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Abstract

In this paper, we propose an Alternating Direction Method of Multipliers (ADMM) based algo-
rithm that is taking advantage of factorization for the fixed rank matrix completion problem. The
convergence of the proposed algorithm to the KKT point is discussed. Finally, on several classes
of test problems, its efficiency is compared with several efficient algorithms from the literature.
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1. Introduction

The problem of recovering a low rank matrix from a sampling of its entries has attracted significant
attention in various applications such as collaborative prediction (see Rennie and Srebro (2005)),
model reduction (see Liu and Vandenberghe (2009)), data mining and pattern recognitions (see
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Eldèn (2007)), multi-class learning (see Argyriou et al. (2008), Obozinski et al. (2010)) and etc. As
a motivating example, consider traffic issue that is an irritating problem. City traffic measurements
can be organized into a matrix where rows are sources, columns are destinations and each entry
holds the volume of traffic that passed from a particular source to a particular destination. There are
several reasons to collect cities’ traffic volume data, for example, to identify the congestion area or
to estimate the pollution through a city. At the same time, it is not possible to have an information
about all destinations, that is some entries of such matrix is unknown. Therefore, to assess such
problem, one should be able to estimate these unknown values (see Ruchansky (2016)).

The general form of low rank matrix completion problem that finds the lowest rank matrix from its
known entries, is as follows:

minX∈Rm×n rank(X)

s.t Xij = Mij ∀(i, j) ∈ Ω, (1)

where M is a matrix that its known entries are in the index set Ω ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤
n}. Problem (1) is generally NP-hard (see Vandenberghe and Boyd (1996)). In Candès and Recht
(2009), the authors proved that under the assumption of randomly sampled entries, to recover ma-
trix with high probability, the matrixM ∈ Rm×n of rank r should have at least |Ω| > Cn1.2rlog(n)
sampled entries when the rank is replaced with nuclear norm:

minX∈Rm×n ||X||∗
s.t Xij = Mij ∀(i, j) ∈ Ω, (2)

where ||.||∗ denotes the sum of singular values of X . In Candès and Tao (2010), the author pre-
sented optimality results for the minimum number of observed entries for which (2) results to
exact recovery. In Keshavan et al. (2010), the authors used singular values on Grassman mani-
fold optimization, their algorithm minimizes the error over the observed entries while the rank
of data matrix is small. Soft-thresholding operation on the singular values of a certain matrix at
each iterations is used (see Cai et al. (2010)). An accelerated proximal gradient algorithm pro-
posed in Toh and Yun (2010) which terminates in O(1/

√
ε) iterations with an ε-optimal solution.

Zhang and Cheng (2010) proposed a non-linear constrained quadratic programming problem and
designed a new algorithm based on projection method and Landweber iteration. A homotopy ap-
proach together with an approximate singular value decomposition (SVD) is used in Ma et al.
(2011). Another algorithm that used manifold structure in its line-search updates is Ngo and Saad
(2012). However, using SVD strategy is expensive when the size of data matrix increases. Thus, it
is desirable to use other approaches. One of the popular heuristic approach to solve (1) is matrix
factorization. Based on the simple factorization, instead of solving (1), several algorithms are de-
signed to solve the non-convex problem, where usually alternating minimization scheme is used.
For example, Wen et al. (2012) proposed an approach to solve the following problem

minX,Y,Z
1
2
||XY − Z||2F

s.t Zij = Mij ∀(i, j) ∈ Ω, (3)

where ||.||F is the Frobenius norm, X ∈ Rm×s, Y ∈ Rs×n, Z ∈ Rm×n and s is an integer
which is the rank estimate. They performed a low rank matrix factorization based on successive
over-relaxation iteration. Vandereycken (2013) proposed a new algorithm that minimizes the least
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squares distance on the sampling set over the Riemannian manifold of fixed rank matrices. Another
algorithm that used alternating direction approach is Xiao et al. (2013). In Wang and Li (2015),
the authors proposed mean value algorithm for the Toeplitz matrix completion. Wang et al. (2015)
proposed a two-step proximal gradient algorithm to solve nuclear norm regularized least squares.
An alternating steepest descent algorithm and a scaled variant of it are introduced in Tanner and
Wei (2016) for the fixed-rank matrix completion problem. Most recently, Huang and Wolkowicz
(2018) combined nuclear norm minimization and facial reduction theory for solving matrix com-
pletion problem that has high accuracy.

In this paper, matrix factorization is combined with the alternating direction method of multipliers
(ADMM) approach to solve (3). The rest of this paper is organized as follows. In Section 2, we
present the ADMM-Factorization algorithm and then its convergence to the KKT point is discussed
in Section 3. Finally, in Section 4, the numerical experiments on several classes of test problems
are carried out, comparing the new algorithm with several known and efficient algorithms from the
literature.

2. ADMM-Factorization algorithm

Recently, ADMM algorithms have been successfully used for solving several optimization prob-
lems by breaking them into smaller sub-problems (for example, see Steidl and Teuber (2010), Ng
et al. (2010), Salahi and Taati (2017), and Taleghani and Salahi (2018)). Consider the augmented
Lagrangian associated to (3) as follows:

Lρ(X, Y, Z,Λ) =
1

2
||XY − Z||2F + Λ · (PΩ(Z)− PΩ(M)) +

ρ

2
||PΩ(Z)− PΩ(M)||2F ,

where Λ is the Lagrange multipliers, ρ is the penalty parameter and PΩ(A) is a projection that its
known entries are in Ω and its unknown entries are zeros, that is

(PΩ(A))ij =

{
Aij, if (i, j) ∈ Ω,

0, otherwise,

and

A ·B =
∑
i,j

AijBij.

Since model (3) is a non-convex optimization problem, we use alternating strategy for minimizing
each variable. Thus, the ADMM steps for (3) can be outlined as follows:

Xk+1 ← argminXLρ(X, Yk, Zk,Λk), (4)
Yk+1 ← argminYLρ(Xk+1, Y, Zk,Λk), (5)
Zk+1 ← argminZLρ(Xk+1, Yk+1, Z,Λk), (6)
Λk+1 ← Λk + γρ(PΩ(Zk+1)− PΩ(M)), (7)
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where in (7), γ ∈ (0, 1.618) is the step length. Moreover, due to the convexity the above steps can
be written as follows:

Xk+1 = (ZkY
T
k )(YkY

T
k )−1, (8)

Yk+1 = (XT
k+1Xk+1)−1(XT

k+1Zk), (9)

Zk+1 = PΩc(Xk+1Yk+1) +
1

1 + ρ
(PΩ(Xk+1Yk+1)− PΩ(Λk) + ρPΩ(M)), (10)

PΩ(Λk+1) = PΩ(Λk) + γρ(PΩ(Zk+1)− PΩ(M)). (11)

Now, the ADMM-Factorization algorithm for solving (3) can be outlined as follows.

———————————————————————————————————————
ADMM-Factorization algorithm for solving (3)
———————————————————————————————————————
Input: Matrices Y0, Z0 and Λ0, tol > 0, appropriate penalty parameter ρ > 0, maxiter and k = 0.
For k = 1, · · · ,maxiter do
Perform (8) to (11),
If stopping criterion is satisfied, then exit with (Xk+1, Yk+1, Zk+1,Λk+1).
end if
end for
———————————————————————————————————————
It is worth noting that the main computational costs of ADMM-Factorization algorithm is two
least squares problems (8) and (9) that each of them requires 2mnr + 2nr2 + O(r3) and
2mnr + 2mr2 +O(r3) operations, respectively. The computational costs of (10) and (11) are also
2|Ωc|r+ 2|Ω|(2r+ 1) and 2|Ω|r+ |Ω| operations, respectively. Therefore, the total computational
costs of ADMM-Factorization algorithm is 6mnr + 2(m+ n)r2 + |Ω|(4r + 3) operations.

3. Convergence results

In this section, we discuss the convergence of ADMM-Factorization algorithm to a KKT point as
in Xu et al. (2012). The KKT conditions for (3) are as follows:

(XY − Z)Y T = 0, XT (XY − Z) = 0, PΩc(Z)− PΩc(XY ) = 0,

PΩ(Z)− PΩ(XY ) = −PΩ(Λ), PΩ(Z)− PΩ(M) = 0. (12)

Lemma 3.1.

Suppose that {(Λk)} is bounded and

∞∑
k=0

||Λk+1 − Λk||2F <∞. (13)

Let Wk = (Xk, Yk, Zk), then ||Wk+1 −Wk||2F → 0 as k →∞.
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Proof:

The augmented Lagrangian function of (3) can be written as

Lρ(X, Y, Z,Λ) =
1

2
||XY − Z||2F +

ρ

2
||PΩ(M)− PΩ(Z) +

Λ

ρ
||2F −

1

2
||Λ||2F . (14)

Obviously Lρ is strongly convex with respect to each variable X, Y, Z,Λ. For example, when
Y, Z,Λ are fixed, we have Lρ(Xk+1) − Lρ(Xk) ≥ ∂XLρ(Xk+1) · ∆X + ||∆X||2F . If Xk+1 is the
minimizer of Lρ(X) at k-th iteration, then ∂XLρ(Xk+1) · ∆X ≥ 0. So we have Lρ(Xk+1) −
Lρ(Xk) ≥ ||∆X||2F , or

Lρ(Xk+1)− Lρ(Xk) ≥ ||Xk+1 −Xk||2F . (15)

Similarly, we have

Lρ(Yk+1)− Lρ(Yk) ≥ ||Yk+1 − Yk||2F , (16)
Lρ(Zk+1)− Lρ(Zk) ≥ ρ||Zk+1 − Zk||2F . (17)

Now, let c := min{ρ, 1}. Then, by (15), (16) and (17) we have

Lρ(Wk,Λk)− Lρ(Wk+1,Λk+1)

= Lρ(Wk,Λk)− Lρ(Wk+1, Λk) + Lρ(Wk+1,Λk)− Lρ(Wk+1,Λk+1)

≥ c||Wk −Wk+1||2F −
1

γρ
||Λk − Λk+1||2F

≥ c||Wk −Wk+1||2F −
1

cγ
||Λk − Λk+1||2F .

Since Lρ is bounded, we have
∑∞

k=0 c||Wk−Wk+1||2F −
∑∞

k=0
1
cγ
||Λk−Λk+1||2F <∞. Now, using

(13) we have
∑∞

k=0 c||Wk −Wk+1||2F <∞, therefore Wk+1 −Wk → 0. �

Theorem 3.2.

Let (X∗, Y ∗, Z∗,Λ∗) be an accumulation point of (Xk, Yk, Zk,Λk) generated by the ADMM-
Factorization algorithm. Then, by the boundedness of {(Λk)} and

∑∞
k=0 ||Λk+1 − Λk||2F ≤ ∞,

such accumulation point satisfies the KKT conditions (12).

Proof:

From (8), (9) and (11) we have

(Xk+1 −Xk)YkY
T
k = −(XkYk − Zk)Y T

k ,

XT
k+1Xk+1(Yk+1 − Yk) = −XT

k+1(Xk+1Yk − Zk),
Λk+1 − Λk = γρ(PΩ(Zk+1)− PΩ(M)).

Moreover, Lemma 3.1 implies that (XkYk − Zk)Y
T
k → 0, XT

k+1(Xk+1Yk − Zk) → 0 and
PΩ(Zk+1) − PΩ(M) → 0. Since (X∗, Y ∗, Z∗) is an accumulation point of {(Xk, Yk, Zk)}, then
there exists a subsequence {(Xnk

, Ynk
, Znk

)} converging to (X∗, Y ∗, Z∗). In addition, the bound-
edness of {Λk} implies that there is a subsequence {Λnk

} converging to Λ∗. Also, (10) means that



1150 R. Taleghani and M. Salahi

PΩc(Zk+1)− PΩc(Xk+1Yk+1) = 0 and PΩ(Zk+1)− PΩ(Xk+1Yk+1) + PΩ(Λk)→ 0. Therefore, the
KKT conditions hold at the limit point. �

4. Numerical experiments

In this section, we compare the performance of ADMM-Factorization algorithm with LMaFit (see
Wen et al. (2012)), FR (see Huang and Wolkowicz (2018)), OptSpace (see Keshavan et al. (2010)),
ScGrassMC (see Ngo and Saad (2012)), ScaledASD and ASD (see Tanner and Wei (2016)) on
several classes of test problems. The implementation is done in MATLAB R2018a on a Laptop
with 2.5GHz CPU and 8GB of memory. The stopping criteria is considered as following:

Relative error =
||M −XY ||F
max(1, ||M ||F )

≤ tol.

In all experiments, ρ and Λ0 are set to 108 and one, respectively. Moreover, the initial points Y0 is
identity matrix and Z0 is considered PΩ(M).

Table 1. Comparison of the relative errors when SR=0.56

[m, n, r] [300, 2000, 3] [500, 2000,3] [700,2000,3]
Time Rel.err Time Rel.err Time Rel.err

ADMM 0.64 9.2385e-11 0.88 9.6116e-11 1.10 6.6715e-11
FR 14.76 1.6201e-11 15.20 2.8972e-11 17.03 1.2119e-11

ScaledASD 0.65 8.7190e-11 0.94 3.8023e-11 1.05 2.1632e-11
ASD 1.00 6.5016e-11 1.26 5.3880e-11 2.47 7.5217e-11

LMaFit 1.50 9.2385e-11 1.91 6.7629e-11 2.72 6.6515e-11
ScGrassMC 1.01 3.5698e-11 1.43 2.5705e-11 1.79 9.3699e-11
OptSpace 27.53 1.1826e-11 30.75 7.0879e-11 29.38 6.8844e-11
[m, n, r] [300, 4000, 3] [500, 4000,3] [700,4000,3]

Time Rel.err Time Rel.err Time Rel.err
ADMM 1.17 6.8615e-11 1.64 7.0324e-11 2.04 6.3010e-11

FR 115.69 2.5772e-11 123.74 3.9322e-11 120.01 4.8375e-11
ScaledASD 1.19 8.7081e-11 1.76 5.8733e-11 1.99 3.2104e-11

ASD 1.82 8.0497e-11 2.74 7.1827e-11 4.49 8.2264e-11
LMaFit 2.83 6.8615e-11 3.60 8.7583e-11 5.16 6.3015e-11

ScGrassMC 1.88 7.0200e-11 2.82 2.9860e-11 3.62 1.6557e-11
OptSpace 107.91 9.0650e-11 96.99 8.8429e-11 113.57 8.3175e-11
[m, n, r] [300, 2000, 4] [500, 2000,4] [700,2000,4]

Time Rel.err Time Rel.err Time Rel.err
ADMM 0.63 9.3778e-11 0.87 9.2609e-11 1.08 6.3832e-11

FR 15.62 2.0426e-11 17.97 4.4225e-11 19.04 6.6462e-11
ScaledASD 0.68 5.4367e-11 0.92 9.8879e-11 1.05 5.4243e-11

ASD 0.76 4.6217e-11 1.35 6.2202e-11 1.55 9.2135e-11
LMaFit 1.57 9.3778e-11 1.98 5.9898e-11 2.73 6.3931e-11

ScGrassMC 1.07 4.3719e-11 1.61 4.1699e-11 2.01 3.0729e-11
OptSpace 33.21 1.0913e-11 41.90 1.0379e-11 35.26 1.0207e-11
[m, n, r] [300, 4000, 4] [500, 4000, 4] [700, 4000, 4]

Time Rel.err Time Rel.err Time Rel.err
ADMM 1.17 8.5583e-11 1.62 7.1459e-11 2.04 8.1371e-11

FR 118.37 7.5755e-11 120.69 3.7979e-11 122.87 3.3297e-11
ScaledASD 1.37 4.5705e-11 1.73 9.8508e-11 2.12 5.0948e-11

ASD 1.47 5.3090e-11 3.75 7.3760e-11 3.06 5.5103e-11
LMaFit 2.98 8.5484e-11 3.61 8.3521e-11 5.21 8.1371e-11

ScGrassMC 2.08 9.7090e-11 3.61 8.3521e-11 3.99 3.1474e-11
OptSpace 125.21 7.4970e-11 113.91 8.5583e-11 127.87 6.7809e-11

• First class of test problems: This class of test problems is generated based on Lemma from
Huang and Wolkowicz (2018). First we generate two random matrices ML ∈ Rm×r and MR ∈
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Figure 1. Comparison of the CPU times of ADMM-Factorization algorithm and ScaledASD for different SR when rank
is fixed and tol = 10−10 (first class of test problems)

Rr×n with normally distributed random entries and then set M = MLMR. Finally, a subset Ω
(observed entries) of M indices are selected randomly ( for example p entries of M ) and the
observed matrix is MΩ := PΩ(M). The ratio p

mn
is the sampling ratio and is denoted by SR.

In Table 1, we compare the relative errors of ADMM-Factorization algorithm and the other algo-
rithms when SR = 0.56. The results show that ADMM-Factorization algorithm and ScaledASD
outperform the other algorithms and in most cases ADMM-Factorization algorithm has better
CPU times than the ScaledASD. In Figure 1, we compare the two top algorithms for different
dimensions when m and rank are fixed and SR is 0.35 and 0.50. The results show that ADMM-
Factorization algorithm has comparable CPU times with ScaledASD when we increase SR.
• Second class of test problems: In this class of test problems, we use noisy matrices (see Van-

dereycken (2013)). In fact a random perturbations matrix is added to the data matrix M , i.e.,

Mε := M + ε
||M ||F
||PΩ(N)||F

PΩ(N),

where ε is noise level and N ∈ (0, 0.001) is a random matrix. So the relative errors are of order
of ε, i.e.,

||Mε −M ||F
||M ||F

' ε.

Here, we set SR equal to 0.25 and rank equal to 2 and 3. The results are reported in Table 2. As
we see, the CPU times of ADMM-Factorization algorithm are significantly better than the other
algorithms, specially in high dimensions. Also ‘-’ in this table means that the algorithm needs
more than 500 seconds, so it quits. In Figure 2, the performance of ADMM-Factorization and
ScaledASD is compared when ε = 10−7, maxiter=500 and rank is 5 and 15. The results show
that ADMM-Factorization algorithm has significantly better CPU times than ScaledASD.
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Table 2. Comparison of the relative errors when both tolerance and noise level are 10−7 and maxiter is 200

[m, n, r] [1000, 1000, 2] [2000, 2000, 2] [3000,3000, 3]
SR 0.25 0.25 0.25

Time Rel.err Time Rel.err Time Rel.err
ADMM 4.18 1.5684e-7 16.13 1.5425e-7 34.09 1.5664e-7

FR 6.18 4.5214e-7 34.71 9.7983e-7 106.62 5.5655e-7
ScaledASD 11.40 1.5654e-7 43.22 1.5654e-7 95.93 7.3021e-7

ASD 10.18 1.5654e-7 39.96 1.5657e-7 86.64 6.7799e-7
LMaFit 10.60 1.5684e-7 39.15 2.5254e-7 86.37 1.5664e-7

ScGrassMC 19.79 1.5684e-7 72.77 1.4551e-7 163.09 1.5664e-7
OptSpace 67.91 9.9551e-6 291.26 1.8208e-6 – –
[m, n, r] [1000, 1000, 3] [2000, 2000, 3] [3000, 3000, 3]

SR 0.25 0.25 0.25
Time Rel.err Time Rel.err Time Rel.err

ADMM 4.20 1.6014e-7 16.07 1.5713e-7 29.37 1.5777e-7
FR 6.33 1.1540e-1 37.18 1.3555e-7 108.63 2.9171e-7

ScaledASD 11.44 1.6014e-7 45.13 4.3258e-7 97.94 1.5777e-7
ASD 10.30 1.6268e-7 40.37 3.7946e-6 89.45 2.3324e-7

LMaFit 10.59 1.6014e-7 40.64 9.1259e-8 88.36 2.5628e-7
ScGrassMC 19.42 1.6014e-7 76.05 5.7531e-7 172.35 5.2563e-7
OptSpace 6.33 1.3370e-1 359.96 1.0269e-3 – –
[m, n, r] [4000, 4000, 2] [4000, 4000, 3] [5000, 5000, 3]

SR 0.25 0.25 0.25
Time Rel.err Time Rel.err Time Rel.err

ADMM 60.72 1.5654e-7 60.52 1.5714e-7 94.53 1.5707e-7
FR 286.87 1.5239e-7 295.22 9.2478e-7 – –

ScaledASD 168.29 2.3548e-7 169.57 5.6548e-7 256.25 8.3215e-7
ASD 152.82 8.3658e-7 152.63 2.0839e-7 234.03 1.0444e-3

LMaFit 150.84 9.3548e-7 152.39 9.4587e-7 234.44 2.3547e-7
ScGrassMC 303.8 7.3475e-7 307.58 5.4875e-7 466.82 2.5708e-7
OptSpace – – – – – –
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Figure 2. Comparison of the CPU times of ADMM-Factorization algorithm and ScaledASD for different SR when rank
is fixed and tol=10−7 (second class of test problems)

• Third class of test problems: In this class of test problems, we generate M , an n × n positive
semidefinite matrix of rank r, by sampling an n× r factor MF with normally distributed random
entries and setting M = MFM

T
F (see Candès and Recht (2009)).
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Figure 3. Comparison of the CPU times of algorithms for different dimensions when SR is 0.60 and tol=10−10 (third
class of test problems)

In Figure 3, we compare the CPU times of top four algorithms. As we see, in all cases ADMM-
Factorization algorithm has comparable CPU times with ScaledASD.
• Fourth class of test problems: In this class of test problems, we use two types of test

images: goldhill, man (http://www.utdallas.edu/ cxc123730/mh_ bcs_ spl.html) and the faces
(https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html), to compare the top four al-
gorithms. The size of goldhill and man images are 512× 512 and the size of faces are 112× 92.
The missing pixels positions are randomly distributed and more than 50 percent of each images
are used as the observations. We used estimated rank 40, 30 and 10 for goldhill, man and faces,
respectively. Also, in all experiments we stopped the algorithms after 500 iterations. The output
images and the corresponding time and relative errors are also given in Figure 4 and Table 3, re-
spectively. Here also ADMM-Factorization has better CPU times than the other three algorithms
while having comparable relative errors.

Table 3. Comparison of different algorithms for image reconstruction

Figures ADMM LMaFit ASD ScaledASD
Time Rel.err Time Rel.err Time Rel.err Time Rel.err

goldhill 4.85 8.4373e-2 12.37 8.4373e-2 12.08 1.2595e-1 14.14 8.4367e-2
man 4.51 1.1835e-1 11.20 1.1835e-1 10.91 1.1852e-1 12.75 1.1835e-1

face 1 0.15 9.9306e-2 0.25 9.9306e-2 0.19 9.9155e-2 0.29 9.9981e-2
face 2 0.15 7.4322e-2 0.25 7.4322e-2 0.19 7.5560e-2 0.29 7.4349e-2

• Fifth class of test problems: In this class of test problems, we use MovieLens latest dataset
(https://grouplens.org/datasets/movielens) that contains 943 users,1682 movies and 100000 rat-
ings (ml100k-u1.test) (see Harper and Konstan (2016)). Sampling ratio in this experiment is 0.06
and the stopping criteria is

Residual error =
||PΩ(M)− PΩ(XY )||F

||PΩ(M)||F
≤ tol.

Here, also we compare the top four algorithms (ADMM-Factorization, LMaFit, ASD and
ScaledASD). In Figure 5, their CPU times are reported when the tolerance and maxiter are 10−3
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Figure 4. Original and recovered goldhill, man, face 1 and face 2 images using ADMM-Factorization algorithm,
LMaFit, ASD and ScaledASD

and 500, respectively. We should note that LMaFit’s relative errors for different rank are greater
than 10−1 and thus we did not include it in the figure.
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Figure 5. Comparison of the CPU times of algorithms for real data set

5. Conclusions

In this paper, we proposed an ADMM-Factorization algorithm for matrix completion problem.
Despite its simplicity, numerical results show that its CPU times performance in five classes of test
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problems in most cases is better than the other state-of-the-art matrix completion algorithms in the
literature while having the same relative errors.
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