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Abstract

In this paper, we introduce the extension of the p-k Gamma function and the p-k Beta function.
This extension of the p-k Gamma function is named as p-k-b Gamma function and an extension of
the beta function is p-k-b Beta function. The new extension of the Gamma and Beta function has
satisfied the usual properties. Also, we prove several identities of these functions.
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1. Introduction

The Gamma function was introduced by the famous Swiss mathematician Euler (1707-1783) as a
natural extension of the factorial operation from positive integers to real and even complex values
of this argument. The Beta function in the form of integral is known as the first Eulerian integral
and the integral form of Gamma function known as the second Eulerian integral. Later, because of
its great importance, it was studied by other eminent mathematicians like Legendre (1752-1833),
Gauss (1777-1855), Gudermann (1798-1852), Liouville (1809-1882), Weierstrass (1815-1897),
Hermite (1822-1901), as well as many others. The first reported use of the Gamma symbol for this
function was by Legendre in 1839. The first Eulerian integral was introduced by the Euler and is
typically referred to by its more common name, the Beta function. The use of the Beta symbol for
this function was first used in 1839 by Binet (1786-1856). At the same time as Legendre and Gauss,
Kramp (1760-1826) worked on the generalized factorial function as it applied to non-integers.

During the twentieth century, the log gamma function was used in many works where the gamma
function was applied or investigated. The appearance of computer systems at the end of the twenti-
eth century demanded more careful attention to the structure of branch cuts for basic mathematical
functions to support the validity of the mathematical relations everywhere in the complex plane.
This leads to the appearance of a special log gamma function, which is equivalent to the logarithm
of the gamma function as a multivalued analytic function, except that it is conventionally defined
with a different branch cut structure and principal sheet. The log-gamma function was introduced
by Keiper (1990). It allows a concise formulation of many identities related to the Riemann zeta
function. Many generalizations and extensions of various functions are available in the literature
(Atash et al. (2019); Atugba and Nantomah (2019); Duran and Acikgoz (2019); Qi et al. (2018);
Tassaddiq (2019)). In this paper, we establish a new extension of the Beta and the Gamma function.

2. Preliminaries

The two parameter Gamma function for x ∈ C/kZ−; k, p ∈ R+−{0}, Re(x) > 0, n ∈ N denoted
by pΓk(x) is introduced by Gehlot (2017b) and Gehlot (2018) and is defined by

pΓk(x) =
1

k
lim
n→∞

n! pn+1(np)
x

k
−1

p(x)n,k
. (1)

The integral representation of (1) is given by

pΓk(x) =

∫ ∞
0

e−
tk

p tx−1dt. (2)

The p-k Pochhammer symbol is given for x ∈ C; k, p ∈ R+ − {0} and Re(x) > 0, n ∈ N, the
p-k Pochhammer Symbol (or the two parameter Pochhammer Symbol) denoted by p(x)n,k and is
defined by



AAM: Intern. J., Special Issue No. 6 (April 2020) 41

p(x)n,k =
(xp
k

)(xp
k

+ p
)(xp

k
+ 2p

)
...
(xp
k

+ (n− 1)p
)
. (3)

p(x)n,k =
pΓk(x+ nk)

pΓk(x)
. (4)

The p-k Beta function, pBk(x, y) is given for x, y ∈ C/kZ−; k, p ∈ R − {0} and Re(x) >

0, Re(y) > 0, as

pBk(x, y) =
pΓk(x) pΓk(y)

pΓk(x+ y)
, Re(x) > 0, Re(y) > 0. (5)

The integral representations are given as

pBk(x, y) =
1

k

∫ 1

0

t
x

k
−1(1− t)

y

k
−1dt. (6)

pBk(x, y) =

∫ 1

0

tx−1(1− tk)y−1dt. (7)

pBk(x, y) =
1

k

∫ 1

0

t
x

k
−1 + t

y

k
−1

(t+ 1)
x+y

k

dt. (8)

pBk(x, y) =

∫ ∞
0

tx−1(1 + tk)−
x+y

k dt. (9)

Throughout this paper C,R+, Re(.),Z− and N be the sets of complex numbers, positive real num-
bers, real part of complex number, negative integer and natural numbers respectively.

3. Generalized p-k Gamma function

Definition 3.1.

For x ∈ C/kZ−; k, p, b ∈ R+ − {0} and Re(x) > 0, n ∈ N, the p-k-b Gamma function, pΓk(x; b)
is given by

pΓk(x; b) =
∞∑
m=0

(−1)mbmp
x

k
−m−1

m!

1

k
lim
n→∞

n! pn+1(n)
x

k
−m−1

p(x− km)n,k
. (10)

Theorem 3.2.

Let x ∈ C/kZ−; k, p, b ∈ R+ − {0} and Re(x) > 0, then the integral representation of p-k-b
Gamma function is given by
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pΓk(x; b) =

∫ ∞
0

tx−1e−
tk

p
− b

tk dt. (11)

pΓk(x; b) =
1

k

∫ 1

0

(t)
1

p
−1
(

log
1

t

) x

k
−1

exp

(
b

log t

)
dt. (12)

pΓk(x; b) =
1

x

∫ ∞
0

exp

(
−t

k

x

p
− b

t
k

x

)
dt. (13)

Proof (of (11)):

Consider the right hand side of Equation (11) denoting I1,

I1 =

∫ ∞
0

tx−1e−
tk

p e−
b

tk dt =

∫ ∞
0

tx−1e−
tk

p

∞∑
m=0

(−1)m

m!

bm

tkm
dt.

Interchanging the order of integration and summation, we get

I1 =
∞∑
m=0

(−1)m

m!
bm
∫ ∞
0

e−
tk

p tx−km−1dt.

Applying the Tannery’s Theorem (Erdélyi et al. (1953), Page 2), we have

∫ ∞
0

tx−1e−
tk

p
− b

tk dt =
∞∑
m=0

(−1)mbm

m!
lim
n→∞

∫ (np)
1
k

0

(
1− tk

np

)n
tx−mk−1dt.

Let An,i(x); i = 0, 1, 2, ..., n be given by

An,i(x) = lim
n→∞

∫ (np)
1
k

0

(
1− tk

np

)i
tx−mk−1dt.

Applying the integration by part, we have

An,i(x) =
ki

pn(x− km)
An,i−1(x+ k).
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Also,

An,0(x) =

∫ (np)
1
k

0

tx−km−1dt,

An,0(x) =
(np)

x−km
k

(x− km)
,

Therefore,

An,n(x) =
1

k

n! pn+1(n)
x

k
−m−1

p(x− km)n,k
.

and

I1 =
∞∑
m=0

(−1)mbm

m!

1

k
lim
n→∞

An,n(x),

gives

I1 =
∞∑
m=0

(−1)mbm

m!

1

k
lim
n→∞

n! pn+1(n)
x

k
−m−1

p(x− km)n,k
.

Hence, we arrive at the result. �

Proof (of (12)):

Substituting tk = log( 1
u
) in Equation (11), we get

pΓk(x; b) = −1

k

∫ 0

1

( log
1

u
)
x−1

k e−
log 1/u

p
− b

log 1/u ( log 1/u)
1

k
−1 1

u
du

=
1

k

∫ 1

0

u
1

p
−1[ log(

1

u
)]
x

k
−1e

b

log udu.

Which is the required proof. �

Proof (of (13)):

Substituting tx = u in Equation (11), we get

pΓk(x; b) =

∫ ∞
0

(u
1

x )x−1e(−
uk/x

p
− b

uk/x
) 1

x
u

1

x
−1du

=
1

x

∫ ∞
0

exp

(
−u

k/x

p
− b

uk/x

)
du.

Hence, the required result. �
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Remark 3.3.

The integral in Equation (11) is convergent for x < k;x 6= kZ−; p, k, b ∈ R+ − {0}; | b
p
|< 1 and

divergent for
∣∣∣∣ bp
∣∣∣∣ > 1.

Particular cases:

For some particular values of the parameters p, k and b we can obtain certain Gamma functions,
defined earlier:

(a) For b = 0, Equation (11) reduces in p-k Gamma function defined by Gehlot (2017b).

pΓk(x; 0) = pΓk(x).

(b) For p = k, b = 0, Equation (11) reduces in k Gamma function defined by Diaz and Pariguan
(2007).

kΓk(x; 0) = Γk(x)

(c) For p = k = 1, b = 0, Equation (11) reduces in Gamma function.

1Γ1(x; 0) = Γ(x).

(d) For p = k = 1, Equation (11) reduces in generalized Gamma function defined by Chaudhry et
al. (1997)

1Γ1(x; b) = Γb(x).

(e) Equation (11), reduces in ultra Gamma function defined in Gehlot (2017a); Anita et al. (2018).

pΓk(x; b) = Γ(k, p; k,
1

b
)(x).

Theorem 3.4.

Given x ∈ C/kZ−; k, p, b ∈ R+ − {0} and Re(x) > 0, then the relation between p-k-b Gamma
Function, p-k Gamma Function and classical Gamma function are given by,

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!
pΓk(x− km), (14)

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!

p
x−km
k

k
Γ

(
x− km

k

)
. (15)
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Proof (of (14)):

From Equation (11),

pΓk(x; b) =

∫ ∞
0

tx−1e−
tk

p
− b

tk dt

=
∞∑
m=0

(−1)mbm

m!

∫ ∞
0

tx−km−1e−
tk

p dt.

Using Theorem 2.4 of Gehlot (2017b), we get

=
∞∑
m=0

(−1)mbm

m!
pΓk(x− km),

which is the required result. �

Proof (of (15)):

Using Theorem 2.9 of Gehlot (2017b), in Equation (14), we have

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!

p(x−km)/k

k
Γ

(
x− km

k

)
,

which is the required result. �

Theorem 3.5.

Given x ∈ C/kZ−; k, p, b, a, q, r, s ∈ R+−{0} and Re(x) > 0, then the following identities hold,

pΓk(x; b) =
p
x

k

k
1Γ1

(
x

k
;
b

p

)
. (16)

pΓk(x; b) =
s

k
pΓs

(sx
k

; b
)
. (17)

pΓk(x; b) =
s

k

(p
r

) x

k

rΓs

(
sx

k
;
br

p

)
. (18)

pΓk(x; b) =
(p
r

) x

k

rΓk

(
x;
br

p

)
. (19)

pΓk(x; b) =
1

k
pΓ1

(x
k

; b
)
. (20)

pΓk(−x; b) = 1

b
Γk

(
x;

1

p

)
. (21)
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pΓk(ax; b) =
1

a
pΓ k

a
(x; b). (22)

pΓk(x+ a; b) =
q

x+ a
pΓ qk

x+a
(q; b). (23)

pΓk(x; b) = ax p

ak
Γk

(
x;

b

ak

)
. (24)

Proof (of 16):

From Equation (11),

pΓk(x; b) =

∫ ∞
0

tx−1e−
tk

p
− b

tk dt.

Substituting tk

p
= u, we get

pΓk(x; b) =

∫ ∞
0

(up)
x−1

k e−u−
b

up
1

k
(up)

1

k
−1pdu

=
px/k

k

∫ ∞
0

u
x

k
−1e−u−

b/p

u du

=
px/k

k
1Γ1

(x
k

;
b

p

)
.

Hence, proved. �

Proof (of 17):

Substituting t = u
s

k in Equation (11), we get the desired result (17). �

Proof (of 18):

Substituting tk =
p

r
us in Equation (11), we get the desired result (18). �

Proof (of 19):

Substituting tk =
p

r
uk in Equation (11), we get the desired result (19). �

Proof (of 20):

Substituting t = u
1

k in Equation (11), we get the desired result (20). �

Proof (of 21):

Substituting t =
1

u
in Equation (11), we get the desired result (21). �
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Proof (of 22):

Substituting t = u
1

a in Equation (11), we get the desired result (22). �

Proof (of 23):

Substituting t = u
q

(x+a) in Equation (11), we get the desired result (23). �

Proof (of 24):

Substituting t = au in Equation (11), we get the desired result (24). �

Theorem 3.6.

Given x ∈ C/kZ−; k, p, b ∈ R+−{0} and Re(x) > 0, then the recursion relation of p-k-b Gamma
function is given by,

k pΓk(x+ k; b) = xp pΓk(x; b) + bkp pΓk(x− k; b).

Proof:

From Equation (11),

pΓk(x; b) =

∫ ∞
0

tx−1e−
tk

p
− b

tk dt. (25)

Integrating right hand side of Equation (11) by parts,

=
{tx
x
e−

tk

p
− b

tk

}∞
0
−
∫ ∞
0

tx

x
e−

tk

p
− b

tk {−kt
k−1

p
+ kbt−k−1}dt,

= 0 +

∫ ∞
0

k

px
tx+k−1 e−

tk

p
− b

tk dt−
∫ ∞
0

kb

x
tx−k−1 e−

tk

p
− b

tk dt,

pΓk(x; b) =
k

px
pΓk(x+ k; b)− kb

x
pΓk(x− k; b),

which is desired result. �

Theorem 3.7.

Given x ∈ C/kZ−; k, p, b ∈ R+−{0} and Re(x) > 0, then the p-k-b Gamma function in terms of
infinite product,

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!

p
x−km
k

x− km

∞∏
n=1

[(1 +
1

n
)
x−km
k × (1 +

x− km
nk

)−1]. (26)
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Proof:

From Equation (14), we have

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!
pΓk(x− km),

using Theorem 2.5, Gehlot (2017b), we have desired result. �

Theorem 3.8.

Given x ∈ C/kZ−; k, p, b ∈ R+ − {0}, x < k and Re(x) > 0, then the p-k-b Gamma function in
terms of hypergeometric function.

pΓk(x; b) =
p
x

kΓ(x
k
)

k
0F1(−; 1− x

k
;
b

p
). (27)

Proof:

From Equation (15) we have,

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!

p
x−km
k

k
Γ(
x− km

k
),

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!

p
x−km
k

k

Γ(x
k
−m)Γ(x

k
)

Γ(x
k
)

,

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!

p
x−km
k

k
Γ(
x

k
)(
x

k
)−m,

using the identity

(a)−r =
(−1)r

(1− a)r
,

pΓk(x; b) =
∞∑
m=0

(−1)mbm

m!

p
x−km
k

k
Γ(
x

k
)

(−1)m

(1− x
k
)m
,

pΓk(x; b) =
p
x

k

k
Γ(
x

k
)
∞∑
m=0

( b
p
)m

m! (1− x
k
)m
.

Hence, we arrive at the result. �
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Theorem 3.9.

Given x ∈ C/kZ−; k, p, b ∈ R+ − {0} and Re(x) > 0, then the relation between p-k-b Gamma
function, p-k Gamma function and classical Gamma function is,

∫ ∞
0

bs−1 pΓk(x; b)db = Γ(s)pΓk(x+ ks) =
Γ(s)p

x

k
+s

k
Γ(
x

k
+ s; b). (28)

Proof:

Multiplying Equation (11) by bs−1 and integrating with respect to b from b = 0 to b =∞, we get

∫ ∞
0

bs−1 pΓk(x; b)db =

∫ ∞
0

bs−1[

∫ ∞
0

tx−1 exp(−t
k

p
− b

tk
)dt]db.

Changing the order of integration gives,

∫ ∞
0

bs−1 pΓk(x; b)db =

∫ ∞
0

tx−1 exp(−t
k

p
)[

∫ ∞
0

bs−1 exp(− b

tk
)db]dt.

Using the basic definition of Gamma function, we have

∫ ∞
0

bs−1 pΓk(x; b)db =

∫ ∞
0

tx−1 exp(−t
k

p
)[(

1

tk
)−sΓ(s)]dt,

∫ ∞
0

bs−1 pΓk(x; b)db = Γ(s)

∫ ∞
0

tx+ks−1 exp(−t
k

p
)dt,

∫ ∞
0

bs−1 pΓk(x; b)db = Γ(s)pΓk(x+ ks).

Finally using Equation (2.19) of Gehlot (2017b), we obtain the desired result. �

4. Extension of p-k Beta function

In this section, we introduce an extension of the p-k beta function which is denoted as pBk(x, y; b
recently introduced by Gehlot (2017b).

Definition 4.1.

For x, y ∈ C/kZ−; k, p, b ∈ R+ − {0} and Re(x) > 0, Re(y) > 0, n ∈ N, then the Extended p-k
Beta Function is given by
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pBk(x, y; b) =
1

k

∫ 1

0

t
x

k
−1(1− t)

y

k
−1 exp (

−b
t(1− t)

)dt. (29)

or

pBk(x, y; b) =

∫ 1

0

tx−1(1− tk)
y

k
−1 exp (

−b
tk(1− tk)

)dt. (30)

This extension will be very useful because of most of the properties of the p-k Beta and Beta
function by considering particular values for the parameters and it provides connections with the
hypergeometric function.

Particular cases:

For some particular values of the parameters p, k, b we can obtain certain Beta functions, defined
earlier:

(a) For b = 0, equation (29), reduces to p-k Beta function defined in Gehlot (2017b)

pBk(x, y; 0) = pBk(x, y).

(b) For p = k, b = 0, equation (29), reduces to k-Beta function defined in Diaz and Pariguan
(2007)

kBk(x, y; 0) = Bk(x, y).

(c) For p = k = 1, equation (29), reduces to extended Beta function defined in Chaudhry et al.
(1997)

1B1(x, y; b) = B(x, y; b).

(d) For p = k = 1, b = 0, equation (29), reduces to classical Beta function defined in Rainville
(1963)

1B1(x, y; 0) = B(x, y).

Remark 4.2.

The nth derivative of extended p-k Beta function with respect to parameter b can be expressed in
terms of the function

dn

dbn
pBk(x, y; b) = (−1)n pBk(x− n, y − n; b), n = 0, 1, 2, ... (31)
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4.1. Integral representation of extended p-k Beta function

In the following theorem, we give the relationship between the extended p-k Beta function, the p-k
Beta function, and the classical Beta function.

Theorem 4.3.

Given x, s ∈ C/kZ−; k, p, b ∈ R+ − {0} and Re(s) > 0, Re(x
s

+ s) > 0, Re(y
s

+ s) > 0 then

∫ ∞
0

bs−1 pBk(x, y; b)db = Γ(s) pBk(x+ ks, y + ks) =
Γ(s)

k
B(

x

k
+ s,

y

k
+ s). (32)

Proof:

Multiplying (30) by bs−1 and integrating with respect to b from b = 0 to b =∞, we get

∫ ∞
0

bs−1 pBk(x, y; b)db =

∫ ∞
0

bs−1[

∫ 1

0

tx−1(1− tk)
y

k
−1 exp (

−b
tk(1− tk)

)dt]db.

Changing the order of integration, we have

∫ ∞
0

bs−1 pBk(x, y; b)db =

∫ 1

0

tx−1(1− tk)
y

k
−1[

∫ ∞
0

bs−1 exp (
−b

tk(1− tk)
)db]dt.

Using the basic definition of Gamma function, we get

∫ ∞
0

bs−1 pBk(x, y; b)db =

∫ 1

0

tx−1(1− tk)
y

k
−1[

1

tk(1− tk)
]−sΓ(s)dt,

∫ ∞
0

bs−1 pBk(x, y; b)db = Γ(s)

∫ 1

0

tx+ks−1(1− tk)
y

k
+s−1dt,

∫ ∞
0

bs−1 pBk(x, y; b)db = Γ(s) pBk(x+ ks, y + ks).

Using Equation (3.5) of Gehlot (2017b), we obtain the desired result. �

Theorem 4.4.

Given x ∈ C/kZ−; k, p, b ∈ R+ − {0} and Re(b) > 0, Re(x) > 0, Re(y) > 0 then the integral
representations are given by
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pBk(x, y; b) =
2

k

∫ π

2

0

(cos θ)
2x

k
−1(sin θ)

2y

k
−1 exp

(
−4b

(sin 2θ)2

)
dθ. (33)

pBk(x, y; b) =
1

k

∫ ∞
0

t
x

k
−1

(1 + t)
x+y

k

exp

(
−b(1 + t)2

t

)
dt. (34)

pBk(x, y; b) =
21− x+y

k

k

∫ 1

−1
(1 + t)

x

k
−1(1− t)

y

k
−1 exp

(
−4b

(1− t2)

)
dt. (35)

pBk(x, y; b) =
1

k

∫ 1

0

t
x

k
−1 + t

y

k
−1

(1 + t)
x+y

k

exp

(
−b(1 + t)2

t

)
dt. (36)

pBk(x, y; b) =
(c− a)1−

x+y

k

k

∫ c

a

(t− a)
x

k
−1(c− t)

y

k
−1 exp

(
−b(c− a)2

(t− a)(c− t)

)
du. (37)

pBk(x, y; b) =
21− x+y

k

k

∫ ∞
−∞

exp[ θ(y−x)
k
− 4b(cosh θ)2]

(cosh θ)
(x+y)

k

dθ. (38)

Proof:

The result (33) follows when we use the transformation t = cos2 θ in (30). The result (34) follows
when we use the transformation tk = u

u+1
in (30). If we substitute t = 1−u

1+u
in (34), we get the result

(35). To prove the result (36), we divide the integral given by equation (34) between 0 to 1 and 1 to
∞ and substitute t = 1

u
in second integral. If we substitute u = a+ (c− a)tk in equation (30), we

get the result (37) and finally if we substitute t = tanh θ in equation (35) we get the result (38). �

Theorem 4.5.

The following functional relation holds:

pBk(x, y + k; b) + pBk(x+ k, y; b) = pBk(x, y; b). (39)

Proof:

Denoting the left hand side of (39) by A, we have

A =

∫ 1

0

[tx−1(1− tk)
y+k

k
−1 + tx+k−1(1− tk)

y

k
−1] exp

(
−b

t(1− tk) 1

k

)
dt,
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A =

∫ 1

0

[tx−1(1− tk)
y

k
−1] exp

(
−b

t(1− tk) 1

k

)
dt,

which is the desire result. �

Theorem 4.6.

The extended p-k Beta function in terms of the hypergeometric function can be expressed as fol-
lows:

pBk(x, y; b) = pBk(x, y) 2F2[
2k − (x+ y)

2k
,
k − (x+ y)

2k
; 1− x

k
, 1− y

k
;−4b]. (40)

Proof:

Consider Equation (29),

pBk(x, y; b) =
1

k

∫ 1

0

t
x

k
−1(1− t)

y

k
−1 exp (

−b
t(1− t)

)dt,

pBk(x, y; b) =
1

k

∞∑
m=0

(−1)mbm

m!

∫ 1

0

t
x−mk
k
−1(1− t)

y−mk
k
−1dt.

Using Equation (6), we have

pBk(x, y; b) =
∞∑
m=0

(−1)mbm

m!
pBk(x−mk, y −mk).

Using Equation (3.5) of Gehlot (2017b), we get

pBk(x, y; b) =
∞∑
m=0

(−1)mbm

m!

1

k
B(

x−mk
k

,
y −mk

k
).

In view of the definition of the Beta function, we have

pBk(x, y; b) =
∞∑
m=0

(−1)mbm

m!

1

k
B(

x

k
,
y

k
)
(x
k
)−m( y

k
)−m

(x+y
k

)−2m
.

Using the well known identity (a)−n = (−1)n
(1−a)n and (a)2n = 22n(a

2
)n(a+1

2
)n, we get



54 K.S. Gehlot and K.S. Nisar

pBk(x, y; b) = pBk(x, y) 2F2

[
2k − (x+ y)

2k
,
k − (x+ y)

2k
; 1− x

k
, 1− y

k
;−4b

]
.

Hence, proved. �

5. Concluding remark

In this paper, we use the relation between the two-parameter Gamma and Beta function and gave
an extension of two-parameter Gamma and Beta function. The obtained results are different than
the results of Özergin, Özarslan, and Altın, and Shadab, Jabee, and Choi.
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