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Abstract

In this paper, we establish the existence and uniqueness of the solution to a nonlinear fractional
differential equation with nonlinear integral boundary conditions on time scales. We used the fixed
point theorems due to Banach, Schaefer’s, nonlinear alternative of Leray Schauder’s type and Kras-
noselskii’s to establish these results. In addition, we study Ulam-Hyer’s (UH) type stability result.
At the end, we present two examples to show the effectiveness of the obtained analytical results.
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1. Introduction

Fractional calculus is a branch of mathematics, in which arbitrary order integral and differential
operators are studied. In the last decades of the twentieth century, the theory of fractional calculus
and fractional differential equations has attracted the attention of many specialists due to lots of
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practical applications in many areas such as aerodynamics, control theory, signal and image pro-
cessing and fitting of experimental data, etc., in which most of them are modeled depending upon
their application, the effect of coupling, complicated environment, domain and certainly cannot be
described through classical differential equation.

The fractional calculus provides one of the excellent tools for describing the allometric scaling
laws, long memory processes and long-range interactions (for detail see Bagley and Torvik (1983),
Magin (2006), Rudolf (2000)). That is why, in the last few decays, many authors and researchers
have been given a lot of attention to the fractional differential equations and investigated the dif-
ferent types of results on the existence of solution of fractional differential equations (please see
Alqudah et al. (2019), Malik (2016), Ravichandran et al. (2019), Valliammal et al. (2019) and cited
references therein).

Recently, fractional differential equations with initial and boundary conditions have been applied
in many problems of applied nature such as, analytical formulations of systems and processes.
Moreover, fractional differential equations with integral boundary conditions appear in lots of nat-
ural phenomena arising from many fields such as fluid dynamics, chemical kinetics, electronics,
and biological models. Most of these phenomena can not be described through ordinary differen-
tial equations. Therefore, many authors studied the fractional differential equations with different
initial-boundary conditions by using the nonlinear functional analysis and various types of fixed
point theorems such as Schauder, Krasnoselskii’s, Dhang, Banach and Schaefer (see articles of
Agarwal et al. (2010), Ahmad and Nieto (2009), Benchohra et al. (2008), Shuqin (2006), Wang
and Feng (2008), Wang et al. (2018)). In Shuqin (2006), the author studied the existence of so-
lutions for a fractional order boundary value problem by using the fixed point theorem due to
nonlinear alternative. In Benchohra et al. (2008), authors used the Leray-Schauder, Schaefer’s and
Banach types fixed point theorems to establish the existence of solutions for a fractional order
differential equation with integral boundary conditions.

Stability analysis is the fundamental property of the mathematical analysis which is very important
in many fields of engineering and science. In the existing literature, there are many types of stabil-
ity like Mittag-Leffler, h-stability, exponential and Lyapunov stability. Fixed point approach and
Lyapunov method are the main tools to established these results. In the nineteenth-century, Ulam
and Hyer presented an interesting type of stability called Ulam-Hyer’s stability and nowadays it
has been picked up a great deal of consideration due to a wide range of applications in many fields
of science such as optimization and mathematical modeling. More recently, few researchers have
been worked on UH type stability for the fractional and ordinary differential equations (see the
articles by Ding (2018), Wang et al. (2012), Wang et al. (2013), Wang and Li (2016) and the cited
references therein).

In the end of nineteenth century, Hilger (1988) introduced the concept of time scales theory which
unifies the discrete and continuous analysis into a single theory. In general, one investigates the
discrete and continuous dynamical systems separately and most of the results have to be proved
for each case (using discrete analysis or continuous analysis). A time scales is a non-empty closed
subset of real numbers R. The results obtained on time scales will be true for the continuous, dis-
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crete as well as for any non-uniform time domain which are very useful in the study of complex
dynamical systems, hence, the study of differential equations on time scales has picked up a lot
of worldwide consideration and many scientists have found the applications of time scales in eco-
nomics, control systems, population dynamics and heat transfer system. For more study on time
scales, please see the books Bohner and Peterson (2002), (Bohner and Peterson (2003) and the
papers Agarwal and Bohner (1999), András and Mészáros (2013), Kumar and Malik (2019c), Liu
and Xiang (2008), Malik and Kumar (2020), and Shen (2017).

More recently, few authors have been worked on fractional differential equations on time scales
(Ahmadkhanlu and Jahanshahi (2012), Bastos et al. (2011), Benkhettou et al. (2016), Kumar and
Malik (2019a), Kumar and Malik (2019b), Malik and Kumar (2019), Yan et al. (2016)). Particu-
larly, in Ahmadkhanlu and Jahanshahi (2012), authors investigated the results of the existence of
solutions for a fractional initial value problem on time scales. In Yan et al. (2016), authors con-
sidered a fractional dynamic equation with boundary conditions on time scales and investigated
the existence of solutions. In Kumar and Malik (2019a), authors established the existence and UH
stability results for a fractional differential equation with impulsive conditions on time scales. In
Kumar and Malik (2019b), authors considered a nonlinear implicit fractional dynamical system
with impulses on time scales and established the existence, uniqueness and stability results. As
per our knowledge, there is not a single manuscript which examined the existence and stability
results for the nonlinear fractional order differential equations with integral boundary condition on
time scales. Motivated by the above works, in this manuscript, we consider the fractional order
differential equations with nonlinear integral boundary condition on time scales.

The rest of the paper is structured as follows: In Section 2, we give some fundamental definitions
preliminaries, important lemmas and problem of statement. Section 3 is devoted to the study of
existence and stability results for the considered problem. At last, we provide two examples to
show the effectiveness of the obtained analytical outcomes.

2. Preliminaries and Problem Statment

Here, we recall some fundamental definitions, basic notations and useful lemmas. The space of
all continuous functions f : I → R endowed with the norm ||f ||C = supθ∈I |f(θ)| is denoted by
C(I,R) and the space of Lebesgue integrable functions from I into R is denoted by L1(I,R).

A time scales T is an arbitrary non-empty closed subset of real numbers. We set Tk = T\{maxT}
if maxT exists, otherwise Tk = T. A time scales interval is defied as [a, b]T = {θ ∈ T : a ≤ θ ≤
b}. In a similar way, we can define the intervals (a, b)T, [a, b)T, (a, b]T. The forward jump operator
σ : T → T is given by σ(θ) := inf{s ∈ T : s > θ}, with inf ∅ = supT. A positive function
µ : T→ [0,∞) given by µ(θ) := σ(θ)− θ, ∀ θ ∈ T is called a graininess function.

The delta derivative (or ∆−derivative) of a function z : Tk → R at θ ∈ Tk is a number z∆(θ)
(provided it exists), if there exists a neighborhood U of θ and an ε > 0 such that

|[z(σ(θ))− z(s)]− z∆(θ)[σ(θ)− s]| ≤ ε|σ(θ)− s|, ∀ s ∈ U.
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Theorem 2.1. (Liu and Xiang (2008))

Let T be a time scales such that θ1, θ2 ∈ T with θ1 ≤ θ2. Also, let z : R → R is a continuous
non-decreasing function, then the following inequality holds∫ θ2

θ1

z(s)∆s ≤
∫ θ2

θ1

z(s)ds, (1)

Definition 2.2. (Ahmadkhanlu and Jahanshahi (2012))

The ∆−fractional integral of a integrable function z : [a, b]T → R is defined as

∆Iϑa+z(θ) =
1

Γ(ϑ)

∫ θ

a

(θ − s)ϑ−1z(s)∆s.

Definition 2.3. (Ahmadkhanlu and Jahanshahi (2012))

Let z : T→ R be a given function. Then the Caputo ∆−fractional derivative of z is given by

c∆ϑ
a+z(θ) =

1

Γ(n− ϑ)

∫ θ

a

(θ − s)n−ϑ−1z∆n

(s)∆s,

where n = [ϑ] + 1.

Lemma 2.4. (Ahmadkhanlu and Jahanshahi (2012))

Let z : [a, b]T → R is an integrable function, then the relation ∆Iϑ1∆
a+ Iϑ2

a+z =∆ Iϑ1+ϑ2

a+ z holds.

Problem Statement

We consider the following fractional fractional order differential equation with integral boundary
value problem

c∆ϑu(θ) = Ψ(θ, u(α(θ))), θ ∈ I = [0, T ]T, ϑ ∈ (0, 1),

βu(0)+ηu(T ) =
1

Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s, (2)

where c∆ϑ is the Caputo delta-fractional derivative and 0, T ∈ T. β, η ∈ R such that β + η 6= 0,
α : I → I is a continuous function with α(θ) ≤ θ, Ψ and g are some functions which will be
specified later.

Remark 2.5.

In comparison to the existing literature, if we set β = 1, ηu(T ) = −u0, g(s, u(s)) = 0, α(θ) = θ,
then the existence results can be found in (Ahmadkhanlu and Jahanshahi (2012)). Also, if we set,
β = 1, η = 1, g(s, u(s)) = 0, our problem is converted to a fractional differential equation with
anti-periodic boundary condition and by selecting β = 0, η = 1, then our problem is converted to
a terminal value problem.
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Definition 2.6.

A function u(θ) ∈ C(I,R) is said to be a solution of (2), if u satisfies c∆ϑu(θ) = Ψ(θ, u(α(θ)))

and βu(0) + ηu(T ) =
1

Γ(ϑ)

∫ T
0

(T − s)ϑ−1g(s, u(s))∆s.

Lemma 2.7.

Let Ψ : I×R→ R be a rd-continuous function. A function u(θ) is said to be a solution of equation
(2) if u(θ) is a solution of the following integral equation

u(θ) =

∫ T

0

G(θ, s)Ψ(s, u(α(s)))∆s +
1

(β + η)Γ(ϑ)

(∫ T

0

(T − s)ϑ−1g(s, u(s))∆s

)
, (3)

where

G(θ, s) =


(θ − s)ϑ−1

Γ(ϑ)
− η

(β + η)Γ(ϑ)
(T − s)ϑ−1, s ∈ (0, θ]T

− η

(β + η)Γ(ϑ)
(T − s)ϑ−1, s ∈ [θ, T ]T.

(4)

Proof:

From the Definition 2.3, we have:

c∆ϑu(θ) =
1

Γ(1− ϑ)

∫ θ

0

(θ − s)−ϑu∆(s)∆s

= ∆I1−ϑu∆(s).

(5)

Now, using the Lemma 2.4, we find ∆Iϑ c∆ϑu(θ) = ∆I1u∆(θ) = u(θ)− c1, where c1 ∈ R. Hence,

u(θ) = ∆IϑΨ(θ, u(α(θ))) + c1 =
1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s+ c1.

Also, the boundary conditions of equation (2) gives

c1 =
1

(β + η)Γ(ϑ)

(∫ T

0

(T − s)ϑ−1g(s, u(s))∆s − η

∫ T

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s

)
.

Hence, we get

u(θ) =
1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s

− η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s

+
1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s.

Subsequently, we get

u(θ) =

∫ T

0

G(θ, s)Ψ(s, u(α(s)))∆s +
1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s. (6)

Hence, the result follows. �
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Consider the following inequality

|c∆ϑv(θ)−Ψ(θ, v(α(θ)))| ≤ ε, θ ∈ I, (7)

where ε is a positive number i.e., ε > 0.

Definition 2.8. (Wang et al. (2012))

Equation (2) is called UH stable if there exists a constantH(LΨ,Lg,ϑ) > 0 such that for each solution
v of inequality (7) and for ε > 0, there exists a unique solution u of equation (2) satisfies the
following inequality

|v(θ)− u(θ)| ≤ H(LΨ,Lg,ϑ)ε, ∀ θ ∈ I.

Definition 2.9. (Wang et al. (2012))

Equation (2) is called generalized UH stable if there exists H(LΨ,Lg,ϑ) ∈ C(R+,R+),
H(LΨ,Lg,ϑ)(0) = 0, such that for each solution v of inequality (7), there exists a solution u of
equation (2) satisfies the following inequality

|v(θ)− u(θ)| ≤ H(LΨ,Lg,ϑ)(ε), ∀ θ ∈ I.

Remark 2.10.

Definition 2.8 =⇒ Definition 2.9.

Remark 2.11.

A function v ∈ C(I,R) is a solution of inequality (7) if and only if there is G ∈ C(I,R) such that

(a) |G(θ)| ≤ ε,∀ θ ∈ I.
(b) c∆ϑv(θ) = Ψ(θ, v(α(θ))) + G(θ), θ ∈ I.

From the above remark, we get

c∆ϑv(θ) = Ψ(θ, v(α(θ))) + G(θ), θ ∈ I. (8)

Now, from the Lemma 2.7, we can easily show that the solution v with

βv(0) + ηv(T ) =
1

Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, v(s))∆s,
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of the equation (8) is given by

v(θ) =
1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, v(α(s)))∆s+
1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1G(s)∆s

− η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1G(s)∆s

+
1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, v(s))∆s

− η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1Ψ(s, v(α(s)))∆s.

Consequentially, we get∣∣∣∣v(θ)− 1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, v(α(s)))∆s

− 1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, v(s))∆s

+
η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1

Γ(ϑ)
Ψ(s, v(α(s)))∆s

∣∣∣∣
≤Mε,

where,

M =
T ϑ

Γ(ϑ+ 1)

(
1 +

|η|
|β + η|

)
.

In order to prove the main results, we need the following assumptions:

(P1): Function Ψ : I × R→ R is continuous and satisfies the following:

(P1a): There exists a constant MΨ > 0 such that

|Ψ(θ, u)| ≤MΨ(1 + |u|), ∀ θ ∈ I, u ∈ R.

(P1b): There exists a constant LΨ > 0 such that

|Ψ(θ, u)−Ψ(θ, v)| ≤ LΨ|u− v|, ∀ θ ∈ I, u, v ∈ R.

(P2): Function g : I × R→ R is continuous and satisfies the following:

(P2a): There exists a constant Mg > 0 such that

|g(θ, u)| ≤Mg(1 + |u|), ∀ θ ∈ I, u ∈ R.

(P2b): There exists a positive constant Lg such that

|g(θ, u)− g(θ, v)| ≤ Lg|u− v|, ∀ θ ∈ I, u, v ∈ R.

(P3): K1 < 1, where K1 =
T ϑ

Γ(ϑ+ 1)

(
MΨ +

MΨ|η|
|β + η|

+
Mg

|β + η|

)
.
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(P4): There exists p(θ) ∈ L1(I,R+) and a non decreasing continuous function φ : [0,∞)→ (0,∞)
such that

|Ψ(θ, u)| ≤ p(θ)φ(|u|), for each θ ∈ I and u ∈ R.

3. Main Results

Theorem 3.1.

Let the assumptions (P1)-(P3) and

MLΨ +
LgT

ϑ

|β + η|Γ(ϑ+ 1)
< 1, (9)

are hold. Then, the equation (2) has a unique solution.

Proof:

For δ =
K1

1−K1

, we consider

B = {u ∈ C(I,R) : ‖u‖C ≤ δ} ⊆ C(I,R).

Defined an operator Υ : B → B as

(Υu)θ =
1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s

− η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s

+
1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s.

(10)

Firstly, we show that the operator Υ is well defined from B into B. For any θ ∈ I and u ∈ B, we
have:

|(Υu)(θ)| ≤
∣∣∣∣ 1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s

∣∣∣∣
+

∣∣∣∣ 1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s

∣∣∣∣
+

∣∣∣∣ 1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s

∣∣∣∣
≤ MΨ(1 + δ)

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1∆s

+

(
MΨ(1 + δ)|η|
|(β + η)|Γ(ϑ)

+
Mg(1 + δ)

|β + η|Γ(ϑ)

)∫ T

0

(T − s)ϑ−1∆s.
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Using the Theorem 2.1, we have

|(Υu)(θ)| ≤ MΨ(1 + δ)

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1ds

+

(
MΨ(1 + δ)|η|
|(β + η)|Γ(ϑ)

+
Mg(1 + δ)

|β + η|Γ(ϑ)

)∫ T

0

(T − s)ϑ−1ds

≤ MΨ(1 + δ)T ϑ

Γ(ϑ+ 1)
+

(
MΨ(1 + δ)|η|
|(β + η)|Γ(ϑ+ 1)

+
Mg(1 + δ)

|β + η|Γ(ϑ+ 1)

)
T ϑ.

(11)

Hence,

‖Υu‖C ≤ δ.

Therefore, Υ is a well defined operator from B into B. Now, we show that operator Υ is a contrac-
tive from B into B. For any u, v ∈ B and θ ∈ I, we have

|(Υu)(θ)− (Υv)(θ)| ≤ 1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1|Ψ(s, u(α(s)))−Ψ(s, v(α(s)))|∆s

+
|η|

|(β + η)|Γ(ϑ)

∫ T

0

(T − s)ϑ−1|Ψ(s, u(α(s)))−Ψ(s, v(α(s)))|∆s

+
1

|(β + η)|Γ(ϑ)

∫ T

0

(T − s)ϑ−1|g(s, u(s))− g(s, v(s))|∆s

≤ LΨ

Γ(ϑ)

(
T ϑ

ϑ
+

T ϑ|η|
ϑ|β + η|

)
‖u− v‖C +

T ϑLg
|β + η|Γ(ϑ+ 1)

‖u− v‖C .

Hence,

‖(Υu)− (Υv)‖C ≤ LF‖u− v‖C ,

where,

LF =
LΨT

ϑ

Γ(ϑ+ 1)

(
1 +

|η|
|β + η|

)
+

LgT
ϑ

|β + η|Γ(ϑ+ 1)
.

Therefore, Υ is a strict contraction mapping. Application of Banach contraction theorem, Υ has a
unique fixed point which is the solution of Equation (2). �

Theorem 3.2.

Let the assumptions (P1a) and (P2a) are fulfilled, then the equation (2) has at least one solution.

Proof:

For the convenience, we divide the proof into four steps as follows:

Step 1: The operator Υ defined in Theorem 3.1 is continuous. Let un be a sequence such that
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un → u in C(I,R), then for any θ ∈ I , we have

|(Υun)(θ)− (Υu)(θ)| ≤
∣∣∣∣ 1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1(Ψ(s, un(α(s)))−Ψ(s, u(α(s))))∆s

∣∣∣∣
+

∣∣∣∣ η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1(Ψ(s, un(α(s)))−Ψ(s, u(α(s))))∆s

∣∣∣∣
+

∣∣∣∣ 1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, un(s))− g(s, u(s))∆s

∣∣∣∣.
Since, the functions Ψ(θ, u(θ)) and g(θ, u(θ)) are continuous w.r.t u. Therefore, using the Lebesgue
dominated convergence theorem, we have

‖Υun −Υu‖C → 0 as n→∞.

Therefore, the operator Υ is continuous.

Step 2: The operator Υ is bounded. From equation (11) we have:

‖Υu‖C ≤
(
MΨ +

MΨ|η|
|(β + η)|

+
Mg

|β + η|

)
T ϑ(1 + supθ∈I(|u(θ)|))

Γ(ϑ+ 1)
.

Step 3: Let η1, η2 ∈ I such that η1 < η2, then we have

|(Υu)(η2)− (Υu)(η1)| ≤
∣∣∣∣ 1

Γ(ϑ)

∫ η1

0

(
(η2 − s)ϑ−1 − (η1 − s)ϑ−1

)
Ψ(s, u(α(s)))∆s

∣∣∣∣
+

∣∣∣∣ 1

Γ(ϑ)

∫ η2

η1

(η2 − s)ϑ−1Ψ(s, u(α(s)))∆s

∣∣∣∣
≤ MΨ

Γ(ϑ)

∫ η1

0

(
(η2 − s)ϑ−1 − (η1 − s)ϑ−1

)
∆s

+
MΨ

Γ(ϑ)

∫ η2

η1

(η2 − s)ϑ−1∆s.

Since (θ−s)ϑ−1 is continuous, hence |(Υu)(θ2)−(Υu)(θ1)| tends to zero when η1 → η2. Therefore,
from the three steps along with the Arzela-Ascoli theorem, Υ is completely continuous.

Step 4: Finally, we need to show that the set

B = {u ∈ C(I,R) : u = λΥ(u), λ ∈ (0, 1)},

is bounded. For this let u ∈ B, 0 < λ < 1, Thus for each θ ∈ I , we have:

u = λΥ(u) =
λ

Γ(ϑ)

(∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s

− η

(β + η)

∫ T

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s

+
1

(β + η)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s

)
.
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Clearly, the set B is bounded (using Equation (11)). Hence, from Step 1 to 4, one can find that all
the conditions of Schaefer’s fixed point theorem are hold. Thus, Υ has a fixed point which is the
solution of Equation (2). �

Theorem 3.3.

Let there exists a constant K > 0 such that

K > p∗φ(K)M +
MgT

ϑ

|β + η|Γ(ϑ+ 1)
, where p∗ = sup

θ∈I
p(θ) (12)

and the assumptions (P2a) and (P4) are satisfied. Then Equation (2) has at least one solution.

Proof:

Let us consider the operator Υ as given in Theorem 3.1. From Theorem 3.2, we can easily shown
that Υ is continuous and completely continuous. Also, for λ ∈ [0, 1], θ ∈ I , let there exists a u(θ)
such that u(θ) = λ(Υu)θ, then we have:

|u(θ)| = |λΥ(u)θ| =
∣∣∣∣λ( 1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s (13)

− η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s

+
1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s

)∣∣∣∣.
Hence,

‖u‖C ≤ P ∗φ(‖u‖C)M +
MgT

ϑ

|β + η|Γ(ϑ+ 1)
.

Now, from the condition (12) we get number K > 0 such that ‖u‖C 6= K. Let N = {u ∈ C(I,R) :
‖u‖C < K}, then the operator Υ : N̄ → C(I,R) is continuous and hence completely continuous.
Therefore, from the choice of N, there is no u ∈ ∂(N) such that u = λΥu, λ ∈ [0, 1]. Hence,
nonlinear alternative of Leray Schauder’s type fixed point theorem immediately gives a fixed point
of Υ, which is the solution of the system (2). �

Theorem 3.4.

Let the assumptions (P1)-(P2) be satisfied with MLΨ < 1, then Equation (2) has at least one
solution.

Proof:

To prove this result, let us define two maps Υ1 and Υ2 such that

(Υ1u)θ =
1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s

− η

(β + η)Γ(ϑ)

∫ θ

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s,

(14)



140 V. Kumar and M. Malik

(Υ2u)θ =
1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s

− η

(β + η)Γ(ϑ)

∫ T

θ

(T − s)ϑ−1Ψ(s, u(α(s)))∆s.

(15)

Clearly, Υ = Υ1 + Υ2 and the following steps can be easily prove using the same method as we
discussed in the Theorem 3.2.

Step 1: Υ1 is a contraction map, since,

‖(Υ1u)θ − (Υ1v)θ‖C ≤
LΨT

ϑ

Γ(ϑ+ 1)

(
1 +

|η|
|β + η|

)
‖(u− v)‖C .

Step 2: For each u ∈ B, we have: Υ1u+ Υ2u ∈ B.

Step 3: For each u ∈ B, ‖Υ2u‖C ≤ δ.

Step 4: Υ2 is continuous.

Step 5: Υ2 is equi-continuous. Thus, from the above steps and with the help of Arzela-Ascoli the-
orem, we conclude that Υ2(B) is compact. Therefore, collecting the step1-step5, we can conclude
that the conditions of Krasnoselskii’s fixed point theorem are hold and hence the equation (2) has
at least one solution in B. �

Now, we give the result of UH stability for the equation (2).

Theorem 3.5.

Let the assumptions (P1)-(P2) and inequality (9) are fulfilled. Then, Equation (2) is UH stable.

Proof:

Let u be a unique solution of Equation (2) and v be the solution of inequality (7). Therefore, by
Lemma 2.7, we have:

u(θ) =
1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s

− η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s

+
1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s.
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Subsequently,

|v(θ)− u(θ)| ≤
∣∣∣∣v(θ)− 1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1Ψ(s, u(α(s)))∆s

− 1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1g(s, u(s))∆s

+
η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1Ψ(s, u(α(s)))∆s

∣∣∣∣
≤ εM +

∣∣∣∣ 1

Γ(ϑ)

∫ θ

0

(θ − s)ϑ−1(Ψ(s, v(α(s)))−Ψ(s, u(α(s))))∆s

∣∣∣∣
+

∣∣∣∣ 1

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1(g(s, v(s))− g(s, u(s)))∆s

∣∣∣∣
+

∣∣∣∣ η

(β + η)Γ(ϑ)

∫ T

0

(T − s)ϑ−1(Ψ(s, v(α(s)))−Ψ(s, u(α(s))))∆s

∣∣∣∣.
Hence,

‖v − u‖C ≤ εM +
T ϑ

Γ(ϑ+ 1)

[
LΨ +

LΨ|η|
|β + η|

+
Lg
|β + η|

]
‖v − u‖C ,

which immediately gives

‖v − u‖C ≤
εM

1− LF
.

Thus,

‖v − u‖C ≤ H(LΨ,Lg,ϑ)ε,

where H(LΨ,Lg,ϑ) =
M

1− LF
. Hence, Equation (2) is UH stable. Further, if we set

H(LΨ,Lg,ϑ)(ε) = H(LΨ,Lg,ϑ)ε,H(LΨ,Lg,ϑ)(0) = 0,

then Equation (2) is generalized UH stable. �

4. Examples

Example 4.1.

We consider the following

c∆ϑu(θ) =
|u(θ)| sin θ

(1 + |u(θ)|) (θ + 5)2
, θ ∈ I = [0, 1]Tk , u ∈ R,

u(0)+u(1) =
1

Γ(ϑ)

∫ 1

0

(1− s)ϑ−1(1 + s cosu(s))

(s+ 2)2
∆s,

(16)

where T be any time scales which contains 0 and 1. Here T = 1, β = 1, η = 1.
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Set

Ψ(θ, u(α(θ))) =
|u(θ)| sin θ

(1 + |u(θ)|) (θ + 5)2
, g(θ, u(θ)) =

1 + θ cosu(θ)

(θ + 2)2
.

Since |Ψ(θ, u(α(θ)))| ≤ 1

25
and g(θ, u(θ)) ≤ 1

2
,∀ θ ∈ I, u ∈ R. Also, Ψ and g satisfies

|Ψ(θ, u)−Ψ(θ, v)| ≤ 1

25
|u− v| and |g(θ, u)− g(θ, v)| ≤ 1

4
|u− v|, ∀θ ∈ I, u, v ∈ R,

with LΨ =
1

25
, Lg =

1

4
. Hence, the conditions (P1)-(P3) are satisfied with

K1 =
0.56

Γ(ϑ+ 1)
< 1, ∀ ϑ ∈ (0, 1)

and

LΨT
ϑ

Γ(ϑ+ 1)

(
1 +

|η|
|β + η|

)
+

LgT
ϑ

|β + η|Γ(ϑ+ 1)
=

0.1850

Γ(ϑ+ 1)
< 1, ∀ ϑ ∈ (0, 1).

Therefore, by Theorem 3.1 and 3.5, Equation (16) has a unique solution which is generalized UH
stable.

Example 4.2.

Consider the following problem

c∆ϑu(θ) = 1 + θ cosu(θ), θ ∈ I = [0, 1]Tk , u ∈ R,

u(0)+u(T ) =
1

Γ(ϑ)

∫ 1

0

5(1− s)ϑ−1e−2s|u|
2 + es(1 + |u|)

∆s,
(17)

where T be any time scales which contains 0 and 1. The functions

Ψ(θ, u(α(θ))) = 1 + θ cosu(θ) and g(θ, u(θ)) =
5e−2t|u|

2 + eθ(1 + |u|)
,

satisfy (P1a)-(P2a) with |Ψ(θ, u(θ))| ≤ 2 and |g(θ, u)| ≤ 5

3
, ∀ θ ∈ I, u ∈ R. Therefore, by

Theorem 3.2, Equation (17) has at least one solution.

5. Conclusion

In this manuscript, we have successfully established the sufficient conditions for the existence of
solutions to a fractional dynamical equation with nonlinear integral boundary conditions on time
scales. For existence of at least one solution, we used Schaefer, Schauder and Krasnoselskii’s fixed
point theorem. Further, we used the Banach fixed point theorem for existence of a unique solution.
Moreover, we studied the UH stability results for the considered system. In the end, two examples
are given to demonstrate the effectiveness of the obtained analytical results.
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