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Abstract

In this paper, we construct four summation formulas for terminating Gauss’ hypergeometric series
having argument “two" and with the help of our summation formulas. We establish two quadratic
transformations for Gauss’ hypergeometric function in terms of finite summation of combination of
two Clausen hypergeometric functions. Further, we have generalized our quadratic transformations
in terms of general double series identities as well as in terms of reduction formulas for Kampé de
Fériet’s double hypergeometric function. Some results of Rathie-Nagar, Kim et al. and Choi-Rathie
are also obtained as special cases of our findings.

Keywords: Generalized hypergeometric function; Hypergeometric summation theorem;
Bounded sequence; Quadratic transformation; Reduction formulas

MSC 2010 No.: 33C05, 33C20

71



72 M.I. Qureshi and M. Kashif Khan

1. Introduction

Functions which are important enough to be given their own name are known as “special function”.
These include the well known logarithmic, exponential, and trigonometric functions and extend to
cover the gamma, beta, and zeta functions and the class of orthogonal polynomials, among many
others. Special functions have broad applications in pure mathematics as well as in applied areas
such as quantum mechanics, solutions of wave equations, moments of inertia, fluid dynamics, and
heat conduction.

In 1656, John Wallis was the first mathematician who used the term “hypergeometric series" in
his treatise “Arithmetica Infinitorum” to explicate the infinite series of the form 1 + a + a(a +
1) + a(a + 1)(a + 2) + · · · . In 1730, Euler established nearly all of the significant properties of
the Gamma functions. The series 1F1 was introduced by Kümmer (1836) and the series 3F2 was
given by Clausen (1828). In the theory of hypergeometric series a major development was given
(although Euler and Pfaff had been found certain important results) by Gauss (1866) on 2F1 series.
The Hypergeometric functions of two variables was introduced by Appell (1880) and Lauricella
(1893) generalized them to several variables.

It is interesting to mention here that the results are very important for the application point of view,
whenever hypergeometric functions reduce to gamma functions. Thus, the classical theorems such
as Gauss, Kümmer and Bailey for the series 2F1 and of Watson, Dixon, Whipple and Saalschütz for
the series 3F2 and others play an important role in the theory of hypergeometric function, gener-
alized hypergeometric function and in other applicable sciences. In a series of papers Lavoie et al.
(1992, 1994, 1996) studied generalizations of some of the above classical summation theorems. In
the theory of special functions, summations, transformations and reduction formulas have received
keen attention during the last few years (see Chen and Srivastava (2005), Chen et al. (2006), Chu
(2011), Kim (2009), Kim et al. (2012) and Kim et al. (2010)). Recently, in Miller (2009), Miller
and Paris (2011a, 2011b) and Miller and Srivastava (2010) examined the generalized hypergeo-
metric series (together with integer parameter differences) and derived several transformations and
summation formulas.

Influenced by the recent work of researchers Choi and Rathie (2014), Meethal et al. (2015), Ebisu
(2017), Kim, Gaboury et al. (2018, 2018), Miller and Paris (2013), Qureshi et al. (2016), and
Srivastava (2016), some new summation formulas, quadratic transformations, generalizations of
quadratic transformations and reduction formulas for Kampé de Fériet’s double hypergeometric
function are obtained in this article.

2. Preliminaries

In our present investigation, we shall make use of the following standard notations and results.

N = {1, 2, 3, · · · }, N0 = N
⋃
{0} and Z−0 = Z−

⋃
{0} = {0,−1,−2,−3, · · · }.

As usual, the symbols C, R, N, Z, R+ and R− denote the sets of complex numbers, real numbers,
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natural numbers, integers, positive and negative real numbers, respectively.

The well-known Pochhammer’s symbol (α)p (α, p ∈ C) is defined by (see Rainville (1960)),
Srivastava and Manocha (1984))

(α)p =
Γ(α + p)

Γ(α)
=


1; (p = 0;α ∈ C\{0}),
α(α+ 1)(α+ 2) · · · (α+ n− 1); (p = n ∈ N;α ∈ C),
(−1)kn!
(n−k)! ; (α = −n; p = k; k, n ∈ N0; 0 ≤ k ≤ n),
0; (α = −n; p = k; k, n ∈ N0; k > n),
(−1)n

(1−α)n ; (p = −n;n ∈ N;α ∈ C\Z),

(1)

it being understood usually that (0)0 = 1 and concluded tacitly that the Gamma quotient exists.

Generalized ordinary hypergeometric function of one variable is defined by (see Srivastava and
Manocha (1984))

AFB

 (aA) ;
z

(bB) ;

 ≡ AFB

 a1, a2, . . . , aA ;
z

b1, b2, . . . , bB ;

 =
∞∑
k=0

(a1)k(a2)k · · · (aA)kz
k

(b1)k(b2)k · · · (bB)kk!
, (2)

where denominator parameters b1, b2, . . . , bB are neither zero nor negative integers, and A, B are
non-negative integers and numerator parameters a1, a2, . . . , aA may be zero or negative integers.

Convergence Conditions of Series (2):

Suppose that numerator parameters a1, a2, . . . , aA are neither zero nor negative integers (other-
wise the question of convergence will not arise).

(i) If A ≤ B, then series AFB is always convergent for all finite values of z (real or complex), i.e.,
|z| <∞.

(ii) If A = B + 1 and |z| < 1, then series AFB is convergent.
(iii) If A = B + 1 and |z| = 1, then series AFB is absolutely convergent, when

<
{ B∑
m=1

bm −
A∑
n=1

an

}
> 0,

(iv) If A = B + 1 and |z| = 1, but z 6= 1, then series AFB is conditionally convergent, when

−1 < <
{ B∑
m=1

bm −
A∑
n=1

an

}
≤ 0,

where < denotes the real part of complex number throughout this paper.

Kampé de Fériet’s Double Hypergeometric Function:
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Kampé de Fériet (1921) combined and generalized Appell’s four double hypergeometric func-
tions F1, F2, F3, F4 (see Srivastava and Manocha (1984)) and their seven confluent forms
Φ1, Φ2, Φ3, Ψ1, Ψ2, Ξ1, Ξ2 given by Humbert (1920-21). We reminisce here the definition
of general double hypergeometric function of Kampé de Fériet (see Appell and Kampé de Fériet
(1926)), Burchnall and Chaundy (1941)) in the slightly refined notation of Srivastava and Panda
(1976), Srivastava and Pathan (1979). Thus, the appropriate generalization of the Kampé de Fériet
function is given by

FA:B;D
E:G;H

 (aA) : (bB) ; (dD) ;
x, y

(eE) : (gG) ; (hH) ;

 =
∞∑
m=0

∞∑
n=0

[(aA)]m+n[(bB)]m[(dD)]n x
m yn

[(eE)]m+n[(gG)]m[(hH)]nm!n!
, (3)

where (aA) denotes the array of A number of parameters a1, a2, . . . , aA and

[(aA)]m =
A∏
j=1

(aj)m,

with similar interpretation for others.

Convergence Conditions of Double Series (3) (see Srivastava and Panda (1976)):

(i) A+B < E +G+ 1, A+D < E +H + 1, |x| <∞, |y| <∞, or
(ii) A+B = E +G+ 1, A+D = E +H + 1, and

 |x|
1

(A−E) + |y|
1

(A−E) < 1, ifA > E,

max{|x|, |y|} < 1, ifA ≤ E

 .

For absolutely and conditionally convergence of double series (3), the reader can consult an article
by Hài et al. (1992).

The Series Decomposition Identity is given by (see Srivastava and Manocha (1984))

∞∑
n=0

Λ(n) =
∞∑
n=0

Λ(2n) +
∞∑
n=0

Λ(2n+ 1). (4)

The Reversal of the Order of Terms in Finite Summation is given by

n∑
r=0

Φ(r) =
n∑
r=0

Φ(n− r), (n ∈ N0). (5)
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The Series Rearrangement Formulas are given as follows (see Srivastava and Manocha (1984))

∞∑
n=0

∞∑
m=0

Ξ(m, n) =
∞∑
n=0

n∑
m=0

Ξ(m, n−m), (6)

and
∞∑
m=0

∞∑
n=0

Ψ(m, n) =
∞∑
m=0

[m
2
]∑

n=0

Ψ(m− 2n, n), (7)

provided that involved double series are absolutely convergent and [k] denotes the greatest integer
for k ∈ R.

The rest of the article is organized as follows. In Section 3, we obtain four summation formulas for
terminating Gauss’ hypergeometric series having argument “two" by means of summation formula
of Rakha and Rathie (2011), and summation formula recorded by Prudnikov et al. (1990). In Sec-
tion 4, as an application of our four summation formulas, we established two new quadratic trans-
formations for Gauss’ hypergeometric function. In Section 5, we have generalized our quadratic
transformations in terms of general double series identities having bounded sequences. In Section
6, we obtain two results for the reducibility of Kampé de Fériet double hypergeometric functions.
In Section 7, we discuss several special cases of Sections 4 and 6. Any values of parameters and
variables leading to the results in following sections which do not make sense are tacitly excluded.

3. Four Summation Formulas

The following four summation formulas for terminating Gauss series will be derived in this section.

First Summation Formula.

2F1

 −2n, a;
2

2a+ j;

 =
Γ(1− a)

22a+j(a)jΓ(1− 2a− j)

j∑
r=0

{(
j

r

)
(−1)r

Γ(1−2a−j+r
2

)(1−r+j
2

)n

Γ(1+r−j
2

)(1+2a−r+j
2

)n

}
, (8)

(
a, 1− a, 2a+ j, 1− 2a− j ∈ C\Z−0 ;n, j ∈ N0

)
.

Second Summation Formula.

2F1

 −2n− 1, a;
2

2a+ j;

 =
−Γ(1− a)

22a+j(a)jΓ(1− 2a− j)

j∑
r=0

{(
j

r

)
(−1)r

Γ(−2a−j+r
2

)(2−r+j
2

)n

Γ( r−j
2

)(2+2a−r+j
2

)n

}
,

(9)
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(
a, 1− a, 2a+ j, 1− 2a− j ∈ C\Z−0 ;n, j ∈ N0

)
.

Third Summation Formula.

2F1

 −2n, a;
2

2a− j;

 =
Γ(1− a)

22a−jΓ(1− 2a+ j)

j∑
r=0

{(
j

r

)
Γ(1−2a+j+r

2
)(1−r+j

2
)n

Γ(1+r−j
2

)(1+2a−r−j
2

)n

}
, (10)

(
a, 1− a, 2a− j, 1− 2a+ j ∈ C\Z−0 ;n, j ∈ N0

)
.

Fourth Summation Formula.

2F1

 −2n− 1, a;
2

2a− j;

 =
−Γ(1− a)

22a−jΓ(1− 2a+ j)

j∑
r=0

{(
j

r

)
Γ(−2a+j+r

2
)(2−r+j

2
)n

Γ( r−j
2

)(2+2a−r−j
2

)n

}
, (11)

(
a, 1− a, 2a− j, 1− 2a+ j ∈ C\Z−0 ;n, j ∈ N0

)
.

where the notation
(
j

r

)
is the binomial coefficient.

Remark 3.1.

We have verified above summation formulas for suitable numerical values of n, a and j.

In order to start the derivation of above summation formulas consider the series,

2F1

 −n, a;
2

2a+ j;

 =
n∑
r=0

(−n)r (a)r 2r

(2a+ j)r r!
=

n∑
r=0

n! (−1)r (a)r 2r

(2a+ j)r r! (n− r)!
,

which, upon replacing r by n − r and applying reversal of the order of summation (5) and some
algebraic properties of Pochhammer’s symbol (1), becomes

2F1

 −n, a;
2

2a+ j;

 =
(−1)n (a)n 2n

(2a+ j)n
2F1

 −n, 1− 2a− j − n;
1
2

1− a− n;

 . (12)
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Proof:

In order to derive the first summation formula (8), we begin as follows.

Replacing n by 2n on both sides of equation (12), we obtain

2F1

 −2n, a;
2

2a+ j;

 =
(−1)2n (a)2n 22n

(2a+ j)2n
2F1

 −2n, 1− 2a− j − 2n;
1
2

1− a− 2n;

 . (13)

We now applying the summation formula of Rakha and Rathie (2011) in the right-hand side of
equation (13), after straightforward calculation we easily arrive at the right-hand side of equation
(8).

Similarly, by using the result (12) in conjugation with the result of Rakha and Rathie (2011), we
can prove the second summation formula (9). �

Proof:

In order to find the third summation formula (10), we continue as follows.

Changing n by 2n and j by −j on both sides of equation (12), to yield

2F1

 −2n, a;
2

2a− j;

 =
(−1)2n (a)2n 22n

(2a− j)2n
2F1

 −2n, 1− 2a+ j − 2n;
1
2

1− a− 2n;

 . (14)

By employing the summation formula recorded by Prudnikov et al. (1990) in the right-hand side
of equation (14), after little algebra we obtain the right-hand side of equation (10).

Similarly, by utilizing the result (12) and summation formula recorded by Prudnikov et al. (1990),
we can derive the fourth summation formula (11). �

4. Two Quadratic Transformations

In this section, we shall establish the following two new quadratic transformations for Gauss series
by means of series rearrangement technique and use of hypergeometric summation formulas (8) to
(11).

First Transformation. The following transformation holds true:
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(1 + z)−2b 2F1

 2b, a;
2z
1+z

2a+ j;

 =
Γ(1− a)

22a+j(a)jΓ(1− 2a− j)

j∑
r=0

(
j

r

)
(−1)r

{
Γ(1−2a−j+r

2
)

Γ(1+r−j
2

)

× 3F2

 b, b+ 1
2
, 1−r+j

2
;
z2

1+2a+j−r
2

, 1
2
;

+ 2bz
Γ(−2a−j+r

2
)

Γ( r−j
2

)

× 3F2

 b+ 1
2
, b+ 1, 2−r+j

2
;
z2

2+2a+j−r
2

, 3
2
;

}, (15)

(
b, a, 1− a, 2a+ j, 1− 2a− j ∈ C\Z−0 ; j ∈ N0

)
.

Second Transformation. The following transformation holds true:

(1 + z)−2b 2F1

 2b, a;
2z
1+z

2a− j;

 =
Γ(1− a)

22a−jΓ(1− 2a+ j)

j∑
r=0

(
j

r

){
Γ(1−2a+j+r

2
)

Γ(1+r−j
2

)

× 3F2

 b, b+ 1
2
, 1−r+j

2
;
z2

1+2a−j−r
2

, 1
2
;

+ 2bz
Γ( r−2a+j

2
)

Γ( r−j
2

)

× 3F2

 b+ 1
2
, b+ 1, 2−r+j

2
;
z2

2+2a−j−r
2

, 3
2
;

}, (16)

(
b, a, 1− a, 2a− j, 1− 2a+ j ∈ C\Z−0 ; j ∈ N0

)
.

Proof:

In order to establish first transformation (15), we proceed as follows.

Denoting the series expansion of left-hand side of transformation (15) by ζ and after some simpli-
fications, we have
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ζ =
∞∑
m=0

(2b)m (a)m 2m zm

(2a+ j)mm!
1F0

 2b+m;
− z

;


=
∞∑
n=0

∞∑
m=0

(2b)m+n (a)m 2m (−1)n zn+m

(2a+ j)mm!n!

=
∞∑
n=0

(2b)n (−1)n zn

n!

n∑
m=0

(a)m 2m (−n)m
(2a+ j)mm!

=
∞∑
n=0

(2b)n (−1)n zn

n!
2F1

 −n, a;
2

2a+ j;

 . (17)

Now, use series decomposition identity (4) in the right-hand side of Equation (17), to yield

ζ =
∞∑
n=0

(2b)2n (−1)2n z2n

(2n)!
2F1

[
−2n, a;
2
2a+ j;

]
+
∞∑
n=0

(2b)2n+1 (−1)2n+1 z2n+1

(2n+ 1)!
2F1

[
−2n− 1, a;
2
2a+ j;

]
. (18)

Finally, by employing summation formulas (8) and (9) in the right-hand side of equation (18), after
some simplifications we get the right-hand side of transformation (15). �

Proof:

In order to establish second transformation (16), we proceed as follows.

Denoting the series expansion of left-hand side of transformation (16) by ω and after some simpli-
fications, we have

ω =
∞∑
m=0

(2b)m (a)m 2m zm

(2a− j)mm!
1F0

 2b+m;
− z

;


=
∞∑
n=0

∞∑
m=0

(2b)m+n (a)m 2m (−1)n zn+m

(2a− j)mm!n!

=
∞∑
n=0

(2b)n (−1)n zn

n!

n∑
m=0

(a)m 2m (−n)m
(2a− j)mm!

=
∞∑
n=0

(2b)n (−1)n zn

n!
2F1

 −n, a;
2

2a− j;

 . (19)

Applying series decomposition identity (4) in Equation (19), we find
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ω =
∞∑
n=0

(2b)2n (−1)2n z2n

(2n)!
2F1

 −2n, a;
2

2a− j;


+
∞∑
n=0

(2b)2n+1 (−1)2n+1 z2n+1

(2n+ 1)!
2F1

 −2n− 1, a;
2

2a− j;

 . (20)

By using summation formulas (10) and (11) in the right-hand side of Equation (20), after some
simplifications we easily get the right-hand side of transformation (16). �

5. General Double Series Identities

Here we generalize our quadratic transformations (15) and (16) as in the following theorems.

Theorem 5.1.

Let {Φ(n)}∞n=1 be a bounded sequence of essentially arbitrary complex numbers such that Φ(0) 6=
0. Then, we have

∞∑
m=0

∞∑
n=0

Φ(m+ n)
(a)m (2z)m (−z)n

(2a+ j)mm!n!
=

Γ(1− a)

22a+j(a)jΓ(1− 2a− j)

j∑
r=0

(
j

r

)
(−1)r

{
Γ(1−2a−j+r

2
)

Γ(1+r−j
2

)

×
∞∑
n=0

Φ(2n)
(1−r+j

2
)n z

2n

(1+2a+j−r
2

)n (2n)!
+

Γ(−2a−j+r
2

)

Γ( r−j
2

)

×
∞∑
n=0

Φ(2n+ 1)
(2−r+j

2
)n z

2n+1

(2+2a+j−r
2

)n (2n+ 1)!

}
, (21)

(
a, 1− a, 2a+ j, 1− 2a− j ∈ C\Z−0 ; j ∈ N0

)
,

provided that single and double series involved are absolutely convergent.

Theorem 5.2.

Let {Φ(n)}∞n=1 be a bounded sequence of essentially arbitrary complex numbers such that Φ(0) 6=
0. Then, we have
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∞∑
m=0

∞∑
n=0

Φ(m+ n)
(a)m (2z)m (−z)n

(2a− j)mm!n!
=

Γ(1− a)

22a−jΓ(1− 2a+ j)

j∑
r=0

(
j

r

){
Γ(1−2a+j+r

2
)

Γ(1+r−j
2

)

×
∞∑
n=0

Φ(2n)
(1−r+j

2
)n z

2n

(1−r+2a−j
2

)n (2n)!
+

Γ( r−2a+j
2

)

Γ( r−j
2

)

×
∞∑
n=0

Φ(2n+ 1)
(2−r+j

2
)n z

2n+1

(2−r+2a−j
2

)n (2n+ 1)!

}
, (22)

(
a, 1− a, 2a− j, 1− 2a+ j ∈ C\Z−0 ; j ∈ N0

)
,

provided that single and double series involved are absolutely convergent.

Proof:

In order to prove Theorem 5.1, we proceed as follows.

Denote the left-hand side of double-series identity (21) by S and replacing n by n−m, after some
simplifications, we have

S =
∞∑
n=0

Φ(n)
(−1)n (z)n

n!
2F1

 −n, a;
2

2a+ j;

 . (23)

Using series decomposition identity (4) in Equation (23), we get

S =
∞∑
n=0

Φ(2n)
(−1)2n (z)2n

2n!
2F1

 −2n, a;
2

2a+ j;


+
∞∑
n=0

Φ(2n+ 1)
(−1)2n+1 (z)2n+1

2n+ 1!
2F1

 −2n− 1, a;
2

2a+ j;

 . (24)

Finally, by applying summation formulas (8) and (9) in the right-hand side of Equation (24), after
simplification we easily arrive at the right-hand side of Equation (21). �

Proof:

In order to prove Theorem 5.2, we proceed as follows.

Denote the left-hand side of double-series identity (22) by T and replacing n by n−m, after some
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simplifications, we have

T =
∞∑
n=0

Φ(n)
(−1)n (z)n

n!
2F1

 −n, a;
2

2a− j;

 . (25)

Using series decomposition identity (4) in Equation (25), to yield

T =
∞∑
n=0

Φ(2n)
(−1)2n (z)2n

2n!
2F1

 −2n, a;
2

2a− j;


+
∞∑
n=0

Φ(2n+ 1)
(−1)2n+1 (z)2n+1

2n+ 1!
2F1

 −2n− 1, a;
2

2a− j;

 . (26)

By employing summation formulas (10) and (11) in the right-hand side of Equation (26), after
some simplifications we easily obtain the right-hand side of Equation (22). �

6. Reducibility of Kampé de Fériet Functions

In the assertions (21) and (22), putting Φ(n) =

(
D∏
j=1

(dj)n

)(
E∏
j=1

(ej)n

)−1
; n ∈ N0 and after

straightforward calculation we obtain presumably new hypergeometric reduction formulas for the
Kampé de Fériet double hypergeometric functions in two variables. Under the common conver-
gence conditions of Kampé de Fériet double hypergeometric function FD:1;0

E:1;0 (2z,−z) and general-
ized hypergeometric function 2D+1F2E+2(z

2) given below
(i) If 2D ≤ 2E + 1, then |z| <∞,
(ii) If D = E + 1, then |z| < 1

3
, the following hypergeometric reduction formulas hold true.

First Reduction Formula.

FD:1;0
E:1;0

 (dD) : a; ;
2z, −z

(eE) : 2a+ j; ;

 =
Γ(1− a)

22a+j(a)jΓ(1− 2a− j)

j∑
r=0

(
j

r

)
(−1)r

{
Γ(1−2a−j+r

2
)

Γ(1+r−j
2

)

×2D+1F2E+2

 (dD)
2
, 1+(dD)

2
, 1−r+j

2
;

4(D−E−1) z2
(eE)
2
, 1+(eE)

2
, 1+2a−r+j

2
, 1

2
;



+

zΓ(−2a−j+r
2

)
D∏
i=1

(di)

Γ( r−j
2

)
E∏
i=1

(ei)
2D+1F2E+2

 1+(dD)
2

, 2+(dD)
2

, 2−r+j
2

;
4(D−E−1) z2

1+(eE)
2

, 2+(eE)
2

, 2+2a+j−r
2

, 3
2
;

}, (27)

(
a, 1− a, 2a+ j, 1− 2a− j, d1, d2, . . . , dD, e1, e2, . . . , eE ∈ C\Z−0 ; j ∈ N0

)
.
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Second Reduction Formula.

FD:1;0
E:1;0

 (dD) : a; ;
2z, −z

(eE) : 2a− j; ;

 =
Γ(1− a)

22a−jΓ(1− 2a+ j)

j∑
r=0

(
j

r

){
Γ(1−2a+j+r

2
)

Γ(1+r−j
2

)

×2D+1F2E+2

 (dD)
2
, 1+(dD)

2
, 1−r+j

2
;

4(D−E−1) z2
(eE)
2
, 1+(eE)

2
, 1+2a−r−j

2
, 1

2
;



+

zΓ( r−2a+j
2

)
D∏
i=1

(di)

Γ( r−j
2

)
E∏
i=1

(ei)
2D+1F2E+2

 1+(dD)
2

, 2+(dD)
2

, 2−r+j
2

;
4(D−E−1) z2

1+(eE)
2

, 2+(eE)
2

, 2+2a−j−r
2

, 3
2
;

}, (28)

(
a, 1− a, 2a− j, 1− 2a+ j, d1, d2, . . . , dD, e1, e2, . . . , eE ∈ C\Z−0 ; j ∈ N0

)
.

7. Special Cases

(i) Set D = E = 0, in Equation (27). We get

e−z 1F1

 a;
2z

2a+ j;

 =
Γ(1− a)

22a+j(a)jΓ(1− 2a− j)

j∑
r=0

(
j

r

)
(−1)r

{
Γ(1−2a−j+r

2
)

Γ(1+r−j
2

)

×1F2

 1−r+j
2

;
z2

4
1+2a−r+j

2
, 1

2
;

+
zΓ(−2a−j+r

2
)

Γ( r−j
2

)
1F2

 2−r+j
2

;
z2

4
2+2a+j−r

2
, 3

2
;

}, (29)

(
a, 1− a, 2a+ j, 1− 2a− j ∈ C\Z−0 ; j ∈ N0

)
.

(ii) Put D = E = 0, in Equation (28). We obtain

e−z 1F1

 a;
2z

2a− j;

 =
Γ(1− a)

22a−jΓ(1− 2a+ j)

j∑
r=0

(
j

r

){
Γ(1−2a+j+r

2
)

Γ(1+r−j
2

)

×1F2

 1−r+j
2

;
z2

4
1+2a−r−j

2
, 1

2
;

+
zΓ( r−2a+j

2
)

Γ( r−j
2

)
1F2

 2−r+j
2

;
z2

4
2+2a−j−r

2
, 3

2
;

}, (30)
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(
a, 1− a, 2a− j, 1− 2a+ j ∈ C\Z−0 ; j ∈ N0

)
.

(iii) Set j = 0 in Equations (15) and (16); we get Kümmer’s transformation (see Kümmer (1836)).

(iv) Put j = 0, in Equation (29); we obtain another transformation of Kümmer (see Rainville
(1960)).

(v) Take j = 1, in Equations (29) and (30); we have known results of Rathie and Nagar (see Rathie
and Nagar (1995)).

(vi) Fix j = 0, 1, in Equations (27) and (28); we recover known results of Kim (see Kim (2009)).

(vii) Substitute j = 2, 3, in Equations (29) and (30); we get known results of Choi and Rathie (see
Choi and Rathie (2014)) and see also Kim et al. (2010).

8. Conclusion

In this paper, from Section 3 to Section 7, some interesting results are obtained for single and
double hypergeometric functions, which may be potentially useful to non-specialists who are in-
terested in Applied Mathematics or Mathematical Physics. We conclude our present analysis by
observing that several interesting summation formulas, quadratic transformations, reduction for-
mulas, corresponding multiple series identities and their hypergeometric representations can be
obtained with the help of some newly derived terminating Clausen series of argument “two” in an
analogous manner.
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