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Abstract

A non-uniform Haar wavelet method is proposed on specially designed non-uniform grid for the
numerical treatment of singularly perturbed differential-difference equations arising in neuronal
variability. We convert the delay and shift terms using Taylor series upto second order and then the
problem with delay and shift is converted into a new problem without the delay and shift terms.
Then it is solved by using non-uniform Haar wavelet. Two test examples have been demonstrated
to show the accuracy of the non-uniform Haar wavelet method. The performance of the present
method yield more accurate results on increasing the resolution level and converges fast in com-
parison to uniform Haar wavelet.
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1. Introduction

Singularly perturbed differential-difference equations (SPDDE) arises in the mathematical mod-
elling of neuronal variability, mathematical biology, study of human pupil light reflex, control
theory, study of bistable devices and various models of physiological process and disease. These
type of problems have been studied by Kadalbajoo and Sharma (2005), Khan and Raza (2019),
Lange and Miura (1994), Patidar and Sharma (2006), Raza and Khan (2019b), etc.

Basic non-uniform Haar wavelet and non-uniform multi-resolution analysis was introduced by
Dubeau et al. (2004). Solution of integral and differential equations using non-uniform Haar
wavelet was given by U. Lepik ((2008), (2009)). Solution of singularly perturbed two point bound-
ary value problems using non-uniform Haar wavelet was given by Haq et al. (2011) and Islam et
al. (2010). For detailed study of wavelet, we refer to Ahmad and Shah (2013), Chen and Hsiao
(1997), Daubechies (1988), O. Oruc (2018), Kumar and Pandit (2015), Mittal and Pandit ((2017),
(2018)), Khan and Raza (2019), Jiwari ((2012), (2015)), and Youssri et al. (2015).

In this paper we discuss singularly perturbed differential equations with delay and shift and non-
uniform Haar wavelet in Section 2 and method of solution in Section 3. We transform the delay
and shift term by using Taylor series up to second order and then the problem with delay and shift
is converted into a new problem, which become singularly perturbed differential equations without
the delay and shift is solved by non-uniform Haar wavelet. In case of small delay and shift Taylor
series is helpful. But in case of large delay and shift or neutral delay, we refer to Raza and Khan
(2019a). Numerical algorithm of the scheme is given in Section 4. Error analysis is discussed in
Section 5. Numerical examples along with discussion are given in Section 6, and the conclusion in
Section 7.

2. Preliminaries
2.1. Singularly perturbed differential equations with delay and shift

We consider singularly perturbed differential equations with delay and shift as follows:

ey’ (1) + a()y'(t) + a()y(t — 0) + b(t)y(t) + c()y(t +n) = f(t), te[0,1], (1)

with the boundary conditions

y(t) =o(t), on —0<t<0, (2)

and

y(t) = (1), on 1<t<1+n, (3)

where a(t), b(t), c(t),f(t), ¢(t) and 1(t) are sufficiently smooth functions, € is a perturbation
parameter, 0 < € << 1, 4 and n are delay and shift parameters which depends on €. In case, if §
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and 7 are 0 in equation (1), then the SPDDE becomes singularly perturbed differential equations.
Singularly perturbed boundary value problems have been discussed by many researchers such as
Aziz and Khan (2002), Khan and Khandelwal (2014), Khan et al. (2006), Nafeh (1979), Pandit and
Kumar (2014), Shah et al. (2016), ElI-Ajou et al. (2019), and Kumar et al. (2019).

2.2. Non-uniform Haar wavelet

Definition 2.1.

The non-uniform Haar wavelet family for ¢ € [0, 1] is defined as follows:

1, §i(i) <t < &(i),
Hi(t) = ¢ —ny, (i) <t < &(0), (4)

0, otherwise,

where 7 indicates the wavelet number and

& (1) = w(2kp), &2(1) = w((2k + Dp),

&s(i) = x((2k + 2)p),
m=2,5=0,1,2...,J, M = 2/ and integer k = 0,1...,m — 1.

=
I
Sli

The integration of Haar wavelet is given by

t—&(4), §1(i) <t < (1),
Pi(t) = 4 (&(i) —t)ng,  &(i) <t < &(i), &)

0, otherwise.

The double integration of Haar wavelet is given as follows:

s(t—=&))*, &(i) <t < &(i),
_ K= 5(&30) — )P, (i) <t < &(i),
207k G <t<l ©
0, otherwise,

where K = %

Proceeding in similar manner, the n'" integration of Haar wavelet can be written as:

0, t < &(7),
oy et =&, (1) <t < &),
PO =0 310 e Gy — (14 - ()1 &) <t <&),
31— E1(0)" — (14 o)t — G0)) + malt — E(0), &(i) <
where n; = (€2—61)

(6s—&1)"
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Definition 2.2.

The non-uniform grid i.e g-mesh is defined as

t(u)

~

t(j) =

_ iU

1—¢

ST 520,12, N

1_qN7 .] Pt B} 4T

— 1)+ £y

;JF(J), j=0,1,2,...N.

59

®)

)

The matrix of non-uniform Haar wavelet with respect to the non-uniform grid (9) when ¢ = 0.99

is given as follows:

1

—939 =939 —939 —-939

1 1 1

11 1 1
11 1 1
—201 —20
11 557 5o
00 0 0
—100
1W 0 —?00
00 1 =
00 0 0
00 0 0

902

0

S = O O =

902 902 902

0 0 0

1 —201 —201
197 197

0 0 0

0 0 0

—100
% 0 7?00
0 1 =

The matrix of integral and double integral of non-uniform Haar wavelet with respect to the non-
uniform grid (9) when ¢ = 0.99 are given as:

P=1

16

1
Q=55

235 549 365 301 1034 634 1564 1916
3631 2837 1137 673 1807 911 1911 2039
235 549 365 301 1959 760 255 408
3631 2837 1137 673 4399 2401 1349 6497
235 549 557 28 0 988 0 0
3631 2837 2888 437 5237115 752 376
225 225 0 0 0 4359 4059 6109
I G
0 0 12533 12533 291 4237519 0 0
0 0 0 0 4359 4359 1[32 1[32
0 0 0 0 0 0 3151 3151
17 103 464 602 1212 1669 4048 366
8117 5501 9005 6019 7403 6892 12087 829
17 1 464 02 197 1475 730 283
8117 5501 9005 6019 1233 7129 3069 1118
17 103 101 27 211 211 211
8117 5501 2128 424 3212 3212 3212 212
0 0 0 0 74 207 6347 25
38291 11981 144923 553
17 137 123 123 123 123 123 123
8117 9385 7378 7378 7378 7378 7378 7378
0 0 53 51 745 745 745 745
26344 3637 46521 46521 46521 46521
0 0 0 0 74 205 173 173
38291 15219 1162446 1%34216
0O 0 0 0 0 0 o

34475 7883
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3. Method for solving singularly perturbed differential difference
equations of neuronal variability

We converted the delayed term y(¢ — §) and shift term y(¢ + n) using Taylor series expansion up
to second order and then apply non-uniform Haar wavelet method to solve it numerically.

By Taylor series expansion, we obtain the delay and shift term y(t — ) and y(t + 7) as

52
y(t —0) = y(t) — oy'(t) + 5y”(t), (10)
and
2
y(t+n) = y(t) +ny'(t) + %y”(t), (11)

neglecting higher order terms.

Using Equations (10) and (11) in singularly perturbed differential difference equation (1) we get

ey (t) + a(t)y'(t) + a(t)(y(t) — ' (t) + Fy" (1)) + b(t)y(t)

+e(t)(y(t) +ny' (8) + Ly" (1) = F(2). (12)
On simplifying we get,
(e a0 + )2 ) () + (al0) ~ a5 + e 0
2 2 (13)
+ (a(t) +b(t) + c(t)y(t) = f(t).
In order to solve this problem with boundary conditions (2) and (3) we assume that
N
Y1) = aiH(t). (14)
i=1
Now integrating (14) from O to ¢, we get
N
()= aPilt) +y(0). (15)
i=1
Further to find /'(0), integrate equation (15) from 0 to 1, we get
N
y'(0) = y(1) —y(0) = Y aCi(t), (16)
i=1

where C;(t) = fol Pi(t)dt.

Again integrating Equation (15) from O to ¢, we get

N

y(t) = a:Qilt) + ty'(0) + y(0). (17)

i=1
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Now, using Equation (16) in Equations (15) and (17), we get

y(t) = Z a;Pi(t) + y(1) — y(0) — Z a;C;(t), (18)
and ) .
y(t) = Z a; Qi(t) +t(y(1) —y(0) — Z a,Ci(t)) + y(0). (19)

Using equations (14), (18) and (19) in equation (13), we obtain the following system of linear
equations:

(e +a(t)> 5 % Z Q1) + (alt) = a(t)d + () (Y aPilt)
(1) =9(0) = 3Gt + (@) +50) + D) (3w Q)
+t(y(1) = y(0) = >_ aiCi(t)) +y(0)) = f(1) (20)

—a(t)d + c(t)n) + t(a(t) + b(t) +c(t))) — y(0). (21)

Now, we can easily find the non-uniform Haar wavelet coefficient a;’s by solving system of linear
equations (21) with boundary conditions (2) and (3) using any known method. Then put the values
of a;’s in equation (19) which is the non-uniform Haar wavelet solution of singularly perturbed
differential difference equation.

4. Numerical algorithm of the scheme

Algorithm. Input

Step 1: Compute the matrix of the Haar wavelet ;(¢) from Equation (4),

Step 2: Compute the matrices of integral of the Haar wavelet P;(¢) and Q;(¢) from Equations (5)
and (6), respectively,

Step 3: Expand the term which contains delay ¢ and shift 7 using Taylor series of Equation (1) up
to second order and then convert the problem (1) into new problem (13),

Step 4: Construct the expressions given by Equations (14)-(21),

Step S: By using Step 4 construct the left hand side matrix of the Equation (21),

Step 6: Compute the unknown vector a; by solving the system of linear equations (21),

Step 7: Put the vector a; in Equation (19),

Output: Obtained approximate solution y(t).
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5. Error analysis

Lemma 5.1.

Let y(z) be a square integrable function with bounded first derivative on (0, 1) and y(z,) be Haar
wavelet approximation of y(z) then the error norm at J** level satisfies the inequality:

9—2(J+1) 2
HEHf;ZDVGZ( 7 ) : (22)
where K is a positive constant and D is given by 3/(t) < D.
Proof:
For the proof see Islam et al. (2010) and Pandit and Kumar (2014). =

In singularly perturbed differential difference equations with turning point arising in neuronal vari-
ability, we do not have the exact solution. Hence the maximum absolute residual error is calculated
by the following formula:

E = Maz.|(e + a(tj)% + C(tj)%)y”(tj) + (afty) — a(t;)0 + c(ty)n)y' ()

+ (alt;) +b(t;) +c(t)y(ty) — f(t5)], (23)

where y”(t;), ¥'(t;) and y(t;) are given in equations (14), (18) and (19) respectively and ¢; are the
discrete points given by Equations (8) and (9), 7 = 1,2, ..., V.

6. Numerical examples

In this section we demonstrate two linear problems of singularly perturbed differential difference
equations arising in neuronal variability to illustrate the non-uniform Haar wavelet method. The
results are tabulated for various values and also compared with the exponentially fitted operator
finite difference method by Rai and Sharma (2012).

Problem 1. Let us assume the following SPDDE
ey’ (t) +2(t — 5)(1+ 23t — 3)y — (5() + (t — 3) 25y (t) + 5yt — )
+iy(t+n)=t, te€l0,1] (24)
with boundary conditions

y(t) =0, =6 <t<0, y(t)=0, 1<t<1+n. (25)

Maximum absolute residual errors (MARE) obtained by non-uniform Haar wavelet method with
different resolutions level are given in the Tables 1.1-1.4 for a particular value of perturbation pa-
rameter and various values of delay and shift parameters. For the sake of comparison, results of
exponentially fitted operator finite difference method by Rai and Sharma (2012) is given in Table
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1.5. Also, graph of uniform and non-uniform Haar wavelet (NUHW) solution is given in Figures
1, 2, 3, and 4, respectively.

Table 1.1 MARE on g-mesh for fixed values of = 0.2, = 0.1 and various values of € using NUHW

e\ 32 64 128 256 512 1024
10° 4.5103e-17  3.7188e-17  2.4286e-17 1.4122e-17 3.1903e-17 7.0911e-16
1072 3.4694e-17 1.1883e-16 2.3636e-17 2.2416e-17  3.6782¢-17  2.0844e-17
1074 4.3802e-17  7.9797e-17  2.6455e-17  2.4340e-17  5.1174e-17  1.1081e-16
1075 5.4210e-17  8.7604e-17  3.1557e-17  2.3066e-17  4.5482¢-17  2.0914e-16
1078 7.5027e-17  1.6220e-16  1.9028e-17  2.2416e-17  6.1366e-17  3.5345¢-16
10710 4.7705e-17  1.5439¢-16  1.8377e-17  2.3310e-17  3.5128e-17  2.3386e-16
10712 4.7705e-17  1.543%¢-16  1.8377e-17  2.0708e-17  3.9465¢-17  2.3137e-16
1071 47705e-17  1.5439%-16 1.8377e-17  2.0708e-17  3.9465¢-17  2.3137e-16
10716 4.7705e-17  1.5439¢-16  1.8377e-17  2.0708e-17  3.9465¢-17  2.3137e-16
10718 4.7705e-17  1.5439¢-16  1.8377e-17  2.0708e-17  3.9465¢-17  2.3137e-16

Table 1.2 MARE on g-mesh for fixed values of § = 0.2, = 0.2 and various values of € using NUHW

\N 32 64 128 256 512 1024
107 4.4669e-17 3.2960e-17 1.8160e-17  6.2450e-17 5.2204e-17  2.7367e-16
1072 3.4694e-17 1.9602e-16 2.1684e-17  4.0115e-17  2.6807e-17  2.9118e-17
107%  4.2934e-17  1.4929e-16 2.5967e-17 3.7080e-17  6.4185e-17  1.3097e-16
1079 3.1225e-17  1.2577e-16 5.7083e-17  3.2526e-17 5.074le-17  3.7828e-16
1078 3.7730e-17  1.4658e-16 2.6021e-17 2.1413e-17 4.9873e-17  3.397%-16
10710 3.4694e-17 1.3618e-16  2.9924e-17 2.3419¢-17 4.8139%-17  3.8804e-16
10712 3.4694e-17 1.3618e-16 2.9924e-17 2.3419e-17  5.2909e-17  2.5240e-16
1071 34694e-17 1.3618e-16 2.9924e-17  2.3419e-17  5.2909e-17  2.5240e-16
10710 3.4694e-17 1.3618e-16  2.9924e-17  2.3419%-17 5.2909¢-17  2.5240e-16
10718 3.4694e-17  1.3618e-16 2.9924e-17  2.3419e-17  5.2909-17  2.5240e-16

Table 1.3 MARE on g-mesh for fixed values of § = 0.2, = 0.4 and various values of ¢ using NUHW

e\N = 32 64 128 256 512 1024
10° 3.4694e-17  3.3827e-17  2.0329e-17 4.0766e-17  2.6915e-17  2.3872e-16
1072 5.4210e-17 5.8113e-17 4.9602e-17  2.3365e-17  3.8489%e-17  1.5460e-17
1074 3.2960e-17  5.6379e-17  2.6455e-17  3.3908e-17  1.6025e-16  1.4472e-15
1076 3.9465e-17  5.9848e-17 4.4506e-17  2.6895e-17  2.5869e-16  2.2520e-15
1078 8.7170e-17  9.1073e-17 3.3014e-17 3.2526e-17 1.6155e-16  2.0504e-15
10710 55511e-17  6.9497e-17  4.3531e-17 2.3419e-17  1.4008e-16  2.6264e-15
10712 55511e-17  6.9497e-17  4.3531e-17  2.3419e-17  1.4333e-16  2.1589%¢-15
1071 55511e-17  6.9497e-17  4.3531e-17  2.3419e-17  1.4333e-16  2.1589%¢-15
10716 55511e-17  6.9497e-17  4.3531e-17 2.3419e-17  1.4333e-16  2.1589¢-15
10718 55511e-17  6.9497e-17  4.3531e-17  2.3419e-17  1.4333e-16  2.1589%¢-15
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Table 1.4 MARE on g-mesh for fixed values of § = 0.4, 7 = 0.1 and various values of € using NUHW

A. Raza and A. Khan

e\N 32 64 128 256 512 1024
1079 3.0791e-17 3.1225e-17 1.8974e-17 1.9082e-17 4.0766e-17  8.4163e-16
1072 7.5894e-17 1.9342e-16  6.0444e-17  2.3256e-17  2.7322e-17  2.3080e-17
107 3.3827e-17  2.3245e-16  3.1171e-17  5.0659-17  3.3746e-17  1.0018e-16
107%  5.0741e-17 2.0817e-16 5.8818e-17 4.765le-17 3.0358e-17  1.5450e-16
1078 52042e-17 2.1077e-16  4.6566e-17  3.5670e-17 3.4911e-17  2.4199¢-16
10710 4.1633e-17  2.0296e-16  3.5562e-17  3.7513e-17  2.5153e-17  1.9266¢-16
10712 4.1633e-17  2.0296e-16  3.5562e-17  3.2092e-17  2.1034e-17  1.8236e-16
1071 4.1633e-17  2.0296e-16  3.5562e-17  3.2092e-17  2.1034e-17  1.8236e-16
1070 4.1633e-17  2.0296e-16  3.5562e-17  3.2092e-17  2.1034e-17  1.8236e-16
107" 4.1633e-17  2.0296e-16  3.5562e-17  3.2092e-17  2.1034e-17  1.8236e-16

Table 1.5 MARE obtained by

e\N 100 200 400 300

1 43770e-05 2.2140e-05 1.1130e-05 5.5810e-06
107" 6.8910e-04 3.5010e-04 1.7650e-04  8.8610e-05
1072 1.7000e-03  8.2590e-04  4.0680e-04  2.0180e-04
107%  5.9670e-03 3.0320e-03  1.3890e-03  6.3170e-04
1076 6.4170e-03  4.0930e-03  2.5920e-03  1.5930e-03
1078 6.4170e-03  4.0930e-03  2.5910e-03  1.6350e-03
10719 6.4170e-03  4.0930e-03  2.591e0-03  1.6350e-03
1072 6.4170e-03  4.0930e-03  2.5910e-03  1.6350e-03
107 6.4170e-03  4.0930e-03  2.5910e-03  1.635¢-03
10716 6.4170e-03  4.0930e-03  2.591e-03  1.6350e-03
1078 6.4170e-03  4.0930e-03  2.5910e-03  1.6350e-03

Rai and Sharma (2012) for fixed values of § = 0.4, 7 = 0.2 and various values of €

Figure 1. Graph of solution for problem 1 for ¢ = 1075, n = 0.1 and 6 = 0.2 with J = 7 using uniform Haar wavelet

Figure 2. Graph of solution of problem 1 for e = 1075, n =0.1and § = 0.2 with J = 5 using uniform Haar wavelet

Problem 2. Let us assume the following SPDDE

e (1) + (t— S) B+ At — +

2

LAt — Sy s) vyt =1,

2

2

Ny —2y(t)

t €[0,1],

(26)
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Figure 3. Graph of solution of problem 1 for e = 10718, n=0.1and 6 = 0.2 with J = 10 using NUHW

Figure 4. Graph of solution of problem 1 for € = 10713, n=0.1and § = 0.2 with J = 7 using NUHW

with boundary conditions
y(t) =0, =0<t<0, yt)y=1, 1<t<1+n. 27

Maximum absolute residual errors (MARE) using non-uniform Haar wavelet method with different
resolutions level are given in the Tables 2.1 — 2.4 for a particular value of perturbation parameter
and various values of delay and shift parameters. For the sake of comparison, results of exponen-
tially fitted operator finite difference method by Rai and Sharma (2012) is given in Table 2.5. Also,
the graph of uniform and non-uniform Haar wavelet (NUHW) solution is given in Figures 5 and
6-8, respectively.

Table 2.1 MARE on g-mesh for fixed values of = 0.2, » = 0.1 and various values of € using NUHW

e\N 64 128 256 512 1024
10° 7.2858e-17  4.1633e-17  3.3827e-17  4.0766e-17  7.5135e-16
1072 2.8610e-05 2.6546e-06 8.3612e-07 1.2690e-07  7.1002¢-08
1071 2.4928¢-05 1.8036e-06 7.7174e-07 4.3316e-08  3.1363¢-08
1075 2.4928¢-05 1.8036e-06 7.7173e-07 4.3307e-08  3.1358¢-08
1078 2.4928¢-05 1.8036e-06 7.7173e-07 4.3307e-08  3.1358¢-08
10710 2.4928¢-05 1.8036e-06 7.7173e-07  4.3307e-08  3.1358¢-08
10712 2.4928¢-05 1.8036e-06 7.7173e-07  4.3307e-08  3.1358e-08
1071 2.4928¢-05 1.8036e-06 7.7173e-07  4.3307e-08  3.1358¢-08
10716 2.4928¢-05 1.8036e-06 7.7173e-07  4.3307e-08  3.1358¢-08
10718 2.4928¢-05  1.8036e-06 7.7173e-07  4.3307e-08  3.1358¢-08
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Table 2.2 MARE on g-mesh for fixed values of § = 0.2, 7 = 0.2 and various values of € using NUHW

e\N 64 128 256 512 1024
10  7.9797e-17 4.8572e-17 5.8547e-17 4.9873e-17  1.1362e-15
1072 54491e-05 7.3087e-06 9.2588¢-07  2.4045e-07  1.5236e-07
107*  5.2413e-05  7.3161e-06  7.3080e-07 3.3181e-07  1.8416e-07
1078 5.2413¢-05 7.3161e-06 7.3078¢-07 3.3182e-07  1.8416e-07
1078 52413¢-05 7.3161e-06 7.3078¢-07 3.3182e-07  1.8416e-07
10710 52413e-05 7.3161e-06 7.3078¢-07 3.3182e-07  1.8416e-07
10712 5.2413¢-05 7.3161e-06 7.3078¢-07 3.3182e-07  1.8416e-07
1071 5.2413¢-05 7.3161e-06 7.3078¢-07 3.3182e-07  1.8416e-07
10716 52413e-05 7.3161e-06 7.3078¢-07 3.3182e-07  1.8416e-07
107" 52413e-05 7.3161e-06 7.3078¢-07 3.3182e-07  1.8416e-07

Table 2.3 MARE on g-mesh for fixed values of § = 0.2, = 0.4 and various values of ¢ using NUHW

e\N 64 128 256 512 1024

107" 6.5919e-17  5.7246e-17  6.9823e-17  5.4210e-17  9.5366e-16
1072 4.1559¢-06  2.5940e-06 1.1127¢-06  3.8681e-07  3.5636e-07
107 9.1955¢-06  1.4259e-06 1.4917¢-06 5.4775e-07 3.4771e-07
1076 9.1960e-06 1.4258e-06 1.4918¢-06 5.4775e-07 3.4771e-07
1078 9.1960e-06 1.4258e-06 1.4918¢-06 5.4775e-07 3.4771e-07
10719 9.1960e-06 1.4258¢-06 1.4918¢-06 5.4775e-07 3.4771e-07
10712 9.1960e-06 1.4258e-06 1.4918¢-06 5.4775e-07 3.4771e-07
107" 9.1960e-06 1.4258¢-06 1.4918¢-06 5.4775e-07 3.4771e-07
10710 9.1960e-06 1.4258¢-06 1.4918¢-06 5.4775e-07  3.4771e-07
10718 9.1960e-06 1.4258¢-06 1.4918¢-06 5.4775e-07 3.4771e-07

Table 2.4 MARE on g-mesh for fixed values of 6 = 0.4, = 0.1 and various values of € using NUHW

e\N 64 128 256 512 1024
10° 1.0408e-16  4.3368e-17  3.5562e-17  3.2960e-17  1.5654e-15
1072 4.1981e-05 2.8916e-06 4.5140e-07 1.2783e-07  6.4988¢-08
1071 4.1678¢-05 3.3690e-06  4.0005¢-07  9.9482e-08  5.5107¢-08
1075 4.1678¢-05 3.3690e-06 4.0004e-07  9.9478e-08  5.5105¢-08
1078 4.1678¢-05 3.3690e-06  4.0004e-07  9.9478e-08  5.5105¢-08
10710 4.1678e-05  3.3690e-06  4.0004e-07  9.9478e-08  5.5105¢-08
10712 4.1678e-05  3.3690e-06  4.0004e-07  9.9478e-08  5.5105¢-08
1071 4.1678e-05  3.3690e-06  4.0004e-07  9.9478e-08  5.5105¢-08
10716 4.1678¢-05 3.3690e-06 4.0004e-07  9.9478e-08  5.5105¢-08
10718 4.1678e-05  3.3690e-06  4.0004e-07  9.9478e-08  5.5105¢-08

Figure 5. Graph of solution of problem 2 for ¢ = 0.1 and n = 0.9¢ with J = 5 using uniform Haar wavelet
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Table 2.5 MARE obtained by Rai and Sharma (2012) for fixed values of § = 0.4, n = 0.4 and various values of €

e\N 100 200 400 800

1 5.4660e-05 2.8500e-05 1.4540e-05 7.3470e-06
1071 1.4950e-03 7.4740e-04 3.7370e-04  1.8680e-04
1072 4.1570e-03  1.9570e-03  9.4570e-04  4.6440e-04
1074 1.2110-02  6.3360e-03  2.9810e-03  1.3620e-03
1070 1.2430e-02  7.7480e-03  4.7970e-03  2.9510e-03
1078 1.2430e-02  7.7480e-03  4.7970e-03  2.9700e-03
10710 1.2430e-02  7.7480e-03  4.7970e-03  2.9700e-03
10712 1.2430e-02  7.7480e-03  4.7970e-03  2.9700e-03
107™  1.2430e-02  7.7480e-03  4.7970e-03  2.9700e-03
10716 1.2430e-02  7.7480e-03  2.591e-03  2.9700e-03
10718 1.2430e-02  7.7480e-03  4.7970e-03  2.9700e-03

Figure 8. Graph of solution of problem 2 for € = 10718 and 1n = 0.9¢ with J = 6 using NUHW
7. Conclusion

We have solved singularly perturbed differential-difference equations arising in neuronal variabil-
ity by using non-uniform Haar wavelet method. We obtain maximum absolute residual errors and
tabulated in the Tables 1.1 — 1.4 and 2.1 — 2.4. Further, we compared our maximum absolute resid-
ual errors with the exponentially fitted operator finite difference method by Rai and Sharma given
in Tables 1.5 and 2.5. Our results are far better than the results given by Rai and Sharma.
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