,

(3) lim
x→(1−µ−l)

f(x) = +∞.

The above three points indicate that f becomes zero exactly once in the interval (−∞, 1− µ− l).
In the absence of length parameter and perturbation in the centrifugal force, x = −µ (Hallan
and Rana (2001b)) is the only real root of the Equation 6. By taking into consideration the small
perturbation in the centrifugal force, and the length parameter, let the real root of Equation 6 be
given by

x = −µ+ ε,

where ε depends on the very small quantities π2 and l. On putting x = −µ + ε and β = 1 + π2 in
Equation 6 by restricting ε, π2 up to the linear terms and l up to the second order, we get

ε =
µ(1 + l2)π2

(1 + 2µ) + l2(1 + 4µ)
.

Therefore, the abscissae of the collinear equilibrium point becomes

x = −µ+ ε = −µ+ νπ2,

where

ν =
µ(1 + l2)

(1 + 2µ) + l2(1 + 4µ)
.

Thus, the system of Equations (3a)-(3c) has only one collinear equilibrium point L1(x, 0, 0). It is
noticeable that the location of equilibrium point is affected by a small perturbation in the centrifu-
gal force. In the absence of π2 and l, the equilibrium point L1 coincides with the center of the shell
(−µ, 0, 0).

Next, we present numerically the effect of perturbations on the location of L1. In Table 1, we have
represented the numerical values of the abscissas of L1 for the fixed values of µ and varying values
of π2 and l. It is evident that L1 lies towards the right or left of the center of the shell according as
the perturbation π2 in the centrifugal force is positive or negative. It can be seen that as we increase
the length parameter, L1 moves along x−axis in its left direction. Also if the small perturbation in
centrifugal force is increased, L1 always lies on the left of x− axis.

Table 1. The abscissae of L1 for the fixed value of µ = 0.001

l π2 = −0.03 π2 = −0.02 π2 = −0.01 π2 = 0.01 π2 = 0.02 π2 = 0.03

0.0001 -0.00103086 -0.00102037 -0.10084100 -0.09917400 -0.00098043 -0.00097093
0.1 -0.00103097 -0.00102047 -0.10084700 -0.09918300 -0.00098052 -0.00097103
0.13 -0.00103116 -0,00102066 -0.10086200 -0.09919900 -0.00098071 -0.00097121
0.15 -0.00103138 -0.00102088 -0.10088000 -0.09921800 -0.00098093 -0.00097142
0.17 -0.00103172 -0.00102122 -0.10090600 -0.09924600 -0.00098125 -0.00097174
0.2 -0.00103251 -0.00102200 -0.10096800 -0.09931100 -0.00098200 -0.00097248
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Table 2. The abscissae of L1 for the fixed value of l = 0.0001

µ π2 = −0.03 π2 = −0.02 π2 = −0.01 π2 = 0.01 π2 = 0.02 π2 = 0.03

0.00001 -0.00001031 -0.00001020 -0.00001010 −9.9009× 10−6 −9.80393× 10−6 −9.70874× 10−6

0.00005 -0.00005155 -0.00005102 -0.00005051 -0.00004951 -0.00004902 -0.00004854
0.0001 -0.00010309 -0.00010204 -0.00010101 -0.00009901 -0.00009804 -0.00009709
0.0005 -0.00051545 -0.00051019 -0.00050504 -0.00049505 -0.00049021 -0.00048545
0.001 -0.00103086 -0.00102037 -0.00101008 -0.00099012 -0.00098043 -0.00097093
0.005 -0.00515306 -0.00510101 -0.00505000 -0.00495098 -0.00490291 -0.00485577

The abscissas of L1 are evaluated for the various values of π2, µ and fixed values of l = 0.0001 in
Table 2. For µ = 0.00001 and π2 = −0.03, L1 lies on the left of the center of m1. Further, with
the increasing values of µ = 0.00001 to 0.005, the abscissas of L1 are becoming smaller, which
results L1 to drift away from the origin.

It is to be noted that Kumar et al. (2019) obtained two out-of-plane equilibrium points for their
problem. By out-of-plane equilibrium point, we mean the point lying in (x, z)-plane with y = 0.
That is, these are the solutions of Wx = Wy = Wz = 0 with x 6= 0, y = 0 and z 6= 0. In our
problem these points do not exist.

4. The stability of the equilibrium point

We discuss the stability of the equilibrium point in the present section. The motion of the infinites-
imal body near the equilibrium point is said to be stable if, when given a very small displacement,
the body oscillates for a considerable time around that point. If it departs from the body as the time
increases, the motion is unstable.

Consider the equilibrium point L1(x, 0, 0) and let it be displaced to (x + ξ, η, ζ), where ξ, η, ζ are
the small displacements in the x, y, z directions, respectively. Substituting these values in system
of Equations (2a)-(2c), we obtain the variational equations

ξ̈ − 2ωαη̇ = W 0
xxξ +W 0

xyη +W 0
xzζ, (7a)

η̈ + 2ωαξ̇ = W 0
yxξ +W 0

yyη +W 0
yzζ, (7b)

ζ̈ = W 0
zxξ +W 0

zyη +W 0
zzζ, (7c)

where the superscript “0” denotes the second order partial derivatives that are evaluated at the
equilibrium point under consideration. At the equilibrium point L1, rejecting the second and higher
powers of π2, third and higher powers of l, the second order partial derivatives are

W 0
xx = (1 + 2µ) + π2(1 + 6µτ) + l2(1 + 4µ),

W 0
yy = (1− µ) + π2(1− 3µτ) + l2(1− 2µ),

W 0
zz = −µ− 3µτπ2 − 2µl2,

W 0
xy = W 0

yz = W 0
zx = 0,

where τ = µ/(1 + 2µ).
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Thus, the system of Equations (7a)-(7c) becomes

ξ̈ − 2ω(1 + π1)η̇ =
(
1 + 2µ+ π2(1 + 6µτ) + l2(1 + 4µ)

)
ξ, (8a)

η̈ + 2ω(1 + π1)ξ̇ =
(
1− µ+ π2(1− 3µτ) + l2(1− 2µ)

)
η, (8b)

ζ̈ +
(
µ+ 3µτπ2 + 2µl2

)
ζ = 0. (8c)

Since µ+ 3µτπ2 + 2µl2 > 0 for all the values of the parameters involved, therefore the motion of
m3 parallel to the z−axis is always stable. The characteristic equation corresponding to Equations
(8a) and (8b) is a biquadratic equation in λ

λ4 +

(
2− µ+ 8π1 − (2 + 3τµ)π2 + 2(1− µ)l2

)
λ2

+

(
(1 + 2µ)(1− µ) + (2 + µ+ 3µτ(1− 4µ))π2 +(2 + 3µ− 8µ2)l2

)
= 0,

(9)

which admits roots of the form

λ2 =
− (2− µ+ 8π1 − (2 + 3τµ)π2 + 2(1− µ)l2)±

√
∆

2
, (10)

where

∆ = µ(9µ− 8) + 16(2− µ)π1 − 2 (8 + 3τµ(4− 9µ))π2 + 12µ (−2 + 3µ) l2.

In the absence of the length of the finite straight segment m2 and perturbations in α and β, ∆
vanishes when µ = 8/9. However, the solutions in our case will be perturbed. Replacing µ by
µ∗ = 8/9 + σ (σ << 1) in ∆ = 0, we get

σ =
2

3

(
−10

3
π1 +

43

25
π2 −

4

3
l2
)
.

Hence,

µ∗ =
8

9
+

2

3

(
−10

3
π1 +

43

25
π2 −

4

3
l2
)
.

Table 3. Stability of L1

Range of µ λ1 λ2 λ3 λ4 nature of L1

0 < µ < µ∗ 1
2
(a+ ib) −1

2
(a+ ib) 1

2
(a− ib) −1

2
(a− ib) unstable

µ = µ∗ ia1 ia1 −ia1 −ia1 unstable
µ∗ < µ < 1 ia2 −ia2 ia3 −ia3 stable

In Table 3, the nature of L1 is examined for different ranges of the mass parameter µ. For 0 < µ ≤
µ∗, L1 is unstable and stable for µ∗ < µ < 1. The values of the parameters involved in Table 3 are
mentioned in Appendix A.

Consider the surface

Γ1(π1, π2, l) = −10

3
π1 +

43

25
π2 −

4

3
l2 = 0,
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(a) (b)

Figure 2. (a) The colored and the non-colored regions represent Γ1 > 0 and Γ1 < 0, respectively for −0.01 ≤ π1 ≤
0.01,−0.01 ≤ π2 ≤ 0.01, and 0 ≤ l ≤ 0.3. (b) The colored region shows the surface Γ1 = 0 when
−0.01 ≤ π2 ≤ 0.01, and 0 ≤ l ≤ 0.3

which divides the (π1, π2, l)-plane into three regions. These regions are shown in Figure 2 for
−0.01 ≤ π1 ≤ 0.01,−0.01 ≤ π2 ≤ 0.01 and 0 ≤ l ≤ 0.3. The colored and the non-colored
regions in Figure 2(a) represents the regions Γ1 > 0 and Γ2 < 0, respectively. In the region where
Γ1 > 0, µ∗ > 8/9 that clearly shows the decrease in the stability region of L1. And in Γ1 < 0,
µ∗ < 8/9 that signifies the increment in the stability region of L1. For any point lying on the
surface Γ1 = 0, as shown by the colored region in Figure 2(b), µ∗ = 8/9, that is the range of
stability remains unchanged.

Next we consider the (π1, π2, l)-plane with no perturbation in the Coriolis force, that is, we take

Γ2(0, π2, l) =
43

25
π2 −

4

3
l2 = 0.

This divides the (0, π2, l)-plane into different regions that are represented by the different colors
as shown in Figure 3 for 0 ≤ l ≤ 0.20 and −0.03 ≤ π2 ≤ 0.03. For the region Γ2 = 0, we have
µ∗ = 8/9 that ultimately will not effect the range of stability. It is clear that for Γ2 > 0 and Γ2 < 0,
we have µ∗ > 8/9 and µ∗ < 8

9
, respectively. This implies that the range of stability decreases for

43
25
π2 − 4

3
l2 > 0 and increases for 43

25
π2 − 4

3
l2 < 0 establishing the fact that the centrifugal force is

a destabilizing force provided that the Coriolis force is kept constant.

Table 4. The value of µ∗ when π1 = 0

µ∗

l ↓ π2 → −0.03 −0.02 −0.01 0.01 0.02 0.03

0.0001 0.854489 0.865956 0.877422 0.900356 0.911822 0.923289
0.1 0.845600 0.857067 0.868533 0.891467 0.902933 0.914400
0.13 0.839467 0.850933 0.862400 0.885333 0.896800 0.908267
0.15 0.834489 0.845956 0.857422 0.880356 0.891822 0.903289
0.17 0.828800 0.840267 0.851733 0.874667 0.886133 0.897600
0.2 0.818933 0.830400 0.841867 0.864800 0.876267 0.887733

In Table 4, we have calculated the mass parameters µ∗ when π1 = 0 and for increasing values of
π2 and l . For a fixed π2 = 0.01, we observe that as l increases, the range of stability increases.
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π2

l

Γ2=0

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
0.00

0.05

0.10

0.15

0.20

Figure 3. For 0 ≤ l ≤ 0.20 and−0.03 ≤ π2 ≤ 0.03, the regions Γ2 > 0 and Γ2 < 0 are shown by light gray and light
blue colors respectively. The region Γ2 = 0 is represented by black color

However, on increasing π2, the range of stability decreases. For a fixed l, when the centrifugal force
is decreased by taking positive values of π2, the range of stability increases. When the centrifugal
force is increased taking positive values of π2, the range of stability decreases.

Similar to Γ1 and Γ2, on taking π2 = 0, we have the surface

Γ3(π1, 0, l) = −10

3
π1 −

4

3
l2 = 0.

The different regions obtained by Γ3 = 0 are shown in Figure 4 by the different colors for 0 ≤
l ≤ 0.20 and −0.03 ≤ π1 ≤ 0.03. We have µ∗ > 8/9 and µ∗ < 8

9
when Γ3 > 0 and Γ3 < 0

respectively. Therefore, the range of stability decreases for Γ3 > 0 and increases for Γ3 < 0. The
range of stability will remain unchanged for all the points lying on the curve 10π1 + 4l2 = 0. In
Table 5, we have calculated the values of mass parameter µ∗ for π2 = 0 and increasing values of
π1 and l. We observe that for a fixed π1 = −0.03, as l increases the range of stability increases.
Also, when l = 0.0001, and for the increasing values of π1 the range of stability increases.

π1

l

Γ3=0

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
0.00

0.05

0.10

0.15

0.20

Figure 4. For 0 ≤ l ≤ 0.20 and−0.03 ≤ π1 ≤ 0.03, the regions Γ3 > 0 and Γ3 < 0 are shown by light gray and light
blue colors respectively. The region Γ3 = 0 is represented by black color
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Table 5. The value of µ∗ when π2 = 0

µ∗

l ↓ π1 → −0.03 −0.02 −0.01 0.01 0.02 0.03

0.0001 0.955556 0.933333 0.911111 0.866667 0.844444 0.822222
0.1 0.946667 0.924444 0.902222 0.857778 0.835556 0.813333
0.13 0.940533 0.918311 0.896089 0.851644 0.829422 0.807200
0.15 0.935556 0.913333 0.891111 0.846667 0.824444 0.802222
0.17 0.929867 0.907644 0.885422 0.840978 0.818756 0.796533
0.2 0.920000 0.897778 0.875556 0.831111 0.808889 0.786667

5. Applications

Our model is mathematical whose applicability can be thought as of the motion of submarines in
the Earth-Asteroid system. We consider the two primariesm∗1 andm2 as Earth and asteroid respec-
tively. For the numerical study we gather the data of the different asteroids, namely 216 Kleopatra,
433 Eros, 9 Metis, 22 Kalliope and 4179 Toutatis. The minimum orbit intersection distance (MOID)
is chosen as the distance between the primaries. The data for the Earth-Asteroid system is taken
from the NASA database (https://ssd.jpl.nasa.gov/sbdb.cgi), Lang (1992), and Wikipedia (the free
encyclopedia) and given as follows.

• Earth-216 Kleopatra system

Mass of the Earth (m∗1) = 5.97237× 1024 kg, mass of the 216 Kleopatra (m2) = 4.66× 1018 kg,
distance of 216 Kleopatra from the Earth = 1.486 A.U.= 222302436 km and length of the 216
Kleopatra (2l) = 276 km. In dimensionless system m∗1 +m2 = 1 unit, that is 5.97237× 1024 kg =
1 unit. Therefore,

µ =
m2

m∗1 +m2

= 7.80259× 10−7.

Also, distance between the primaries = 1 unit, that is 222302436 km = 1 unit. Thus, l = 6.20776×
10−7.

• Earth-433 Eros system

Mass of the 433 Eros (m2) = 6.69 × 1015 kg, distance of 433 Eros from the Earth = 0.1486
A.U.= 22230243.6 km and length of the 433 Eros (2l) = 34.4 km. In dimensionless system
µ = 1.12016× 10−9 and l = 7.73721× 10−7.

• Earth-9 Metis system

Mass of the 9 Metis (m2) = 1.67 × 1019 kg, distance of 9 Metis from the Earth = 1.107 A.U.=
165604843 km and length of the 9 Metis (2l) = 245 km. In dimensionless system µ = 2.7962 ×
10−6 and l = 7.39713× 10−7.
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• Earth-22 Kalliope system

Mass of the 22 Kalliope (m2) = 8.42 × 1018 kg, distance of 22 Kalliope from the Earth = 1.638
A.U.= 245041312 km and length of the 22 Kalliope (2l) = 215 km. In dimensionless system
µ = 1.40982× 10−6 and l = 4.38702× 10−7.

• Earth-4179 Toutatis system

Mass of the 4179 Toutatis (m2) = 5.05 × 1013 kg, distance of 4179 Toutatis from the Earth =
0.006579 A.U.= 984204.391 km and length of the 4179 Toutatis (2l) = 4.26 km. In dimensionless
system µ = 8.4556× 10−12 and l = 2.16418× 10−6.

L1 x

y

-8.2×10-7-8.×10-7-7.8×10-7-7.6×10-7-7.4×10-7-7.2×10-7

-4.×10-8

-2.×10-8

2.×10-8

4.×10-8

Figure 5. The location of L1 for the asteroid 216 Kleopatra for different values of π2 = −0.03 (red), -0.02 (black),
-0.01 (magenta), 0.01 (orange), 0.02 (blue), 0.03 (green)

In Table 6, the locations of equilibrium point L1 for the different Earth-Asteroid system are rep-
resented for the various values of the perturbation in the centrifugal force π2. The location of L1

for 216 Kleopatra asteroid with the different values of π2 (both positive and negative) is pictorially
shown in Figure 5. It is clear that L1 lies towards the right or left of the center of the shell according
as the perturbation π2 in the centrifugal force is positive or negative. In order to avoid the repetition
we have not stated the similar conclusions that are obtained as in the case of other asteroids.

The values of the mass parameter µ∗ has been made calculated for the different asteroid for the
different values of π1 and π2. This numerical study is categorized in two cases. In the first case,
π2 = 0 and different values of π1 are considered and represented in Table 7. The case where π1 = 0
with the different values of π2 are assessed in Table 8.

6. Concluding remarks and discussion

The main objective of our present work is to determine the effect of perturbations π1 and π2 in
the Coriolis and centrifugal forces in the framework of Robe’s circular restricted three-body prob-
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Table 6. The abscissae of L1 for different asteroids

π2 216 Kleopatra 433 Eros 9 Metis 22 Kalliope 4179 Toutatis

-0.03 −8.03667× 10−7 −1.15376× 10−9 −2.88009× 10−6 −1.45211× 10−6 −8.70927× 10−12

-0.02 −7.95864× 10−7 −1.14256× 10−9 −2.85212× 10−6 −1.43802× 10−6 −8.62471× 10−12

-0.01 −7.88062× 10−7 −1.13136× 10−9 −2.82416× 10−6 −1.42392× 10−6 −8.54016× 10−12

0.01 −7.72456× 10−7 −1.10896× 10−9 −2.76824× 10−6 −1.39572× 10−6 −8.37104× 10−12

0.02 −7.64654× 10−7 −1.09776× 10−9 −2.74028× 10−6 −1.38162× 10−6 −8.28649× 10−12

0.03 −7.56851× 10−7 −1.08656× 10−9 −2.71231× 10−6 −1.36753× 10−6 −8.20193× 10−12

Table 7. Mass parameter µ∗ when π2 = 0

Name of
the asteroid

l π1 = −0.02 π1 = −0.01 π1 = 0.01 π1 = 0.02

216
Kleopatra

6.20776 ×
10−7

93333333333.299×
10−11

91111111111.076×
10−11

86666666666.632×
10−11

84444444444.410×
10−11

22 Kalliope 4.38702 ×
10−7

93333333333.316×
10−11

91111111111.094×
10−11

86666666666.649×
10−11

84444444444.427×
10−11

9 Metis 7.39713 ×
10−7

93333333333.284×
10−11

91111111111.062×
10−11

86666666666.618×
10−11

84444444444.395×
10−11

433 Eros 7.73721 ×
10−7

93333333333.280×
10−11

91111111111.057×
10−11

86666666666.613×
10−11

84444444444.391×
10−11

4179 Tou-
tatis

2.16418 ×
10−6

93333333332.917×
10−11

91111111110.694×
10−11

86666666666.250×
10−11

84444444444.028×
10−11

Table 8. Mass parameter µ∗ when π1 = 0

Name of
the asteroid

l π2 = −0.02 π2 = −0.01 π2 = 0.01 π2 = 0.02

216
Kleopatra

6.20776 ×
10−7

8659555555.521×
10−11

87742222222.188×
10−11

90035555555.521×
10−11

91182222222.188×
10−11

22 Kalliope 4.38702 ×
10−7

8659555555.538×
10−11

87742222222.205×
10−11

90035555555.538×
10−11

91182222222.205×
10−11

9 Metis 7.39713 ×
10−7

8659555555.507×
10−11

87742222222.174×
10−11

90035555555.507×
10−11

91182222222.174×
10−11

433 Eros 7.73721 ×
10−7

8659555555.502×
10−11

87742222222.169×
10−11

90035555555.502×
10−11

91182222222.169×
10−11

4179 Tou-
tatis

2.16418 ×
10−6

8659555555.139×
10−11

87742222221.806×
10−11

90035555555.139×
10−11

91182222221.806×
10−11

lem by taking the smaller primary as finite straight segment. In this model, the density ρ1 of the
incompressible fluid within the rigid spherical shell of mass m∗1 is assumed to be same as that of
density ρ3 of m3. The system has only one equilibrium point L1 which is collinear with the center
of mass of the primaries. Our results are in accordance with the results obtained by Hallan and
Rana (2001a) if the smaller primary is taken to be a point mass instead of a finite straight segment.

The effect of small perturbation in the centrifugal force has a substantial effect on the location of
L1, but a small perturbation in the Coriolis force has no marked effect on it. In the absence of the
perturbations, L1 coincides with the center of the shell (−µ, 0, 0). The effects of l and π2 on the
location of the equilibrium point L1 are also witnessed in Table 1.
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It has been concluded that as l increases L1 lies towards the right or left of the center of the shell
according as the perturbation π2 in the centrifugal force is positive or negative, and moves from
right to left along x−axis. Similar behavior of L1 is observed with the change in the value of mass
parameter.

The linear stability of the equilibrium point L1 is discussed analytically. The range of stability is
affected not only by the perturbations in the Coriolis and centrifugal forces but also by the length
of the finite straight segment. For 0 < µ ≤ µ∗, L1 is unstable whereas for µ∗ < µ < 1, it
becomes stable. The range of stability of L1 increases or decreases depending on whether the point
(π1, π2, l) lies in the region Γ1 < 0 or Γ2 > 0 respectively. The Coriolis force is a stabilizing force
provided the centrifugal force is kept constant. We have also investigated the range of stability in
the different regions obtained by Γ2 = 0 and Γ3 = 0 on taking π1 = 0 and π2 = 0 respectively.

We infer from Table 7 that on increasing π1 and l, the range of stability increases. Similarly, for
a fixed l, the range of stability increases for π1 > 0 and decreases for π1 < 0. It is also observed
that the centrifugal force is a destabilizing force provided the Coriolis force is kept constant. From
Table 8, it is clear that for a fixed π2, as l increases the range of stability increases. However, on
increasing π2 the range of stability decreases. For a fixed l, when the centrifugal force is decreased
by taking the positive values of π2, the range of stability increases. On the other hand, the range of
stability decreases on increasing the centrifugal force with the positive values of π2.
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Appendix

a =
√

(γ − δ), b =
√

(γ + δ),

δ = 2− µ+ 8π1 − (2 + 3τµ)π2 + 2(1− µ)l2,

γ = 2

[
(1 + 2µ)(1− µ) + (2 + µ+ 3µτ(1− 4µ))π2 + (2 + 3µ− 8µ2)l2

]1/2
,

a1 =

√
δ

2
, a22 =

1

2

(
δ −
√

∆
)
, a23 =

1

2

(
δ +
√

∆
)
.


