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Abstract

One way to study the spectral properties of Sturm-Liouville operators is difference equations. The
coefficients of the second order difference equation which is equivalent Sturm-Liouville equation
can be written as a tridiagonal matrix. One investigation area for tridiagonal matrix is finding eigen-
values, eigenvectors and normalized numbers. To determine these datas, we use the solutions of
the second order difference equation and this investigation is called direct spectral problem. Fur-
thermore, reconstruction of matrix according to some arguments is called inverse spectral problem.
There are many methods to solve inverse spectral problems according to selecting the datas which
are generalized spectral function, spectral data of the matrix and two spectra of the matrix. In
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this article, we study discrete form the Sturm-Liouville equation with generalized function po-
tential and we will focus on the inverse spectral problems of second order difference equation
for spectral data and two spectra. The examined difference equation is equivalent Sturm-Liouville
equation which has a discontinuity in an interior point. First, we have written the investigated
Sturm-Liouville equation in difference equation form and then constructed N by N tridiagonal
matrix from the coefficients of this difference equation system. The inverse spectral problems for
spectral data and two-spectra of N by N tridiagonal matrices which are need not to be symmetric
are studied. Here, the matrix comes from the investigated discrete Sturm-Liouville equation is not
symmetric, but almost symmetric. Almost symmetric means that the entries above and below the
main diagonal are the same except two entries.

Keywords: Sturm-Liouville equation; Difference equation; Inverse problems; Spectral data;
Two spectra

MSC 2010 No.: 39A10, 40A05

1. Introduction

The purpose of this article is twofold. The inverse spectral problem for spectral data will be in-
vestigated. Furthermore, inverse spectral problem for two spectra will be studied. This article is
self-contained, but can also be considered as a sequel to an earlier publication in Bala et al. (2016).
In this article we construct the NV x N tridiagonal matrix

[(bpag 0 ---0 0 --- 0 0 0
aoblal---O 0 0 0 0
0aby---0 0 --- O 0 0
1000 by au 0 0 0

000 -cydpyr--

000---0 0 ---dyv_gey—s O

)
)
)

w0 0 ---en_3dy_9cn_2
000---0 o --- 0 CNfngfl_

where

an, b, € C,a, #0,
n=ay/a,n€{M,M+1,..N—2},
dy =bp/a, ne {M+1,M+2,....N —1},

and « # 1 is a positive real number. J is the almost symmetric matrix of the form (1). Almost
symmetric here means that the entries above and below the main diagonal are the same except the
entries a; and cyy.
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When a,; = ¢, in matrix ./, we obtain a symmetric matrix and such a matrix is called Jacobi ma-
trix. The most of first studies related to inverse problem for Jacobi matrices belong to Hochstadt
(1974, 1979), (see also Gray and Wilson (1976) and Hald (1976)). Later, G. Guseinov has pi-
oneered an inverse problem of infinite Jacobi matrices. He considered the inverse problems of
spectral analysis for infinite Jacobi matrices in Gasymov and Guseinov (1990), the inverse spectral
problems for the infinite non-selfadjoint Jacobi matrices from the generalized spectral function in
Guseinov (1978) and from the spectral data and two spectra in Guseinov (2010, 2012a, 2012b,
2013). He has been also studied the inverse spectral problem for NV x N tridiagonal symmetric ma-
trix in Guseinov (2009) and than the inverse spectral problems with spectral parameter in the initial
conditions are considered in Manafov and Bala (2013). Also, spectrum and scattering analysis have
been investigated for discrete Schrodinger equations and Dirac systems in Bairamov et al. (2017)
and Bairamov and Solmaz (2018). At the same time, Huseynov et al. (2017) studied inverse scatter-
ing problem for discrete Dirac system. Parseval equality of discrete Sturm-Liouville equation with
periodic generalized function potentials has been considered in Manafov et al. (2018). Generally,
inverse spectral problems for energy-dependent Sturm-Liouville equations with delta-interaction
have been examined in Manafov (2016b, 2016a).

In this paper, we consider the eigenvalue problem Jy = Ay, where y = {yn}nN:_o1 is a column
vector. We can think this matrix eigenvalue problem as a matrix form of the following second
order linear difference equation

Ap—1Yn—1 + bnyn + ApYn+1 = /\Pn?/m nec {O, 17 R3] M7 R3] N - 1}7
(2)

a1 =cn-_1 =1,
for {y, }.__,, with the boundary conditions
y-1=yn =0, 3)
where p,, 1s a constant defined by
1, 0<n< M,
Pn = a, M <n<N -1,
On the other hand, the difference equation (2) with the boundary conditions (3) is a discrete form
of the following Sturm-Liouville operator with discontinuous coefficients:

1#a>0.

d d
= [ )| + atante) = dato). o elont,
y(a) = y(b) =0,
where p(z) is a piecewise function defined by

|1, a<z<g, 9
oo ={ 5 tSI50 @,

[a, b] is a finite interval, v is a real number, and ¢ is a discontinuity point in [a, b]. For some direct
and inverse spectral investigations of such an equation, we refer to Akhmedova and Huseynov
(2003, 2010). Also, the spectral properties of the equation given above are investigated for different
cases in Mamedov and Cetinkaya (2015, 2017) and Menken et al. (2018).
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2. Spectral Data

In this section, we introduce some new concepts and statements releated to spectral data of the
matrix J. We will start this section with the following lemma. For the proof of this lemma, please
see Bala et al. (2016). Let us denote by {Pn()\)}fj:_l , the solution of Equation (2) together with
the initial data

Yy-1=0, yo=1.
Lemma 2.1.
The following equality holds:
det(J — M) = (=1)Nagay...aprcarer...on—1 Pv(N). 4)

Therefore, the roots of the polynomial Py (\) and the eigenvalues of the matrix J are coincident.

Let R ()\) = (J — AI)~" be resolvent of matrix .J given in (1), and ey be an N dimensional column
vector whose components are (1,0, ...,0). Let’s introduce a resolvent function w (A) of matrix .J
as a rational function

w(N) =—(R(N)eg,e0) = —((J = M) " ep,eq), (5)

where ( , ) denotes standard inner product on C¥.

Let Ai, Ag, ..., A, be distinct eigenvalues of the matrix J and my, mao, ..., m,, are their multiplicites,
respectively. These are also the roots of the polynomial Py () from Lemma 2.1. Therefore 1 <
p < N and m; +my + ... + m, = N. The rational function w (\) can be rewritten as a sum of
partial fractions:

P mg

=3 s ©

kl]l

where f3;; € C are uniquely determined by the matrix J.

Definition 2.2.

The collection of quantities

are called spectral data for the matrix J. Foreach k € {1,2, ..., p} we call the numbers

{/Bk17/8k527 -"7Bkmk}>

the normalizing chain (of the matrix J) associated with the eigenvalue ).

When the matrix J is given, determining the spectral data of this matrix is called the direct spectral
problem for this matrix. Let us show a way to calculate the spectral data of the matrices .J. For
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N
n=-—1

this, we first describe the resolvent function w (\). Denote by {P, (\)}.__, and {Q, ()}
the solutions of Equation (2) satisfying initial conditions

P,1 (A) :07 PO <)‘>: 17 (8)

Qo(A)=—-1, @ (})=0. ©)

We can write the entries Ry, (A) of the matrix R (\) = (J — AI)~" are of the form by the same
motivation in Guseinov (2009),

oo [P Qn N+ MW Pa V], 0<n<m< N1,
”m()_{pan(A)[Qn<A)+M(A)Pn(A)}, O<men<N_1.

where M (\) = —Qn(A\)/Pn (). Now, recalling (5) and using (8), (9), we obtain

Qn(A)
A) = —Rp(N) =—M(\) = . 10
w(A) 00(A) (A) PV (10)
Thus, we can define the resolvent function w (\) of matrix J by aid of the solutions { P, (\)}.__|
and {Q,, (\)}"__, , and so spectral data can be determined.

In addition, a different way to define the resolvent function is as follows.

If we delete the first row and the first column of the matrix ./, then we get

bia50--- 0 0 0 0 -~ 0 0 0
atbrat--- 0 0 0 0 0 0 0
Oaibs--- 0 0 0 0 0 0 0
000 by a5 0 0 0 0 0
1000 -ay , b ah, O 0 0 0
h=1000 0 &,y df, ¢y 0o 0 0 |’ (1)
000 0 0 ¢ diyyyr-o- 0 0 0
00 0 0 0 0 ---diy,cy, O
000 O 0 0 0 0 ciy gdy o]

where
ar =any1, nef{0,1,...M—1},
by =byy1, ne{0,1,...,M},
cn=¢Cpy1, NnE{M—-1,..,N—3},
d:;:dn-i-la nG{M,,N—Q}

The matrix J; is called the first truncated matrix of J.
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Theorem 2.3.
The equality,
det (J; — A1)
\) = —— It A
@ = =Gt =)
holds.
Proof:

Let us denote by the polynomials P} (\) and Q7 () the solutions of corresponding difference
equation of the matrix J;:

@ Ynot F D Yn + @ Yngr = Nopn, n€ {01, M, .., N -2}, cy_o=1.

It can be shown that
Pr(N) = aoQni1 (V)
Qr (N) = - {(A = 0) Quir (N) = Payan (M)} (12)

ned{0,1,...M,...N—1}.
Taking into account (4) for the matrix .J; instead of J and using (12), we obtain
det (J; = M) = (=D)N N adat..at, ¢y o Pl (V) (13)
= (—1)N_1 a1ag...apCrr1---CN—100QN (N) .
Comparing this with (4), we get

QAn(N) B _det (J1 — M)
Py(A)  det(J —AI)’
so that the statement of the theorem follows by (10). n

3. Inverse Problem for Spectral Data

In spectral theory, the inverse spectral problem is stated as follows:

(1) To see if it is possible to reconstruct the matrix J given its spectral data (7). If it is possible, to
describe the reconstruction procedure.

(i1) To find the necessary and sufficient conditions for a given collection (7) to be the spectral data
for some matrix .J.

The collection (7) is given. Let’s define the quantities ¢; by using this collection as below:

P N
l s
tl:ZZ(j_l)ﬁ,ﬁA; =01, .., (14)
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where ng = min {my, [l + 1}, (j l

_ 1) is a binomial coefficient and when j — 1 > [, we put

l . .
( ) = (. Let’s present the determinants by using the numbers ¢;

j—1
to t1 -+ tn
At TR g (15)
t'nt-;-l"'t2n

Since the proof of the following theorem reproduces that of Theorem 6 in Guseinov (2009) with
obvious modifications, we omit it.

Theorem 3.1.

Let an arbitrary collection (7) of complex numbers be given, where A, ..., A\, (1 <p < N) are
distinct, 1 < my < N and m; + ... +m, = N. In order for this collection to be the spectral data
for some matrix J, it is necessary and sufficient that the following two conditions be satisfied:

P
(1) Z ﬁkl = 17

k=1
(ii) D, # 0 forn = (1, N — 1), and Dy = 0, where D, is defined by (14) and (15).

Under the conditions of Theorem 3.1, the entries a,,, b,, ¢, and d,, of the matrix .J for which the
collection (7) is spectral data, are recovered by the formulas

V Dn—an+1

a, = =* D (ogngM—l),D,lzl, (16)
vaDy_ 1Dy VDu-1Dy
=+ =4 - 17
apnr _DM y CMm \/aDM ) ( )
D,_1D,
¢, ==+ D1 L (M<n<N-=-2), (18)
An An—l
b, = — — <n<M), A_1=0, 1
D, D, (0<n< M) 1=0 (19)
g = Sn D (M <n<N-=1), Ng=t (20)
n — Dn Dn,1 n = 3 0 — t1,

where DYV = A\, is the determinant obtained from the determinant D,, by replacing in D,, the
last column by the column with the components ¢, 1, t,, 12, .-+, toni1.

Remark 3.2.

It follows from the equalities (16) and (18), the matrix (1) is not uniquely restored from the spectral
data because of the sign 4. To ensure that the inverse problem is uniquely solvable, we have to
specify additionally a sequence of signs + and —.
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4. Inverse Problem for Two Spectra

Let J be a matrix which has the form (1), A, A2, ..., A, be distinct eigenvalues of the matrix J
and m;y, ma, ..., m,, are their multiplicites, respectively. These are also the roots of the polynomial
Py (A) from Theorem 2 in Bala et al. (2016). Therefore 1 < p < N and my +my+ ... +m, = N.
Furthermore, let .J; be the (N — 1) x (N — 1) matrix which has the form (11), s, o, ..., ptg be
distinct eigenvalues of the matrix J; and ng,no, ..., n, are their multiplicites, respectively. Also,
these eigenvalues are roots of det (J; — A\I),sothat1 < ¢ < N—1landn;+ns+...4+n, = N—1.

We assume that the collections
{Ne.my (k=1,p)}, and {pp,ne (k=T1,9)},

are the spectral data for the matrix J and J;, respectively. These two collections are called two-
spectra of the matrix J. The inverse spectral problem for two-spectra is defined as the recon-
struction of the matrix J by aid of its two-spectra. In order to solve the inverse spectral problem
for two-spectra we reduce this problem to the inverse problem for the spectral data discussed in
previous section.

Let us give some properties of two-spectra of the matrix J which has (1) form. Denote by
{P, ()\)}7]:7:_1 and {Q,, (\)}."__, the solutions of Equation (2) satisfying initial conditions (8) and

n

(9), respectively. Then, by (4) and (13), we get
det (J - )\I) = (—1)N CL()CLl...CLMCM+1...CN_1PN ()\) s

det (J1 — )\I) = (—I)Nil aoal...aMCM+1...CN_1QN (/\) s

where the eigenvalues of the matrix J and their multiplicities coincide with the roots of the poly-
nomial Py (\) and the eigenvalues of the matrix .J; and their multiplicities coincide with the roots
of the polynomial Qy ().

Lemma 4.1.

The equation

Py 1 (N)Qn(A\) = Pv (M) Qn-1(N) = é: 21

holds.
Proof:
Let’s consider the equation
n-1Yn—1 + bn¥n + @nYni1 = ANppyn, n € {0,1,..,M,....N —1},
a1 =cy—1 =1,

Denote by {P, (\)}™__, and {Q,, (\)}.__, the solutions of this equation satisfying initial condi-

n=-—1
tions (8) and (9), respectively. We can write

an_an_l ()\) + ann ()\) + CLnPn+1 (/\) = /\pnpn ()\) 5
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an—lQn—l ()\) + ann ()\> + a’nQn+1 ()\) = )\ann ()\) .

If the first equality is multiplied by P, (\) and the second equality is multiplied by @), (A), then
the second result is substracted from the first, we get

W= an-1[Poy (A) @n(A) = Lo (A) Qua (N)] = an [Py (X) @nia (A) = Pyt (V) @n (V)]

and the Wronskian is independent from n € {0,1,..., M, ..., N — 1}. By use of initial conditions
(8) and (9), we have

aN-1 [ ( )QN ()\) Py ()\) Qn-1 0\)]
= cn-1.0[Pyo1 (A) Qv (A) = Py (A) Qn-1 (V)] = 1.

If we take cy_; = 1, we obtain Equation (21). -

The matrices J and .J; have no common eigenvalues, that is, A\, # p; for all possible values of k
and j. From (6) and Theorem 2.3, we get

q
pIEI. L

p

=1

Hence,

e

(A — )™

)mz

1 dme
(g, — 7)! Aa, dAme—d

s
Il
—

Prj = (A =A™ :

:“S
>~

|
>

N
Il
—

We can write

q N
1 dme—i [T =)™

=1 .
(i — ) Aohw AT 2 o (=T k=1p) (22)

[T(A=M)™

=1
14k

Brj =

The procedure of reconstruction of the matrix J from its two-spectra consist in the following.

If we have two-spectra

{Mome (k=T.p)}. and {wem (k=T1.0)},

we obtain the quantities 3j; from (22) and then solve the inverse spectral problem for the spectral
data

to determine the entries a,,, b,, ¢, and d,, of the matrix .J we use the formulas (16)-(20).



AAM: Intern. J., Vol. 14, Issue 2 (December 2019) 1141

5. Example

Now, we will work out an example to illustrate our formulas. In the following example, by using
Theorem 2, it can be shown that the necessary and sufficient conditions for a given collection (7)
hold, and the matrix J can be constructed from (16)-(20).

Let’s take N = 4, M = 2 in Theorem 3.1, and p = 3, m; = 1, my = 1, m3 = 2 in the formulas
(16)-(20). Let’s choose the quantities in collection (7) as follows.

The eigenvalues are

)\1 = _17 >\2 = 07 )\3,4 = 17

p
and the normalizing numbers which satisfy the condition »_ f;; = 1 are
k=1

B =1/4, Py =1/2, 31 = 1/4, 3 = 1/3.

Firstly, we find the numbers ¢, (I = 0, 8) by using the formula (14)
t—lt—lt—7t—1t—11t—5t—5t—7t—19
0_71_372_673_74_675_376_277_378_6'

Now, it follows from the numbers ¢; (l = 0,_8) , we can find the determinants D,, (n = 0, 4) defined
in (15),

19 1 2

18 ) 2 g ) 3 9 ) 4 ) ( )
and the determinants D" = A, (m=0,3),

D—1:17 D0:17 Dl:

J N N (24)

1
AL=0 Ay=-
=5 =07 18 18’ 9

Then, by using the formulas (16)-(20) and from (23) and (24), we get

ag = £ Ea—j:—9 A9 = —8 19aic—i8\/ﬁz’
0 — 18’ 1 — 19\/57 2 — 9 , L2 — 9\/a7
and
1 14 631 37
=g =g =g h=y

Consequently, we find the eight matrices J for the spectral data given above, as follows:

3 /3 0 0
19 14 9
y— /15 5 19v2 0
9 631 8V 19« »
0 j:_19\/§ _\1/Ti :]: 9 1
8v19 37
i 0 0 + 9V 1 9 i
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The characteristic polynomials which are determined by the matrices /. are

det (Jo —A) = A+ 1A\ —1)°.

The inverse spectral problem for two-spectra is solved uniquely up to signs of the off-diagonal
elements of the recovered matrix from Remark 3.2.

6. Conclusion

In this article, the investigated tridiagonal matrix is the coefficient matrix of the discrete form
Sturm-Liouville operator with discontinous coefficient. We studied the inverse spectral problem of
almost-symmetric tridiagonal matrix for spectral data and two spectra. Spectral data is a collection
of eigenvalues )\ and normalized numbers (3;; of the matrix J. Two spectra of the matrix J occur
the eigenvalues )\, and p, of the matrices J and J;, respectively. While solving the inverse spectral
problem for two spectra, firstly we determine the normalized numbers 3; of the matrix J by using
the eigenvalues \; and py of the matrices J and Jy, respectively. Thus, we reduce the problem
from two spectra to spectral data. In the last section, we gave an example the inverse spectral
problem and we reconstruct the matrix by using the given eigenvalues and normalized numbers
set. For future research, this article will help solve the inverse spectral problems for the discrete
form Sturm-Liouville equation which has discontinuity points at the internal points.
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