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Abstract

The study of the operators possessing convolution form and their properties is considered advan-
tageous in geometric function theory. In 1975 Ruscheweyh defined operator for analytic func-
tions using the technique of convolution. In 2005, Goyal and Goyal generalized the Ruscheweyh
operator to fractional order (which we call here Ruscheweyh-Goyal differential operator) using
Srivastava-Saigo fractional differential operator involving hypergeometric function. Inspired by
these earlier efforts, we discuss the properties of the Ruscheweyh-Goyal derivative of arbitrary
order. We define a class of pre-starlike type functions involving the Ruscheweyh-Goyal fractional
derivative and obtain the inclusion relation. Further, we prove that Ruscheweyh-Goyal derivative
operator preserve the convexity and starlikeness for an analytic function. The majorization results
for fractional Ruscheweyh-Goyal derivative has been discussed using a newly defined subclass.
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1. Introduction

In a paper “New Criteria for Univalent Functions, 1975” that appeared in the Proceedings of Amer-
ican Mathematical Society, Ruscheweyh (1975) defined a function class and showed that the func-
tions of this class are univalent in open unit disc. For various values of parameter, this class reduced
to the function class of starlike functions of order 1/2 and class of convex functions. This result
is an addition of the result given by Strohäcker in 1933 (see Gupta and Jain (1976)). Ruscheweyh
(1975) proved many important properties for this class.

In their papers, Al Amiri (1980) and Kumar and Shukla (1984) mentioned the operator Dm as
Ruscheweyh derivatives for the first time, which lead to many other useful results. Owa (1985a)
(see also Owa (1985b)) generalized the Ruscheweyh derivative to arbitrary order β. Ruscheweyh
(1975) considered the subclasses of Rβ , β being a non-negative integer. Pre-starlike functions
were studied by Ruscheweyh (1977) and Suffridge (1976), in different parametrization. Note that
Rβ+1 ⊂ Rβ as proved by Ruscheweyh. Also, R0 is known class of univalent and starlike functions
which are of order 1/2 andR1 is the class of univalent and convex functions (see Al-Amiri (1979)).
Ruscheweyh derivative was generalized and studied by many authors, Goel and Sohi in 1980, Owa
in 1985, and others.

The strength of using convolution operators lies in their ability to unify a number of diverse re-
sults. The proofs using convolution operators are clearer and more concise and point out how the
unifying linear structure that is common to so many of the problems can be used to solve them
via convolution operator techniques (refer to Barnard and Kellogg (1978)). Ruscheweyh deriva-
tive and its various generalizations have been defined using convolution. Inspired by the work of
Ruscheweyh, in this paper, we have studied various properties of the fractional generalization of
Ruscheweyh derivative involving Saigo operator defined by Goyal and Goyal (2005).

2. Preliminaries

The functions f such that

f(z) = z +
∞∑
s=j

asz
s, j ∈ N = {1, 2, 3, ...}, (1)

which are analytic in the disk of unit radius ∆ = {z : z ∈ C, |z| < 1}. The class of such functions
is denoted by A. Thus, f is univalent and analytic in ∆.

A function f ∈ S(δ) is called univalent starlike of order δ. The function f ∈ A is said to be in
class S(δ) if and only if

<
(
zf ′(z)

f(z)

)
> δ, z ∈ ∆, (2)

for some δ (0 ≤ δ < 1).
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A function f ∈ A is said to be in the class of univalent convex functions K(δ) of order δ, if and
only if

<
(

1 +
zf ′′(z)

f ′(z)

)
> δ, z ∈ ∆, 0 ≤ δ < 1. (3)

It can be easily shown that

f ∈ K(δ)⇔ zf ′ ∈ S(δ), (0 ≤ δ < 1). (4)

Let f is analytic univalent function (1) and g is also analytic univalent function given as:

g(z) = z +
∞∑
s=j

bsz
s, j ∈ N. (5)

Then, the Hadamard product f ∗ g of the functions f and g is given by

(f ∗ g)(z) = z +
∞∑
s=j

asbsz
s = (g ∗ f)(z). (6)

The Hadamard product also known as convolution.

Convolution is a binary operation in the set A of analytic functions. The identity element l under
convolution is the geometric series

l(z) =
1

1− z
=
∞∑
0

zn, (7)

since f ∗ l = f for f ∈ A. For details, one can refer Robertson (1962).

2.1. Ruscheweyh derivative

Here we recall the origin and definition of the Ruscheweyh derivatives. Ruscheweyh (1975) de-
fined a function class Km as f ∈ Km, if

<(zmf)(m+1)

(zm−1f)(m)
>
m+ 1

2
, z ∈ ∆, m ∈ N0 = N ∪ {0}, (8)

and showed that f is univalent in ∆.

Clearly, K0 = S∗1/2, the function class of starlike functions of order 1/2 and K1 = K, the function
class of convex functions. This result is an addition of the result K ⊂ S∗1/2 given by Strohäcker in
1933 (see Gupta and Jain (1976)).

Ruscheweyh (1975) proved the following important property of the class Kn.
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Theorem 2.1.

Km+1 ⊂ Km holds for m ∈ N0 = N ∪ {0}.

One more significant relation between K and S∗1/2 is f ∈ K ⇔ z
√
f ′(z) ∈ S∗1/2 is also extended

to Km.

Owa, Fukui et al. (1986) proved the following properties of Ruscheweyh derivative Dαf(z) of a
function f .

Theorem 2.2.

Let f ∈ A be the element of the class S∗ of starlike functions and the condition Dαf(z) 6= 0,
0 < |z| < 1 for α ≥ −1, is satisfied by the function f(z). Then, Dαf(z) is also in the class S∗.

Theorem 2.3.

Let f ∈ A be element of the class K of convex functions and the condition Dα(zf ′(z)) 6= 0,
0 < |z| < 1 for α ≥ −1, satisfied by the function f(z). Then, Dαf(z) is also in K.

Writing

Dmf ≡ z(zm−1f)(m)

m!
, (9)

in terms of Hadamard product, (9) can be expressed as

Dmf ≡ z

(1− z)m+1
∗ f, m ∈ N. (10)

With this notation, the various subclasses of class A of analytic functions can be written as

f ∈ S∗1/2 ⇔ <
(
D1f

D0f

)
> 1/2, z ∈ ∆, (11)

and

f ∈ K ⇔ <
(
D2f

D1f

)
> 1/2, z ∈ ∆. (12)

In general,

f ∈ Km ⇔ <
(
Dm+1f

Dmf

)
> 1/2, z ∈ ∆. (13)

In this notation, K−1 can also be defined and it contains the functions f ∈ A with <(f(z)/z)
> 1/2, z ∈ ∆ as D−1f(z) = z from (10).
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Owa (1985a) (see also Owa (1985b)) generalized the Ruscheweyh derivative to arbitrary order β
as

Dβf ≡ z

(1− z)β+1
∗ f, β > −1. (14)

Definition 2.4.

The subclass of function class f ∈ A of analytic functions, is called pre-starlike class of order β,
if and only if

<
(
Dβ+1f(z)

Dβf(z)

)
>

1

2
, β ≥ −1,

where,Dβf(z) = z
(1−z)β+1 ∗f(z). The collection of pre-starlike functions of order β is represented

by Rβ (see Al-Amiri (1979)).

The extremal function (see, e.g. Owa and Uralegaddi (1984)) for the class of the pre-starlike func-
tions is

Sβ(z) =
z

(1− z)2(1−β)
. (15)

Sβ(z) can also be written as,

Sβ(z) = z +
∞∑
s=2

C(β, s)zs, (16)

where

C(β, s) =

∏s
k=2(k − 2β)

(s− 1)!
, (s = 2, 3, 4, ...). (17)

Clearly, the coefficient C(β, s) is decreasing in β and satisfies

lim
s→∞

C(β, s) =


∞, (β < 1/2),

1, (β = 1/2),

0, (β > 1/2).

(18)

Singh and Singh (1979) defined the class Rm ⊂ Km (the class in (13) studied by Ruscheweyh) as,

f ∈ Rm ⇔ <
(
Dm+1f

Dmf

)
>

m

m+ 1
, z ∈ ∆. (19)
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3. Ruscheweyh-Goyal derivative operator

In this section, we discuss fractional generalization of Ruscheweyh derivative which was intro-
duced by Goyal and Goyal (2005). The fractional operators have gained much attention by many
authors these days because of its increasing applications (e.g., see Singh, Kumar, and Baleanu
(2019), Goswami et al. (2019), and Singh, Kumar, Baleanu et al. (2019)).

Fractional Ruscheweyh−Goyal derivative operator involving Saigo fractional differential operator
(see Owa, Saigo et al. (1989)), established by Goyal and Goyal (2005) (see also, Agarwal and
Paliwal (2014), Parihar and Agarwal (2011)), is described as follows.

Definition 3.1. (Ruscheweyh-Goyal derivative operator)

Let f ∈ A be an analytic univalent function defined on unit disk ∆.

Jλ,µf(z) :=
Γ(µ− λ+ η + 2)

Γ(µ+ 1)Γ(η + 2)
zJλ,µ,η0,z (zµ−1f(z)) = z +

∞∑
s=n

asB
λ,µ(s)zs, (20)

where

Bλ,µ(s) :=
Γ(s+ µ)Γ(s+ η + 1)Γ(η + 2 + µ− λ)

Γ(1 + µ)Γ(s)Γ(η + 2)Γ(s+ η + 1 + µ− λ)
,

where Saigo fractional derivative of order λ (for details, see Owa, Saigo et al. (1989), Owa and
Srivatsava (1990) [Eq. 1.15]) of the function f(z) is defined as:

Jλ,µ,η0,z f(z) =


1

Γ(1−λ)
d
dz

{
zλ−µ

∫ z
0

(z − ζ)−λ2F1

(
µ− λ,−η; 1− λ; 1− ζ

z

)
f(ζ)dζ

}
,

(1 > λ ≥ 0)
dm

dzm
Jλ−m,µ,η0,z f(z), (m ≤ λ < m+ 1, m ∈ N)

(21)

f(z) = O(|z|s), (z → 0,max{0, µ− η − 1} − 1 < s).

Taking µ = λ in the above definition, it follows that

Jλ,λ,η0,z f(z) := Dλ
z f(z), (1 > λ ≥ 0).

Hence, for µ = λ, the Ruscheweyh-Goyal derivative Jλ,µ reduces into the Ruscheweyh derivative
Dλ.

Furthermore, the fractional derivative of power function, in terms of Gamma function, is given by

Jλ,µ,η0,z zν :=
Γ(ν + 1)Γ(ν − µ+ η + 2)

Γ(ν − µ+ 1)Γ(ν − λ+ η + 2)
zν−µ,

1 > λ ≥ 0; ν > (max{0, µ− η − 1} − 1).

(22)

The recurrence relation for the operator Jλ,µ,η0,z is

z(Jλ,µ,η0,z f(z))′ = Jλ+1,µ,η
0,z f(z)− (µ− λ+ η + 1)Jλ,µ,η0,z f(z), (23)
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Figure 1. Graph illustrating the application of Ruscheweyh-Goyal derivative on f(z) = 1+z
1−z

(1 > λ ≥ 0; ν > max{0, µ− η − 1} − 1).

The convolution form of the Ruscheweyh-Goyal derivative, defined in (20), of an analytic function
f(z) of the form (1), can be characterized as:

Jλ,µf(z) = z · 2F1(µ+ 1, η + 2; η + 2 + µ− λ; z) ∗ f(z). (24)

The trailing result is about the recurrence relation for the operator defined in (20).

Theorem 3.2.

The recurrence relation for the fractional Ruscheweyh-Goyal derivative operator Jλ,µf(z) defined
in (20) is given by

z
[
Jλ,µf(z)

]′
= (µ− λ+ η + 1)Jλ+1,µf(z)− (µ− λ+ η)Jλ,µf(z). (25)

Proof:

Differentiating (20) with respect to z, we get

z{Jλ,µf(z)}′ = Γ(µ− λ+ η + 2)

Γ(µ+ 1)Γ(η + 2)
{zJλ,µ,η0,z (zµ−1f(z)) + z2[Jλ,µ,η0,z (zµ−1f(z))]′}. (26)

Using the relation (23) therein, we obtain
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z{Jλ,µf(z)}′ =Γ(µ− λ+ η + 2)

Γ(µ+ 1)Γ(η + 2)

{
zJλ,µ,η0,z (zµ−1f(z))

+z[Jλ+1,µ,η
0,z (zµ−1f(z))− (µ− λ+ η + 1)Jλ,µ,η0,z (zµ−1f(z))]

}
.

(27)

Rewriting the above result in terms of fractional Ruscheweyh-Goyal operator (20), we obtain the
relation (25). �

For µ = λ, we get the corresponding result for the Ruscheweyh derivative.

4. Class Sλ,µ of pre-starlike type functions

Authors have defined various classes using fractional Ruscheweyh-Goyal derivative operator and
studied their geometric properties (see Agarwal and Paliwal (2014), Agarwal and Paliwal (2015),
Agarwal et al. (2019), Goyal and Goyal (2005)). Motivated by the work of Ruscheweyh (1975), in
the current section, a class of pre-starlike type functions involving fractional Ruscheweyh-Goyal
derivative is introduced and the inclusion relation for this class is obtained.

Definition 4.1.

The function f ∈ A, which is analytic, is belongs to the class Sλ,µ if the undermentioned relation
is fulfilled:

<
[
Jλ+1,µf(z)

Jλ,µf(z)

]
>

1

2
, z ∈ ∆,

where λ, µ ∈ R and 0 ≤ λ < 1.

To prove our results, the following lemma by Jack (1971) is needed.

Lemma 4.2.

If w is regular in |z| < R, w(0) = 0 and w be non-constant, then, |w| reaches its threshold value
on the circle |z| = ρ < R, 0 ≤ ρ < 1 at a point z0. Thus, z0w

′(z0)
w(z0)

≥ 1.

Further, the following result given by Ruscheweyh and Sheil-Small (1973) is needed as well.

Lemma 4.3.

Let φ(z) and g(z) are analytic in the disk of unit radius ∆ and satisfy g(0) = 0 = φ(0), g′(0) 6= 0,
φ′(0) 6= 0. Assume that for each σ, |σ| = 1 and δ, |δ| = 1, we have

φ(z) ∗ 1 + δσz

1− σz
g(z) 6= 0, 0 < |z| < 1. (28)
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Then, for <{F (z)} > 0, z ∈ ∆ where F (z) is analytic in the unit disk ∆,

<φ(z) ∗G(z)

φ(z) ∗ g(z)
> 0, z ∈ ∆, G(z) = F (g(z)). (29)

Theorem 4.4.

Sλ+1,µ ⊂ Sλ,µ holds for, µ ∈ R, 0 ≤ λ < 1.

Proof:

Assume f ∈ Sλ+1,µf(z).

Define g(z) = z
[
Jλ,µf(z)

z

] 2

µ−λ+η+1

and R = sup{ρ |g(z)| 6= 0, 0 < |z| < ρ}.

Thereupon, g(z) is single valued and u(z) = zg′(z)/g(z) is regular within the circle |z| < R.

Since

g(z) = z

[
Jλ,µf(z)

z

] 2

µ−λ+η+1

,

differentiating it logarithmically wth respect to z, we attain

zg
′
(z)

g(z)
= 1 +

2

(µ− λ+ η + 1)

[
z
(
Jλ,µf(z)

)′
Jλ,µf(z)

− 1

]
.

The recurrence relation for fractional Ruscheweyh-Goyal derivative is

z
[
Jλ,µf(z)

]′
= (µ− λ+ η + 1)Jλ+1,µf(z)− (µ− λ+ η)Jλ,µf(z).

So that,

Jλ+1,µf(z)

Jλ,µf(z)
− 1

2
=
u

2
. (30)

Again, differentiating (30) logarithmically with respect to z and using above recurrence relation,
we arrive at

Jλ+2,µf(z)

Jλ+1,µf(z)
− 1

2
=

1

(µ− λ+ η)

[
(µ− λ+ η + 1)u

2
+

z u
′

u+ 1
− 1

2

]
.

The condition

<
[

(µ− λ+ η + 1)u

2
+

z u
′

u+ 1

]
>

1

2
, |z| ∈ R,
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implies <(u) > 0, |z| < R. In fact, let u = 1+w
1−w , so that,

(µ− λ+ η + 1)u

2
+

z u
′

u+ 1
=

w
′
z

1− w
+

(µ− λ+ η + 1)

2

(1 + w)

(1− w)
, (31)

(µ− λ+ η + 1)u

2
+

z u
′

u+ 1
=
w
′
z

w

w

(1− w)
+

(µ− λ+ η + 1)

2

(1 + w)

(1− w)
.

If <(u(z0)) = 0, |z0| < R and for |z| ≤ |z0|, <(u(z)) ≥ 0 for a certain z0, then, |w(z)|
≤ |w(z0)| = 1, w(z0) 6= 1.

Lemma 4.2 and Equation (31) give

<
[
z u

′
(z0)

u(z0) + 1
+

(µ− λ+ η + 1)u(z0)

2

]
= −1

2

zow
′
(z0)

w(z0)
≤ −1

2
,

a falsity to our assumption. <(u(z0)) > 0 implies the univalence of g(z) in the circle |z| < R.
Thus, g(z) cannot elapse on |z| = R < 1 and we draw to close that R = 1. �

Corollary 4.5.

For the functions f ∈ A, that satisfy the following condition:

<
[
Jλ+1,µf(z)

Jλ,µf(z)

]
> 1, z ∈ ∆,

where λ, µ ∈ R, 0 ≤ λ < 1 and λ = µ, the class Sλ,µ reduces to the class Kn studied by
Ruscheweyh (1975).

Lemma 4.6.

The Ruscheweyh-Goyal derivative Jλ,µf of f ∈ A defined by (1), satisfies the following relation:

z
(
Jλ,µf(z)

)′
= Jλ,µ

(
zf
′
(z)
)
. (32)

Proof:

Since f(z) is of the form (1), so that

zf
′
(z) = z +

∞∑
k=s+1

kakz
k, (s ∈ N = {1, 2, 3, ...}),

thus,

Jλ,µ
(
zf
′
(z)
)

= z +
∞∑

k=s+1

kakB
λ,µzk,
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which is same as

z
(
Jλ,µf(z)

)′
= z +

∞∑
k=s+1

kakB
λ,µzk.

�

Theorem 4.7.

Let f is in the class S∗ which is analytic and starlike and fulfill the requirement Jλ,µf(z) 6= 0, (0 <
|z| < 1). Then, Jλ,µf(z) is also starlike.

Proof:

We can see that, by using Lemma 4.6

z
(
Jλ,µf(z)

)′
Jλ,µf(z)

=
Jλ,µ

(
zf
′
(z)
)

Jλ,µf(z)
=
z 2F1(µ+ 1, η + 2;µ− λ+ η + 2; z) ∗ (zf

′
(z))

z 2F1(µ+ 1, η + 2;µ− λ+ η + 2; z) ∗ f(z)
.

Setting δ = −1, φ(z) = z 2F1(µ+ 1, η + 2;µ− λ+ η + 2; z), F (z) = zf
′
(z)/f(z) and f(z)

= g(z), and in Lemma 4.3, we acquire

<

[
z
(
Jλ,µf(z)

)′
Jλ,µf(z)

]
> 0, (z ∈ ∆),

which signify Jλ,µf(z) ∈ S∗. �

Theorem 4.8.

Let f(z) is in the class K which is analytic convex function and meet the condition Jλ,µ(zf
′
(z)) 6=

0 (1 > |z| > 0). Then, Jλ,µf(z) is also in class K.

Proof:

As f(z) ∈ K if and only if zf ′(z) ∈ S∗, above theorem derives z
(
Jλ,µf(z)

)′
= Jλ,µ

(
zf
′
(z)
)
∈

S∗. Hence we have Jλ,µf(z) ∈ K. �

5. Majorization results for fractional Ruscheweyh-Goyal derivative and
the subclass Sλ,µq (A,B; γ)

Motivated by the class Sp,qα,β[A, B; γ] studied by Goyal et al. (2010), a subclass of analytic functions
of complex order γ 6= 0, is introduced here.

Definition 5.1.

A function g(z) ∈ A is belongs to the class Sλ,µq (A,B; γ) of complex order γ 6= 0 of univalent
functions in ∆, if and only if
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[
1 +

1

γ

{
z
(
Jλ,µg(z)

)(q+1)

(Jλ,µg(z))(q)
− 1 + q

}]
≺ 1 + Az

1 +Bz
, (33)

(z ∈ ∆, γ ∈ C \ {0}, −1 ≤ B < A ≤ 1, 0 ≤ λ < 1, µ > 0, q ∈ N0 = N ∪ {0}).

For µ = λ = 0, the aforementioned class reduces to class S∗(A,B; γ, q) introduced earlier by
Polatoğlu et al. (2006). Further, for q = 0, it changes in the class given by Polatoğlu and Özkan
(2006), which easily get reduced to class given by Nasr and Aouf (1985), i.e., S(γ) of starlike
function of complex order γ 6= 0. For γ = 1− α, 0 ≤ α < 1, the class S(1− α) = S∗(α) of the
starlike functions of order α is obtained.

Altinas et al. (2001) has obtained the majorization results for the class S(γ). Also, Majorization
problems have been investigated by MacGregor (1967) for the class S∗ = S∗(0).

In the present investigation, we begin with following majorization problems.

Theorem 5.2.

Suppose that g ∈ Sλ,µq (A,B; γ) and let the function f ∈ A. If
(
Jλ,µf(z)

)(q) majorized through(
Jλ,µg(z)

)(q) in ∆. Then, ∣∣∣(Jλ,µf(z)
)(q+1)

∣∣∣ ≤ ∣∣∣(Jλ,µg(z)
)(q+1)

∣∣∣ ,
for |z| ≤ ρ0, where ρ0 = ρ0(γ, q, A,B) is the smallest positive real root of the following equation,

|(1− q)B + γ(A−B)| ρ3−{2|B|+ |1− q|} ρ2−{|(1−q)B+γ(A−B)|+2}ρ+|1−q| = 0. (34)

Proof:

Since
(
Jλ,µg(z)

)(q) ∈ Sλ,µq (A,B; γ), from (33), we have

[
1 +

1

γ

{
z
(
Jλ,µg(z)

)(q+1)

(Jλ,µg(z))(q)
+ q − 1

}]
=

1 + Aw(z)

1 +Bw(z)
, (35)

(z ∈ ∆, −1 ≤ B < A ≤ 1, 0 ≤ λ < 1, µ > 0, q ∈ N0 = N ∪ {0}, γ ∈ C \ {0}),

wherew(z) = c1z+c2z
2+, ..., w ∈ P, P represents class of bounded functions which are analytic

in ∆ and fulfill the conditions

|w(z)| < |z|, w(0) = 0, and (z ∈ ∆). (36)

From (35), we have

z
(
Jλ,µg(z)

)(q+1)

(Jλ,µg(z))(q)
=

(1− q) + {(1− q)B + γ(A−B)}w(z)

1 +Bw(z)
(37)
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=⇒ z
(
Jλ,µg(z)

)(q+1)
=

(1− q) + {(1− q)B + γ(A−B)}w(z)

1 +Bw(z)

(
Jλ,µg(z)

)(q)

=⇒
(
Jλ,µg(z)

)(q)
=

(1 +Bw(z)) z

(1− q) + {(1− q)B + γ(A−B)}w(z)

(
Jλ,µg(z)

)(q+1)
. (38)

Using (36) in (38), making simple calculations, we obtain

∣∣∣(Jλ,µg(z)
)(q)
∣∣∣ ≤ (1 + |B||z|) |z|
|1− q| − |γ(A−B) + (1− q)B| |z|

∣∣∣(Jλ,µg(z)
)(q+1)

∣∣∣ . (39)

Now, since
(
Jλ,µf(z)

)(q) is majorized by
(
Jλ,µg(z)

)(q) in unit disk ∆, we have

(
Jλ,µf(z)

)(q)
= φ(z)

(
Jλ,µg(z)

)(q)
. (40)

Differentiating (40) with respect to z, we get(
Jλ,µf(z)

)(q+1)
= φ

′
(z)
(
Jλ,µg(z)

)(q)
+ φ(z)

(
Jλ,µg(z)

)(q+1)
, (z ∈ ∆). (41)

Thus, noting that φ ∈ P satisfies the inequality (e.g., see Nehari (1952))

1− |φ(z)|2

1− |z|2
≥ |φ′(z)|, (z ∈ ∆), (42)

and by applying (39) and (42) in (41), we get∣∣∣(Jλ,µf(z)
)(q+1)

∣∣∣
≤
[
|φ(z)|+ (|B||z|+ 1) |z|

|1− q| − |(1− q)B + γ(A−B)| |z|
.
1− |φ(z)|2

1− |z|2

] ∣∣∣(Jλ,µg(z)
)(q+1)

∣∣∣ , (43)

which, by setting |z| = ρ and |φ(z)| = ν, (0 ≤ ν ≤ 1) leads to the inequality∣∣∣(Jλ,µf(z)
)(q+1)

∣∣∣ ≤ Ψ(r, ν)
∣∣∣(Jλ,µg(z)

)(q+1)
∣∣∣ , (44)

where

Ψ(ρ, ν) =
(1− ν2) (1 + |B|ρ) ρ

(1− ρ2) (|1− q| − |(1− q)B + γ(A−B)| ρ)
+ ν, (45)

=⇒ Ψ(ρ, ν) =
(1− ν2) (1 + |B|ρ) ρ+ ν(1− ρ2) (|1− q| − |(1− q)B + γ(A−B)| ρ)

(|1− q| − |γ(A−B) + (1− q)B| ρ) (1− ρ2)
. (46)

In order to determine ρ0, we note that

max {ρ ∈ [0, 1] : Ψ(ρ, ν) ≤ 1,∀ν ∈ [0, 1]} = ρ0,

and

max {ρ ∈ [0, 1] : Θ(ρ, ν) ≥ 0,∀ν ∈ [0, 1]} = ρ0,

where
Θ(ρ, ν) = (1− ρ2) (|1− q| − |(1− q)B + γ(A−B)| ρ)− (1 + |B|ρ) (1− ν2)ρ

− ν(1− ρ2) (|1− q| − |(1− q)B + γ(A−B)| ρ) .
(47)
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After simple calculations, the inequality Θ(ρ, ν) ≥ 0 is comparable to

u(ρ, ν) = (1− ρ2) (|1− q| − |(1− q)B + γ(A−B)| ρ)− (1 + |B|ρ)(1 + ν)ρ ≥ 0.

Obviously, the function u(ρ, ν) obtains its least value at ν = 1, i.e.,

u(ρ, 1) = min {u(ρ, ν) : ν ∈ [0, 1]} = v(ρ),

where
v(ρ) = |(1− q)B + γ(A−B)| ρ3 − {|1− q|+ 2|B|} ρ2

− {|(1− q)B + γ(A−B)|+ 2}ρ+ |1− q|.
(48)

It pursues that 0 ≤ v(ρ) for all ρ ∈ [0, ρ0],where ρ0(γ, q, A,B) is the least positive root of Equation
(34). �

Setting B = −1, and A = 1, we get the following.

Corollary 5.3.

Suppose that g ∈ Sλ,µq (1,−1; γ) and let the function f ∈ A. If
(
Jλ,µf(z)

)(q) majorized by(
Jλ,µg(z)

)(q) in ∆. Then,

∣∣∣(Jλ,µf(z)
)(q+1)

∣∣∣ ≤ ∣∣∣(Jλ,µg(z)
)(q+1)

∣∣∣ , for ρ1 ≥ |z|,

where ρ1 = ρ1(γ, q, 1,−1) is the least positive real root of the equation

|2γ − (1− q)| ρ3 − {2 + |1− q|} ρ2 − {2 + |2γ − (1− q)|}ρ+ |1− q| = 0. (49)

Setting q = 0 in Corollary 5.3, we get the following result.

Corollary 5.4.

Suppose that g ∈ Sλ,µ0 (1,−1; γ) and let the function f ∈ A. If Jλ,µf(z) majorized by Jλ,µg(z) in
∆. Then,

∣∣∣(Jλ,µf(z)
)′∣∣∣ ≤ ∣∣∣(Jλ,µg(z)

)′∣∣∣ , for |z| ≤ ρ1,

where ρ1 = ρ1(γ, 0, 1,−1) is the smallest positive real root of the equation

|2γ − 1| ρ3 − 3ρ2 − 2{|γ − 1|+ 1}ρ+ 1 = 0. (50)

Setting λ = µ = 0 in Corollary (5.4), the consequence is the following.



AAM: Intern. J., Special Issue No. 6 (April 2020) 117

Corollary 5.5.

Suppose that g ∈ S0,0
0 (1,−1; γ) i.e. g ∈ S(1,−1; γ) := S(γ) and let the function f ∈ A. If f(z)

majorized by g(z) in ∆. Then,

|g′(z)| ≥ |f ′(z)| for |z| ≤ ρ1,

where ρ1 = ρ1(γ, 0, 1,−1) is the least positive real solution of the equation

|2γ − 1| ρ3 − 3ρ2 − 2{|γ − 1|+ 1}ρ+ 1 = 0. (51)

This is a known result obtained by Altinas et al. (2001), which contains an additional result given
for γ = 1 by MacGregor (1967).

Theorem 5.6.

Suppose that g ∈ Sλ,µq (A,B; γ) and let the function f ∈ A. If
(
Jλ,µf(z)

)(q) majorized by(
Jλ,µg(z)

)(q) in ∆. Then,

∣∣∣(Jλ+1,µf(z)
)(q)
∣∣∣ ≤ ∣∣∣(Jλ+1,µg(z)

)(q)
∣∣∣ ,

for |z| ≤ ρ0, where ρ0 = ρ0(γ, q, A,B, λ, µ) is the smallest positive real root of the equation,

{|µ− λ+ η + q||B|+ |γ(A−B) + (1− q)B|} ρ3

− {|µ− λ+ η + q| − 2|B| − |1− q|} ρ2

− {|(1− q)B + γ(A−B)|+ |µ− λ+ η + q||B|+ 2}ρ
+ {|µ− λ+ η + q|+ |1− q|} = 0.

(52)

Proof:

Now use the following easily verifiable identity

z
(
Jλ,µf(z)

)(q+1)
= (µ− λ+ η + 1)

(
Jλ+1,µf(z)

)(q) − (µ− λ+ η + q)
(
Jλ,µf(z)

)(q)
. (53)

Using (53) and (36) in (37), simple calculations leads to∣∣∣(Jλ,µg(z)
)(q)
∣∣∣

≤ |1 + µ− λ+ η| (|z||B|+ 1)

|1− q| − |(1− q)B + γ(A−B)| |z| − |µ− λ+ η + q| (|B||z| − 1)

∣∣∣(Jλ+1,µg(z)
)(q)
∣∣∣ . (54)

Multiplying (41) by z, we get

z
(
Jλ,µf(z)

)(q+1)
= z φ

′
(z)
(
Jλ,µg(z)

)(q)
+ z φ(z)

(
Jλ,µg(z)

)(q+1)
, (z ∈ ∆). (55)

Using (53) in the above equation, it yields(
Jλ+1,µf(z)

)(q)
=

z

(µ− λ+ η + 1)
φ
′
(z)
(
Jλ,µg(z)

)(q)
+ φ(z)

(
Jλ+1,µg(z)

)(q)
, (56)
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and by applying (54) and (42) in (56), we get

∣∣∣(Jλ+1,µf(z)
)(q)
∣∣∣

≤

|φ(z)|

+
(|B||z|+ 1) |z|

|1− q| − |γ(A−B) + (1− q)B| |z| − |µ− λ+ η + q| (|B||z| − 1)
.
1− |φ(z)|2

1− |z|2


×
∣∣∣(Jλ+1,µg(z)

)(q)
∣∣∣ ,

(57)

which upon setting |φ(z)| = ν, (0 ≤ ν ≤ 1) and |z| = ρ results in inequality∣∣∣(Jλ+1,µf(z)
)(q)
∣∣∣ ≤ Ψ(ρ, ν)

∣∣∣(Jλ+1,µg(z)
)(q)
∣∣∣ , (58)

where
Ψ(ρ, ν)

=

[
(1− ν2) (1 + |B|ρ) ρ

+ ν(1− ρ2) {|1− q| − |(1− q)B + γ(A−B)| ρ− |η + µ− λ+ q| (|B|ρ− 1)}

]
(1− ρ2) {|1− q| − |(1− q)B + γ(A−B)| ρ− |µ− λ+ η + q| (|B||z| − 1)}

.

(59)

In order to determine ρ0, we note that

max {ρ ∈ [0, 1] : Ψ(ρ, ν) ≤ 1,∀ν ∈ [0, 1]} = ρ0,

max {ρ ∈ [0, 1] : Θ(ρ, ν) ≥ 0, ∀ν ∈ [0, 1]} = ρ0,

where
Θ(ρ, ν) = (1− ρ2) {|1− q| − |(1− q)B + γ(A−B)| ρ− |η + µ− λ+ q| (|B||z| − 1)}

− (1− ν2) (|B|ρ+ 1) ρ− ν(1− ρ2)×
{|1− q| − |(1− q)B + γ(A−B)| ρ− |µ− λ+ η + q| (|B||z| − 1)} .

(60)

After simple calculations the inequality Θ(ρ, ν) ≥ 0 is comparable to

u(ρ, ν) =

(1− ρ2) {|1− q| − |γ(A−B) + (1− q)B| ρ− |µ− λ+ η + q| (|B||z| − 1)}
− (1 + ν)ρ(1 + |B|ρ) ≥ 0.

(61)

Obviously, the function u(ρ, ν) attains its least value at ν = 1, i.e.,

u(ρ, 1) = min {u(ρ, ν) : ν ∈ [0, 1]} = v(ρ),

where
v(ρ) = {|(1− q)B + γ(A−B)|+ |µ− λ+ η + q||B|} ρ3

− {|η + µ− λ+ q| − 2|B| − |1− q|} ρ2

− {|(1− q)B + γ(A−B)|+ |µ− λ+ η + q||B|+ 2}ρ
+ {|µ− λ+ η + q|+ |1− q|} .

(62)

It pursues that v(ρ) ≥ 0 for all ρ ∈ [0, ρ0], where ρ0(γ, q, A,B, λ, µ) is the least positive solution
of Equation (52), which completes our proof. �
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Setting B = −1 and A = 1 in Theorem 5.6, we get the following.

Corollary 5.7.

Suppose that, g ∈ Sλ,µq (1,−1; γ) and let the function f ∈ A. If
(
Jλ,µf(z)

)(q) majorized by(
Jλ,µg(z)

)(q) in ∆. Then, ∣∣∣(Jλ+1,µf(z)
)(q)
∣∣∣ ≤ ∣∣∣(Jλ+1,µg(z)

)(q)
∣∣∣ ,

for |z| ≤ ρ1, where ρ1 = ρ1(γ, q, 1,−1, λ, µ) is the smallest positive real root of the equation,

{|2γ − (1− q)|+ |η + µ− λ+ q|} ρ3 + {|µ− λ+ η + q|+ 2− |1− q|} ρ2

− {2 + |2γ − (1− q)|+ |η + µ− λ+ q|}ρ+ {|η + µ− λ+ q|+ |1− q|} = 0.
(63)

Setting q = 0 in Corollary 5.7, we get the result contained in the following corollary.

Corollary 5.8.

Suppose that g ∈ Sλ,µ0 (1,−1; γ) and let the function f ∈ A. If Jλ,µf(z) majorized by Jλ,µg(z) in
∆. Then, ∣∣Jλ+1,µf(z)

∣∣ ≤ ∣∣Jλ+1,µg(z)
∣∣ ,

for |z| ≤ ρ1, where ρ1 = ρ1(γ, 0, 1,−1, λ, µ) is the smallest positive real root of the equation,

{|2γ − 1|+ |µ− λ+ η|} ρ3 + {|µ− λ+ η|+ 1} ρ2 − {|2γ − 1|+ |µ− λ+ η|+ 2}ρ
+ {|µ− λ+ η|+ 1} = 0.

(64)

6. Conclusion

The history of pre-starlike functions goes back to 1977, when this class was studied by
Ruscheweyh. We defined a class Sλ,µ of pre-starlike type functions involving the Ruscheweyh-
Goyal fractional derivative. The inclusion relationship for this class is obtained. It is also shown
that the Ruscheweyh-Goyal derivative operator preserves not only analyticity but the convexity and
starlikeness also. Majorization results for the subclass of analytic functions, introduced by means
of fractional Ruscheweyh-Goyal derivative, are also found. The scope is open for finding many
other geometric properties of this class.
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