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Abstract

A non-uniform Haar wavelet method is proposed on specially designed non-uniform grid for the
numerical treatment of singularly perturbed differential-difference equations arising in neuronal
variability. We convert the delay and shift terms using Taylor series upto second order and then the
problem with delay and shift is converted into a new problem without the delay and shift terms.
Then it is solved by using non-uniform Haar wavelet. Two test examples have been demonstrated
to show the accuracy of the non-uniform Haar wavelet method. The performance of the present
method yield more accurate results on increasing the resolution level and converges fast in com-
parison to uniform Haar wavelet.
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1. Introduction

Singularly perturbed differential-difference equations (SPDDE) arises in the mathematical mod-
elling of neuronal variability, mathematical biology, study of human pupil light reflex, control
theory, study of bistable devices and various models of physiological process and disease. These
type of problems have been studied by Kadalbajoo and Sharma (2005), Khan and Raza (2019),
Lange and Miura (1994), Patidar and Sharma (2006), Raza and Khan (2019b), etc.

Basic non-uniform Haar wavelet and non-uniform multi-resolution analysis was introduced by
Dubeau et al. (2004). Solution of integral and differential equations using non-uniform Haar
wavelet was given by U. Lepik ((2008), (2009)). Solution of singularly perturbed two point bound-
ary value problems using non-uniform Haar wavelet was given by Haq et al. (2011) and Islam et
al. (2010). For detailed study of wavelet, we refer to Ahmad and Shah (2013), Chen and Hsiao
(1997), Daubechies (1988), O. Oruc (2018), Kumar and Pandit (2015), Mittal and Pandit ((2017),
(2018)), Khan and Raza (2019), Jiwari ((2012), (2015)), and Youssri et al. (2015).

In this paper we discuss singularly perturbed differential equations with delay and shift and non-
uniform Haar wavelet in Section 2 and method of solution in Section 3. We transform the delay
and shift term by using Taylor series up to second order and then the problem with delay and shift
is converted into a new problem, which become singularly perturbed differential equations without
the delay and shift is solved by non-uniform Haar wavelet. In case of small delay and shift Taylor
series is helpful. But in case of large delay and shift or neutral delay, we refer to Raza and Khan
(2019a). Numerical algorithm of the scheme is given in Section 4. Error analysis is discussed in
Section 5. Numerical examples along with discussion are given in Section 6, and the conclusion in
Section 7.

2. Preliminaries

2.1. Singularly perturbed differential equations with delay and shift

We consider singularly perturbed differential equations with delay and shift as follows:

εy′′(t) + α(t)y′(t) + a(t)y(t− δ) + b(t)y(t) + c(t)y(t+ η) = f(t), t ∈ [0, 1], (1)

with the boundary conditions

y(t) = φ(t), on − δ ≤ t ≤ 0, (2)

and

y(t) = ψ(t), on 1 ≤ t ≤ 1 + η, (3)

where a(t), b(t), c(t),f(t), φ(t) and ψ(t) are sufficiently smooth functions, ε is a perturbation
parameter, 0 < ε << 1, δ and η are delay and shift parameters which depends on ε. In case, if δ
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and η are 0 in equation (1), then the SPDDE becomes singularly perturbed differential equations.
Singularly perturbed boundary value problems have been discussed by many researchers such as
Aziz and Khan (2002), Khan and Khandelwal (2014), Khan et al. (2006), Nafeh (1979), Pandit and
Kumar (2014), Shah et al. (2016), El-Ajou et al. (2019), and Kumar et al. (2019).

2.2. Non-uniform Haar wavelet

Definition 2.1.

The non-uniform Haar wavelet family for t ∈ [0, 1] is defined as follows:

Hi(t) =


1, ξ1(i) ≤ t < ξ2(i),

−ni, ξ2(i) ≤ t < ξ3(i),

0, otherwise,

(4)

where i indicates the wavelet number and

ξ1(i) = x(2kµ), ξ2(i) = x((2k + 1)µ),

ξ3(i) = x((2k + 2)µ), µ =
M

m
,

m = 2j, j = 0, 1, 2..., J , M = 2J and integer k = 0, 1...,m− 1.

The integration of Haar wavelet is given by

Pi(t) =


t− ξ1(i), ξ1(i) ≤ t < ξ2(i),

(ξ3(i)− t)ni, ξ2(i) ≤ t < ξ3(i),

0, otherwise.

(5)

The double integration of Haar wavelet is given as follows:

Qi(t) =


1
2
(t− ξ1(i))2, ξ1(i) ≤ t < ξ2(i),

K − 1
2
(ξ3(i)− t)2ni, ξ2(i) ≤ t < ξ3(i),

K, ξ3(i) ≤ t < 1,

0, otherwise,

(6)

where K = (ξ2−ξ1)(ξ3−ξ1)
2

.

Proceeding in similar manner, the nth integration of Haar wavelet can be written as:

InHi(t) =


0, t < ξ1(i),
1
n!
[t− ξ1(i)]n, ξ1(i) ≤ t < ξ2(i),

1
n!
[(t− ξ1(i))n − (1 + ni)(t− ξ2(i))n], ξ2(i) ≤ t < ξ3(i),

1
n!
[(t− ξ1(i))n − (1 + ni)(t− ξ2(i))n + ni(t− ξ3(i))n], ξ3(i) ≤ t,

(7)

where ni =
(ξ2−ξ1)
(ξ3−ξ1) .
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Definition 2.2.

The non-uniform grid i.e q-mesh is defined as

t̂(j) =
1− qj

1− qN
, j = 0, 1, 2, ..., N, (8)

t(u) =
t̂(j − 1) + t̂(j)

2
, j = 0, 1, 2, ..., N. (9)

The matrix of non-uniform Haar wavelet with respect to the non-uniform grid (9) when q = 0.99
is given as follows:

H=



1 1 1 1 1 1 1 1
1 1 1 1 −939

902
−939
902

−939
902

−939
902

1 1 −201
197

−201
197

0 0 0 0
0 0 0 0 1 1 −201

197
−201
197

1 −100
99

0 0 0 0 0 0
0 0 1 −100

99
0 0 0 0

0 0 0 0 1 −100
99

0 0
0 0 0 0 0 0 1 −100

99


The matrix of integral and double integral of non-uniform Haar wavelet with respect to the non-
uniform grid (9) when q = 0.99 are given as:

P= 1
16



235
3631

549
2837

365
1137

301
673

1034
1807

634
911

1564
1911

1916
2039

235
3631

549
2837

365
1137

301
673

1959
4399

760
2401

255
1349

408
6497

235
3631

549
2837

557
2888

28
437

0 988
5315

0 0
0 0 0 0 0 271

4359
752
4059

376
6109

235
3631

235
3631

0 0 0 0 0 0
0 0 795

12533
795

12533
0 271

4359
0 0

0 0 0 0 271
4359

271
4359

0 0
0 0 0 0 0 0 192

3151
192
3151


,

Q= 1
512



17
8117

103
5501

464
9005

602
6019

1212
7403

1669
6892

4048
12087

366
829

17
8117

103
5501

464
9005

602
6019

197
1233

1475
7129

730
3069

283
1118

17
8117

103
5501

101
2128

27
424

211
3212

211
3212

211
3212

211
3212

0 0 0 0 74
38291

207
11981

6347
144923

325
5531

17
8117

137
9385

123
7378

123
7378

123
7378

123
7378

123
7378

123
7378

0 0 53
26344

51
3637

745
46521

745
46521

745
46521

745
46521

0 0 0 0 74
38291

205
15219

173
11246

173
11246

0 0 0 0 0 0 64
34475

102
7883


.
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3. Method for solving singularly perturbed differential difference
equations of neuronal variability

We converted the delayed term y(t − δ) and shift term y(t + η) using Taylor series expansion up
to second order and then apply non-uniform Haar wavelet method to solve it numerically.

By Taylor series expansion, we obtain the delay and shift term y(t− δ) and y(t+ η) as

y(t− δ) ≈ y(t)− δy′(t) + δ2

2
y′′(t), (10)

and

y(t+ η) ≈ y(t) + ηy′(t) +
η2

2
y′′(t), (11)

neglecting higher order terms.

Using Equations (10) and (11) in singularly perturbed differential difference equation (1) we get

εy′′(t) + α(t)y′(t) + a(t)(y(t)− δy′(t) + δ2

2
y′′(t)) + b(t)y(t)

+c(t)(y(t) + ηy′(t) + η2

2
y′′(t)) = f(t). (12)

On simplifying we get,(
ε+ a(t)

δ2

2
+ c(t)

η2

2

)
y′′(t) + (α(t)− a(t)δ + c(t)η)y′(t)

+ (a(t) + b(t) + c(t))y(t) = f(t).

(13)

In order to solve this problem with boundary conditions (2) and (3) we assume that

y′′(t) =
N∑
i=1

aiHi(t). (14)

Now integrating (14) from 0 to t, we get

y′(t) =
N∑
i=1

aiPi(t) + y′(0). (15)

Further to find y′(0), integrate equation (15) from 0 to 1, we get

y′(0) = y(1)− y(0)−
N∑
i=1

aiCi(t), (16)

where Ci(t) =
∫ 1

0
Pi(t)dt.

Again integrating Equation (15) from 0 to t, we get

y(t) =
N∑
i=1

aiQi(t) + ty′(0) + y(0). (17)
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Now, using Equation (16) in Equations (15) and (17), we get

y′(t) =
N∑
i=1

aiPi(t) + y(1)− y(0)−
N∑
i=1

aiCi(t), (18)

and

y(t) =
N∑
i=1

aiQi(t) + t(y(1)− y(0)−
N∑
i=1

aiCi(t)) + y(0). (19)

Using equations (14), (18) and (19) in equation (13), we obtain the following system of linear
equations:

(ε+ a(t)
δ2

2
+ c(t)

η2

2
)

N∑
i=1

aiHi(t) + (α(t)− a(t)δ + c(t)η)(
N∑
i=1

aiPi(t)

+ y(1)− y(0)−
N∑
i=1

aiCi(t)) + (a(t) + b(t) + c(t))(
N∑
i=1

aiQi(t)

+ t(y(1)− y(0)−
N∑
i=1

aiCi(t)) + y(0)) = f(t). (20)

N∑
i=1

ai[(ε+ a(t)
δ2

2
+ c(t)

η2

2
)Hi(t) + (α(t)− a(t)δ + c(t)η)(Pi(t)− Ci(t)

+ (a(t) + b(t) + c(t)))(Qi(t)− tCi(t))] = f(t) + (y(0)− y(1))((α(t)
− a(t)δ + c(t)η) + t(a(t) + b(t) + c(t)))− y(0). (21)

Now, we can easily find the non-uniform Haar wavelet coefficient ai’s by solving system of linear
equations (21) with boundary conditions (2) and (3) using any known method. Then put the values
of ai’s in equation (19) which is the non-uniform Haar wavelet solution of singularly perturbed
differential difference equation.

4. Numerical algorithm of the scheme

Algorithm. Input
Step 1: Compute the matrix of the Haar waveletHi(t) from Equation (4),
Step 2: Compute the matrices of integral of the Haar wavelet Pi(t) and Qi(t) from Equations (5)
and (6), respectively,
Step 3: Expand the term which contains delay δ and shift η using Taylor series of Equation (1) up
to second order and then convert the problem (1) into new problem (13),
Step 4: Construct the expressions given by Equations (14)-(21),
Step 5: By using Step 4 construct the left hand side matrix of the Equation (21),
Step 6: Compute the unknown vector ai by solving the system of linear equations (21),
Step 7: Put the vector ai in Equation (19),
Output: Obtained approximate solution y(t).
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5. Error analysis

Lemma 5.1.

Let y(x) be a square integrable function with bounded first derivative on (0, 1) and y(xj) be Haar
wavelet approximation of y(x) then the error norm at J th level satisfies the inequality:

‖E‖ ≤ 2D
√
K

(
2−2(J+1)

3

)2

, (22)

where K is a positive constant and D is given by y′(t) ≤ D.

Proof:

For the proof see Islam et al. (2010) and Pandit and Kumar (2014). �

In singularly perturbed differential difference equations with turning point arising in neuronal vari-
ability, we do not have the exact solution. Hence the maximum absolute residual error is calculated
by the following formula:

E =Max.|(ε+ a(tj)
δ2

2
+ c(tj)

η2

2
)y′′(tj) + (α(tj)− a(tj)δ + c(tj)η)y

′(tj)

+ (a(tj) + b(tj) + c(tj))y(tj)− f(tj)|, (23)

where y′′(tj), y′(tj) and y(tj) are given in equations (14), (18) and (19) respectively and tj are the
discrete points given by Equations (8) and (9), j = 1, 2, ..., N.

6. Numerical examples

In this section we demonstrate two linear problems of singularly perturbed differential difference
equations arising in neuronal variability to illustrate the non-uniform Haar wavelet method. The
results are tabulated for various values and also compared with the exponentially fitted operator
finite difference method by Rai and Sharma (2012).

Problem 1. Let us assume the following SPDDE

εy′′(t) + 2(t− 1
2
)(1 + 3.121

10
(t− 1

2
))y′ − (4

3
(t) + (t− 1

2
)2.764

10
)y(t) + 2

10
y(t− δ)

+1
8
y(t+ η) = t, t ∈ [0, 1] (24)

with boundary conditions

y(t) = 0, −δ ≤ t ≤ 0, y(t) = 0, 1 ≤ t ≤ 1 + η. (25)

Maximum absolute residual errors (MARE) obtained by non-uniform Haar wavelet method with
different resolutions level are given in the Tables 1.1-1.4 for a particular value of perturbation pa-
rameter and various values of delay and shift parameters. For the sake of comparison, results of
exponentially fitted operator finite difference method by Rai and Sharma (2012) is given in Table
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1.5. Also, graph of uniform and non-uniform Haar wavelet (NUHW) solution is given in Figures
1, 2, 3, and 4, respectively.

Table 1.1 MARE on q-mesh for fixed values of δ = 0.2, η = 0.1 and various values of ε using NUHW

ε \N 32 64 128 256 512 1024
100 4.5103e-17 3.7188e-17 2.4286e-17 1.4122e-17 3.1903e-17 7.0911e-16
10−2 3.4694e-17 1.1883e-16 2.3636e-17 2.2416e-17 3.6782e-17 2.0844e-17
10−4 4.3802e-17 7.9797e-17 2.6455e-17 2.4340e-17 5.1174e-17 1.1081e-16
10−6 5.4210e-17 8.7604e-17 3.1557e-17 2.3066e-17 4.5482e-17 2.0914e-16
10−8 7.5027e-17 1.6220e-16 1.9028e-17 2.2416e-17 6.1366e-17 3.5345e-16
10−10 4.7705e-17 1.5439e-16 1.8377e-17 2.3310e-17 3.5128e-17 2.3386e-16
10−12 4.7705e-17 1.5439e-16 1.8377e-17 2.0708e-17 3.9465e-17 2.3137e-16
10−14 4.7705e-17 1.5439e-16 1.8377e-17 2.0708e-17 3.9465e-17 2.3137e-16
10−16 4.7705e-17 1.5439e-16 1.8377e-17 2.0708e-17 3.9465e-17 2.3137e-16
10−18 4.7705e-17 1.5439e-16 1.8377e-17 2.0708e-17 3.9465e-17 2.3137e-16

Table 1.2 MARE on q-mesh for fixed values of δ = 0.2, η = 0.2 and various values of ε using NUHW

ε \N 32 64 128 256 512 1024
100 4.4669e-17 3.2960e-17 1.8160e-17 6.2450e-17 5.2204e-17 2.7367e-16
10−2 3.4694e-17 1.9602e-16 2.1684e-17 4.0115e-17 2.6807e-17 2.9118e-17
10−4 4.2934e-17 1.4929e-16 2.5967e-17 3.7080e-17 6.4185e-17 1.3097e-16
10−6 3.1225e-17 1.2577e-16 5.7083e-17 3.2526e-17 5.0741e-17 3.7828e-16
10−8 3.7730e-17 1.4658e-16 2.6021e-17 2.1413e-17 4.9873e-17 3.3979e-16
10−10 3.4694e-17 1.3618e-16 2.9924e-17 2.3419e-17 4.8139e-17 3.8804e-16
10−12 3.4694e-17 1.3618e-16 2.9924e-17 2.3419e-17 5.2909e-17 2.5240e-16
10−14 3.4694e-17 1.3618e-16 2.9924e-17 2.3419e-17 5.2909e-17 2.5240e-16
10−16 3.4694e-17 1.3618e-16 2.9924e-17 2.3419e-17 5.2909e-17 2.5240e-16
10−18 3.4694e-17 1.3618e-16 2.9924e-17 2.3419e-17 5.2909e-17 2.5240e-16

Table 1.3 MARE on q-mesh for fixed values of δ = 0.2, η = 0.4 and various values of ε using NUHW

ε \N = 32 64 128 256 512 1024
100 3.4694e-17 3.3827e-17 2.0329e-17 4.0766e-17 2.6915e-17 2.3872e-16
10−2 5.4210e-17 5.8113e-17 4.9602e-17 2.3365e-17 3.8489e-17 1.5460e-17
10−4 3.2960e-17 5.6379e-17 2.6455e-17 3.3908e-17 1.6025e-16 1.4472e-15
10−6 3.9465e-17 5.9848e-17 4.4506e-17 2.6895e-17 2.5869e-16 2.2520e-15
10−8 8.7170e-17 9.1073e-17 3.3014e-17 3.2526e-17 1.6155e-16 2.0504e-15
10−10 5.5511e-17 6.9497e-17 4.3531e-17 2.3419e-17 1.4008e-16 2.6264e-15
10−12 5.5511e-17 6.9497e-17 4.3531e-17 2.3419e-17 1.4333e-16 2.1589e-15
10−14 5.5511e-17 6.9497e-17 4.3531e-17 2.3419e-17 1.4333e-16 2.1589e-15
10−16 5.5511e-17 6.9497e-17 4.3531e-17 2.3419e-17 1.4333e-16 2.1589e-15
10−18 5.5511e-17 6.9497e-17 4.3531e-17 2.3419e-17 1.4333e-16 2.1589e-15
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Table 1.4 MARE on q-mesh for fixed values of δ = 0.4, η = 0.1 and various values of ε using NUHW

ε \N 32 64 128 256 512 1024
10−0 3.0791e-17 3.1225e-17 1.8974e-17 1.9082e-17 4.0766e-17 8.4163e-16
10−2 7.5894e-17 1.9342e-16 6.0444e-17 2.3256e-17 2.7322e-17 2.3080e-17
10−4 3.3827e-17 2.3245e-16 3.1171e-17 5.0659e-17 3.3746e-17 1.0018e-16
10−6 5.0741e-17 2.0817e-16 5.8818e-17 4.7651e-17 3.0358e-17 1.5450e-16
10−8 5.2042e-17 2.1077e-16 4.6566e-17 3.5670e-17 3.4911e-17 2.4199e-16
10−10 4.1633e-17 2.0296e-16 3.5562e-17 3.7513e-17 2.5153e-17 1.9266e-16
10−12 4.1633e-17 2.0296e-16 3.5562e-17 3.2092e-17 2.1034e-17 1.8236e-16
10−14 4.1633e-17 2.0296e-16 3.5562e-17 3.2092e-17 2.1034e-17 1.8236e-16
10−16 4.1633e-17 2.0296e-16 3.5562e-17 3.2092e-17 2.1034e-17 1.8236e-16
10−18 4.1633e-17 2.0296e-16 3.5562e-17 3.2092e-17 2.1034e-17 1.8236e-16

Table 1.5 MARE obtained by Rai and Sharma (2012) for fixed values of δ = 0.4, η = 0.2 and various values of ε

ε \N 100 200 400 800
1 4.3770e-05 2.2140e-05 1.1130e-05 5.5810e-06

10−1 6.8910e-04 3.5010e-04 1.7650e-04 8.8610e-05
10−2 1.7000e-03 8.2590e-04 4.0680e-04 2.0180e-04
10−4 5.9670e-03 3.0320e-03 1.3890e-03 6.3170e-04
10−6 6.4170e-03 4.0930e-03 2.5920e-03 1.5930e-03
10−8 6.4170e-03 4.0930e-03 2.5910e-03 1.6350e-03
10−10 6.4170e-03 4.0930e-03 2.591e0-03 1.6350e-03
10−12 6.4170e-03 4.0930e-03 2.5910e-03 1.6350e-03
10−14 6.4170e-03 4.0930e-03 2.5910e-03 1.635e-03
10−16 6.4170e-03 4.0930e-03 2.591e-03 1.6350e-03
10−18 6.4170e-03 4.0930e-03 2.5910e-03 1.6350e-03

Figure 1. Graph of solution for problem 1 for ε = 10−5, η = 0.1 and δ = 0.2 with J = 7 using uniform Haar wavelet

Figure 2. Graph of solution of problem 1 for ε = 10−5, η = 0.1 and δ = 0.2 with J = 5 using uniform Haar wavelet

Problem 2. Let us assume the following SPDDE

εy′′(t) + (t− 1

2
)(3 + 4(t− 1

2
))y′ − 2y(t)

+ 4(t− 1

2
)2y(t− δ) + y(t+ η) = 1, t ∈ [0, 1],

(26)
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Figure 3. Graph of solution of problem 1 for ε = 10−18, η = 0.1 and δ = 0.2 with J = 10 using NUHW

Figure 4. Graph of solution of problem 1 for ε = 10−13, η = 0.1 and δ = 0.2 with J = 7 using NUHW

with boundary conditions

y(t) = 0, −δ ≤ t ≤ 0, y(t) = 1, 1 ≤ t ≤ 1 + η. (27)

Maximum absolute residual errors (MARE) using non-uniform Haar wavelet method with different
resolutions level are given in the Tables 2.1 – 2.4 for a particular value of perturbation parameter
and various values of delay and shift parameters. For the sake of comparison, results of exponen-
tially fitted operator finite difference method by Rai and Sharma (2012) is given in Table 2.5. Also,
the graph of uniform and non-uniform Haar wavelet (NUHW) solution is given in Figures 5 and
6-8, respectively.

Table 2.1 MARE on q-mesh for fixed values of δ = 0.2, η = 0.1 and various values of ε using NUHW

ε \N 64 128 256 512 1024
100 7.2858e-17 4.1633e-17 3.3827e-17 4.0766e-17 7.5135e-16
10−2 2.8610e-05 2.6546e-06 8.3612e-07 1.2690e-07 7.1002e-08
10−4 2.4928e-05 1.8036e-06 7.7174e-07 4.3316e-08 3.1363e-08
10−6 2.4928e-05 1.8036e-06 7.7173e-07 4.3307e-08 3.1358e-08
10−8 2.4928e-05 1.8036e-06 7.7173e-07 4.3307e-08 3.1358e-08
10−10 2.4928e-05 1.8036e-06 7.7173e-07 4.3307e-08 3.1358e-08
10−12 2.4928e-05 1.8036e-06 7.7173e-07 4.3307e-08 3.1358e-08
10−14 2.4928e-05 1.8036e-06 7.7173e-07 4.3307e-08 3.1358e-08
10−16 2.4928e-05 1.8036e-06 7.7173e-07 4.3307e-08 3.1358e-08
10−18 2.4928e-05 1.8036e-06 7.7173e-07 4.3307e-08 3.1358e-08
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Table 2.2 MARE on q-mesh for fixed values of δ = 0.2, η = 0.2 and various values of ε using NUHW

ε \N 64 128 256 512 1024
100 7.9797e-17 4.8572e-17 5.8547e-17 4.9873e-17 1.1362e-15
10−2 5.4491e-05 7.3087e-06 9.2588e-07 2.4045e-07 1.5236e-07
10−4 5.2413e-05 7.3161e-06 7.3080e-07 3.3181e-07 1.8416e-07
10−6 5.2413e-05 7.3161e-06 7.3078e-07 3.3182e-07 1.8416e-07
10−8 5.2413e-05 7.3161e-06 7.3078e-07 3.3182e-07 1.8416e-07
10−10 5.2413e-05 7.3161e-06 7.3078e-07 3.3182e-07 1.8416e-07
10−12 5.2413e-05 7.3161e-06 7.3078e-07 3.3182e-07 1.8416e-07
10−14 5.2413e-05 7.3161e-06 7.3078e-07 3.3182e-07 1.8416e-07
10−16 5.2413e-05 7.3161e-06 7.3078e-07 3.3182e-07 1.8416e-07
10−18 5.2413e-05 7.3161e-06 7.3078e-07 3.3182e-07 1.8416e-07

Table 2.3 MARE on q-mesh for fixed values of δ = 0.2, η = 0.4 and various values of ε using NUHW

ε \N 64 128 256 512 1024
10−1 6.5919e-17 5.7246e-17 6.9823e-17 5.4210e-17 9.5366e-16
10−2 4.1559e-06 2.5940e-06 1.1127e-06 3.8681e-07 3.5636e-07
10−4 9.1955e-06 1.4259e-06 1.4917e-06 5.4775e-07 3.4771e-07
10−6 9.1960e-06 1.4258e-06 1.4918e-06 5.4775e-07 3.4771e-07
10−8 9.1960e-06 1.4258e-06 1.4918e-06 5.4775e-07 3.4771e-07
10−10 9.1960e-06 1.4258e-06 1.4918e-06 5.4775e-07 3.4771e-07
10−12 9.1960e-06 1.4258e-06 1.4918e-06 5.4775e-07 3.4771e-07
10−14 9.1960e-06 1.4258e-06 1.4918e-06 5.4775e-07 3.4771e-07
10−16 9.1960e-06 1.4258e-06 1.4918e-06 5.4775e-07 3.4771e-07
10−18 9.1960e-06 1.4258e-06 1.4918e-06 5.4775e-07 3.4771e-07

Table 2.4 MARE on q-mesh for fixed values of δ = 0.4, η = 0.1 and various values of ε using NUHW

ε \N 64 128 256 512 1024
100 1.0408e-16 4.3368e-17 3.5562e-17 3.2960e-17 1.5654e-15
10−2 4.1981e-05 2.8916e-06 4.5140e-07 1.2783e-07 6.4988e-08
10−4 4.1678e-05 3.3690e-06 4.0005e-07 9.9482e-08 5.5107e-08
10−6 4.1678e-05 3.3690e-06 4.0004e-07 9.9478e-08 5.5105e-08
10−8 4.1678e-05 3.3690e-06 4.0004e-07 9.9478e-08 5.5105e-08
10−10 4.1678e-05 3.3690e-06 4.0004e-07 9.9478e-08 5.5105e-08
10−12 4.1678e-05 3.3690e-06 4.0004e-07 9.9478e-08 5.5105e-08
10−14 4.1678e-05 3.3690e-06 4.0004e-07 9.9478e-08 5.5105e-08
10−16 4.1678e-05 3.3690e-06 4.0004e-07 9.9478e-08 5.5105e-08
10−18 4.1678e-05 3.3690e-06 4.0004e-07 9.9478e-08 5.5105e-08

Figure 5. Graph of solution of problem 2 for ε = 0.1 and η = 0.9ε with J = 5 using uniform Haar wavelet
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Table 2.5 MARE obtained by Rai and Sharma (2012) for fixed values of δ = 0.4, η = 0.4 and various values of ε

ε \N 100 200 400 800
1 5.4660e-05 2.8500e-05 1.4540e-05 7.3470e-06

10−1 1.4950e-03 7.4740e-04 3.7370e-04 1.8680e-04
10−2 4.1570e-03 1.9570e-03 9.4570e-04 4.6440e-04
10−4 1.2110-02 6.3360e-03 2.9810e-03 1.3620e-03
10−6 1.2430e-02 7.7480e-03 4.7970e-03 2.9510e-03
10−8 1.2430e-02 7.7480e-03 4.7970e-03 2.9700e-03
10−10 1.2430e-02 7.7480e-03 4.7970e-03 2.9700e-03
10−12 1.2430e-02 7.7480e-03 4.7970e-03 2.9700e-03
10−14 1.2430e-02 7.7480e-03 4.7970e-03 2.9700e-03
10−16 1.2430e-02 7.7480e-03 2.591e-03 2.9700e-03
10−18 1.2430e-02 7.7480e-03 4.7970e-03 2.9700e-03

Figure 6. Graph of solution of problem 2 for ε = 10−2, η = 0.2 and δ = 0.1 with J = 8 using NUHW

Figure 7. Graph of solution of problem 2 for ε = 10−10 and η = 0.9ε with J = 5 using NUHW

Figure 8. Graph of solution of problem 2 for ε = 10−18 and η = 0.9ε with J = 6 using NUHW

7. Conclusion

We have solved singularly perturbed differential-difference equations arising in neuronal variabil-
ity by using non-uniform Haar wavelet method. We obtain maximum absolute residual errors and
tabulated in the Tables 1.1−1.4 and 2.1−2.4. Further, we compared our maximum absolute resid-
ual errors with the exponentially fitted operator finite difference method by Rai and Sharma given
in Tables 1.5 and 2.5. Our results are far better than the results given by Rai and Sharma.
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