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Abstract

Graphs play an important role in our daily life. For example, the urban transport network can be
represented by a graph, as the intersections are the vertices and the streets are the edges of the
graph. Suppose that some edges of the graph are removed, the question arises how damaged the
graph is. There are some criteria for measuring the vulnerability of graph; the tenacity is the best
criteria for measuring it. Since the hypergraph generalize the standard graph by defining any edge
between multiple vertices instead of only two vertices, the above question is about the hypergraph.
When a hyperedge is omitted from hypergraph, we have two kinds of deletion: strong deletion
and weak deletion. Weak hyperedge deletion just deletes the connection between the vertices in
the hyperedge and the vertices became in the hypergraph. In this paper, we obtain the tenacity of
hypercycles by weak hyperedge deletion.
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1. Introduction

In some issues of everyday life, items have incidental relationships. Mathematically, we denote
this connection with the graph, but sometimes we want to show that there is a certain connection
between some of the vertices. In this case, we use hypergraph instead of graph and hyperedges
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instead of edges. Since 1932, researchers have been working on hypergraphs. The concepts of
graphs are defined on hypergraphs, such as path, cycle, connectivity, etc. (Wang et al. (2004), Wu
et al. (2004), Cheng (1994)).

The criteria for measuring the vulnerability of the graph, such as connectivity, rupture degree,
toughness, tenacity, etc., are also defined for the hypergraph (Bahramian et al. (2015)). We know
tenacity is the best criteria for measuring the vulnerability (Bahramian et al. (2015)). The tenacity
is studied for different graphs, for example, tenacity of corona product of graphs, tenacity of three
classes of Harary Graphs, tenacity of complete graphs, tenacity of trees, etc. (Moazzami (2011),
Mamut et al. (2008), Li et al. (2004), Moazzami (1999), Moazzami (2000), Moazzami et al. (2009),
Cozzens et al. (1994)). In this paper, we study the relationship between hypercycles and tenacity.
We explain some concepts for hypergraph, some lemmas for subsets, main results and conclusion,
in these sections, respectively.

2. Some concepts of hypergraph

In this section we explain some definitions of the hypergraph.

Definition 2.1.

A hypergraph H denoted H = (V,E = (ei)i∈I) consists of a set of vertices V and a multiset E
of subsets of V , called hyperedges, and their indices are in index set I . When V and I are finite,
the hypergraph is called finite. We refer to |V | = n as the order of the hypergraph, and to |I| = m
as the size of the hypergraph. If m = 0, the hypergraph is called empty. Like parallel edges in
the graph, parallel hyperedges are also defined in the hypergraph; if ei = ej , these hyperedges are
called parallel. Two vertices v and w are adjacent when there is a hyperedge, like as ej , such that
v, w ∈ ej , and we write [v, w] ⊂ ej . A vertex can repeat in a hyperedge to create a loop; if t is the
number of repetition of vertex v, we use the notation [v; t].

A vertex v and a hyperedge ej are incident if v ∈ ej and let mej(v) be the number of copies the
vertex v in the hyperedge ej . The degree of a vertex v in the hypergraph H denoted by dH(v) and
defined as dH(v) = Σi∈Imei(v).

The number of vertices in the hyperedge is denoted by |ei| and it is named the size of the hyperedge
ei. The number of distinguish vertices in the hyperedge ei is the supp(ei), i.e. supp(ei) = {v ∈
ei|mei(v) > 0}. The hypergraph H is called r-uniform, if for all i, i ∈ I , we have |ei| = r.

Definition 2.2.

Strong vertex deletion of a vertex v makes a new hypergraph H ′ = (V ′, E ′ = (ei)i∈I′) that V ′ =
V − {v} and I ′ = {i ∈ I|v 6∈ ei}. It means the vertex v and all hyperedges incident to v are
omitted from H . If X is a vertex set, we denote H\SX to show the hypergraph formed by strongly
deleting all vertices of X from H .

Weak vertex deletion of a vertex v creates a new hypergraph H ′ = (V ′, E ′ = (e′i)i∈I) that V ′ =
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V − {v}, e′i = ei if v 6∈ ei and e′i = ei\[v;mei(v)] otherwise. It means the vertex v is deleted from
V and all hyperedges incident to v. If X is a vertex set, we denote H\WX to show the hypergraph
formed by weakly deleting all vertices of X from H .

Strong hyperedge deletion of a hyperedge ej creates a new hypergraph H ′ = (V ′, E ′ = (e′i)i∈I′)
where V ′ = V \{ej}, I ′ = I\{j} and e′i = ei\[v;mei(v)|v ∈ ej] for i 6= j. That is, strong
hyperedge deletion of ej removes ej from the hypergraph and weakly vertex deletes all the vertices
incident with ej . For any subset F ofE, we useH\SF to denote the hypergraph formed by strongly
deleting all the hyperedges of F from H .

Weak hyperedge deletion of a hyperedge ej makes the hypergraph H ′ = (V,E ′ = (ei)i∈I′) where
I ′ = I\{j}. That is, weak hyperedge deletion of ej just removes ej without affecting the rest of
the hypergraph. For any subset F of E, we useH\WF to denote the hypergraph formed by weakly
deleting all the hyperedges of F from H .

Definition 2.3.

Consider m ≥ 4 and fix, and

n =

{
rbm

2
c+ r − 1 , m is odd,

rm
2

, m is even,

then, Cr
m is an r-uniform hypercycle with vertices v1, · · · , vn and hyperedges e1, · · · , em, such that

1. Each hyperedge has r consecutively-labeled vertices modulu m and in particular e1 =
{v1, · · · , vr}.
2. ei and ej intersect if and only if i and j are consecutive modulo m.
3. If i is odd and 1 < i < m, then |ei ∩ ei−1| = r − 1 and |ei ∩ ei+1| = 1.
4. If m is odd, then |e1 ∩ em| = 1. If m is even, then |e1 ∩ em| = r − 1.
We say Cr

m is odd if m is odd and even otherwise.

Definition 2.4.

Consider a graph G = (V,E), the edge tenacity of a graph is defined as follow

Te(G) = min

{
|S|+ τ(G− S)

ω(G− S)

}
,

where the minimization is over all subsets S ofE(G), |S| is the number of elements of S, τ(G−S)
is the number of edges in the largest components of G − S and ω(G − S) is the number of
components of G− S.

Now we take this definition to hypercycles.
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3. Some lemmas

With due attention to the definition hypercycles, the below propositions are confirmed.

Proposition 3.1.

Let m be odd. Since |e1 ∩ em| = 1, then the vertices v2, · · · , vr−1 are only in hyperedge e1, and
thus, d(v2) = · · · = d(vr−1) = 1, but other vertices are in two hyperedges, so d(vi) = 2 for
i 6= 2, 3, · · · , r − 1.

Proposition 3.2.

Let m be even, so all vertices are in two hyperedges, and thus, d(v) = 2,∀v ∈ V .

We want to apply hyperedge tenacity on hypercycles. Since there are two types of deletions for
hyperedges, we have two kinds of hyperedge tenacity. In this paper, we research for hyperedge
tenacity by weak deletion hyperedge, and name this tenacity weak hyperedge tenacity. As we
know some vertices are just in one hyperedge. By removing this hyperedge, we have some isolated
components and a component with one or more hyperedge. Let ωI(H − S) be the number of
isolated components and ωC(H − S) be the number of component with one or more hyperedges,
so ω(H − S) = ωI(H − S) + ωC(H − S). Briefly we use ωI , ωC , ω and τ instead of ωI(H − S),
ωC(H − S), ω(H − S) and τ(H − S), respectively.

For each subset S we calculate the amount of |S|+τ(H−S)
ω(H−S) and call the “YIELD AMOUNT OF

FRACTION (YAF)", made by the set S, and it will be presented by Y AF (S).

Proposition 3.3.

For every set S, we have

ωI =

{
r − 2 + Σei,ej∈S|ei ∩ ej|, e1 ∈ S and m is odd,
Σei,ej∈S|ei ∩ ej|, otherwise.

Lemma 3.4.

If m is even and S = {ei}, then Y AF (S) = m.

Proof:

Since m is even, there is no isolation by weak deletion ei and there is only one connected compo-
nent, so ωI = 0 and ωC = 1. Also, τ = m− 1, so Y AF (S) = m. �

Lemma 3.5.

If m is odd and S = {ei}, i 6= 1, then Y AF (S) = m.
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Proof:

Since S = {ei}, i 6= 1, the proof is as we did in Lemma 3.4. �

Lemma 3.6.

Let m be odd and S = {e1}, then Y AF (S) = m
r−1 .

Proof:

Because m is odd, so d(v2) = · · · = d(vr−1) = 1. Therefore, these vertices are isolated by weak
deletion e1. Thus, ωI = r − 2, ωC = 1 and we have Y AF (S) = m

r−1 . �

Lemma 3.7.

Let S = {ei, ei+1} and i, i + 1 6∈ {1,m}. If i is even, then Y AF (S) = m
r

and if i is odd, then
Y AF (S) = m

2
.

Proof:

When two hyperedges ei and ei+1 are deleted weakly, there is a connected component such that
contains hyperedges ei+2, ei+3, · · · , ei−2, ei−1; so ωC = 1. Also, the vertices in common between
ei and ei+1 become isolate. Thus, ωI = |ei∩ ei+1|, and we have τ = m− 2. If i is odd, then ωI = 1
and Y AF (S) = m

2
, and if i is even, so ωI = r − 1 and Y AF (S) = m

r
. �

Corollary 3.8.

Let S1 = {ei, ei+1} that i be odd and S2 = {ej, ej+1} that j be even, then Y AF (S2) ≤ Y AF (S1).

Proof:

By Lemma 4 and as r ≥ 3, we have m
r
≤ m

2
and so Y AF (S2) ≤ Y AF (S1). �

Lemma 3.9.

Consider S = {ei, ei+1, ei+2} that 1,m 6∈ {i, i+ 1, i+ 2}, then Y AF (S) = m
1+r

, (m > 3).

Proof:

Whether i is odd or even, we have ωC = 1, ωI = r and also τ = m − |S| = m − 3, therefore,
Y AF (S) = m

1+r
. �

Lemma 3.10.

If S = {ei, ei+1, ei+2, ei+3} and m > 4, then

Y AF (S) =

{
m
r+2

, i is odd,
m
2r

, i is even.
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Proof:

We know τ = m− 4. If i is odd, then ωI = 1 + r and ωC = 1, and if i is even, then ωI = 2r − 1
and ωC = 1. Thus, the proof is complete. �

Corollary 3.11.

Let S1 = {ei, ei+1, ei+2, ei+3} that i be odd and S2 = {ej, ej+1, ej+2, ej+3} that j be even, then
Y AF (S2) ≤ Y AF (S1).

Proof:

Because r ≥ 3, so 2r ≥ 2 + r and then m
2r
≤ m

r+2
. �

Lemma 3.12.

If m is even and S = {e1, e3, e5, · · · , em−1}, then Y AF (S) = m+2
m

.

Proof:

Since the hyperedges in S don’t have intersection, so ωI = 0. Also, by deleting S, hyperedges
e2, e4, · · · , em remained, thus, ωC = |{e2, e4, · · · , em}| = m

2
, and |S| = |{e1, e3, · · · , em−1}| = m

2
.

Also, every component has one hyperedge, so τ = 1. By fixing them, we have Y AF (S) = m+2
m

.�

Lemma 3.13.

Let m be even and S = {e2, e4, · · · , em}. Therefore, Y AF (S) = m+2
m

.

Proof:

The proof is as same as Lemma 3.12. �

Lemma 3.14.

Let m be odd and S = {e1, e3, · · · , em−2}. Then Y AF (S) = m+3
m+2r−5 .

Proof:

We know |S| = m−1
2

. The largest component of H − S is two hyperedges em−1 and em, so τ = 2.
Moreover, m is odd and by weak deleting e1, the vertices v2, v4, · · · , vr−1 became isolated, so
ωI = r−2+Σei,ej∈S|ei∩ej| = r−2 and ωC = m−1

2
, therefore, Y AF (S) =

m−1

2
+2

m−1

2
+r−2 = m+3

m+2r−5 .�

Lemma 3.15.

Let m be odd and S = {e1, e3, · · · , em}. Then Y AF (S) = m+3
m+2r−3 .

Proof:

m is odd so ωI = r − 2 + Σei,ej∈S|ei ∩ ej| = r − 2 + |e1 ∩ em| = r − 1 and also ωC =
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|{e2, e4, · · · , em−1}| = m−1
2

, also, τ = 1 and |S| = m+1
2

. Then, we have Y AF (S) =
m+1

2
+1

m−1

2
+r−1 =

m+3
m+2r−3 . �

Lemma 3.16.

Let m be odd and S = {e2, e4, · · · , em−1}. Then Y AF (S) = m+3
m−1 .

Proof:

The largest component of Cr
m − S is two hyperedges e1 and em, so τ = 2. The hyperedges in S

don’t have any intersection and e1 6∈ S, thus, ωI = 0 and ωC = m−1
2

. So by substituting, we have

Y AF (S) =
m−1

2
+2

m−1

2

= m+3
m−1 . �

4. Main results

In this section we obtain the best upper bound for weak hyperedge tenacity of Cr
m by using lemmas

and relationships in the previous section.

Theorem 4.1.

For every m ≥ 5 and r ≥ 3, we have Tw(Cr
m) ≤ m

2r
.

Proof:

By definition of weak hyperedge tenacity and relationships in the previous section, we have

Tw(Cr
m) ≤ m

r
, Tw(Cr

m) ≤ m

1 + r
, Tw(Cr

m) ≤ m

2r
,

and since r < r + 1 < 2r, we have

Tw(Cr
m) ≤ m

2r
. (1)

�

Theorem 4.2.

Let m be even. Then

Tw(Cr
m) ≤ min

{
m+ 2

m
,
m

2r

}
. (2)

Proof:

By 1 and Lemma 7 we have Tw(Cr
m) ≤ m+2

m
, therefore, the proof is complete. �
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Theorem 4.3.

Consider m odd, therefore,

Tw(Cr
m) ≤ min

{
m+ 3

m+ 2r − 3
,
m

2r

}
. (3)

Proof:

By using Lemmas 9, 10 and 11 we have

Tw(Cr
m) ≤ min

{
m+ 3

m+ 2r − 5
,

m+ 3

m+ 2r − 3
,
m+ 3

m− 1

}
,

since m+ 2r − 5 < m+ 2r − 3, so Tw(Cr
m) ≤ min{ m+3

m+2r−3 ,
m+3
m−1}. Also, r ≥ 3, then

2r − 3 ≥ 1⇔ m+ 2r − 3 ≥ m+ 1 > m− 1⇔ m+ 3

m+ 2r − 3
<
m+ 3

m− 1
,

By using Theorem 4 and the definition of weak hyperedge tenacity we have Tw(Cr
m) ≤

min{ m+3
m+2r−3 ,

m
2r
}. �

Because it’s hard to check all the subsets of E, we stop here. With respect to the above content, we
obtain an upper bound for weak hyperedge tenacity of hypercycles. In the next section we explain
some examples.

5. Examples

In this section, we research upper bound for weak hyperedge tenacity of C3
4 , C3

5 and C3
6 .

Example 5.1.

Upper bound for weak hyperedge tenacity of C3
4 . Solved. With Definition 2.3, n is 6. If we obtain

Figure 1. Hypergraph of C3
4
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all subsets of E and play definition of weak hyperedge tenacity, the amount of weak hyperedge
tenacity is 1. C3

4 is in Figure 1.

Example 5.2.

Upper bound for weak hyperedge tenacity of C3
6 .

Figure 2. Hypergraph C3
6

Solved. We know n = 9. By Theorem 4.2, we have

Tw(C3
6) ≤ min

{
m+ 2

m
,
m

2r

}
= min

{
4

3
, 1

}
= 1.

But by the definition of weak hyperedge tenacity, Tw(C3
6) = 6

7
, which the difference is 1

7
.

Example 5.3.

Upper bound for weak hyperedge tenacity of C3
5 . Solved. By Definition 2.3, n is 8 and C3

5 is in

Figure 3. Hypergraph C3
5

Figure 3. With Theorem 4.3, we have

Tw(C3
5) ≤ min

{
m+ 3

m+ 2r − 3
,
m

2r

}
= min

{
1,

5

6

}
=

5

6
.
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Also, by the definition of weak hyperedge tenacity, Tw(C3
5) = 5

6
, which is equal to the upper bound.

6. Conclusions and future work

We defined the weak hyperedge tenacity by using weak hyperedge deletion. In this paper, we
obtained the upper bound of weak hyperedge tenacity for hypercycles. In some examples the value
of the weak hyperedge tenacity and the upper bound of weak hyperedge tenacity are equal. These
classes of hypergraphs can be found. Also, we can define strong hyperedge tenacity by using strong
hyperedge deletion, and as we did in this paper, we plan to find an upper bound or exact value for it.
Also, we can define strong vertex tenacity and weak vertex tenacity by using strong vertex deletion
and weak vertex deletion, respectively. In the end, we think that an upper bound or exact value
for strong vertex tenacity and weak vertex tenacity are going to be found, which we leave them as
future works.
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