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Abstract

The adjunction property, recently introduced for Sheffer polynomial sets, is considered in the case
of Appell polynomials. The particular case of adjoint Appell-Euler and Appell-Bernoulli polyno-
mials of the first kind is analyzed.
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1. Introduction

In recent articles (refer to Bretti et al. (2018a), Ricci et al. (2017)), new sets of Sheffer (refer
to Sheffer (1939)) and Brenke (refer to Brenke (1945)) polynomials, based on higher order Bell
numbers (refer to Bernardini et al. (2005), Natalini and Ricci (2004), Natalini and Ricci (2016),
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Natalini and Ricci (2018), Ricci et al. (2017)), have been studied. Furthermore, the notion of adjoint
Sheffer polynomial sets has been introduced (refer to Ricci (2018)) and applied in several cases
(refer to Bretti et al. (2018b), Natalini et al. (2018), Ricci et al. (2019)). In this article we consider
a similar notion in the case of Appell polynomial sets, starting by the case of Euler and first kind
Bernoulli polynomials.

2. Sheffer polynomials

The Sheffer polynomials {sn(x)} are introduced (refer to Sheffer (1939)) by means of the expo-
nential generating function (refer to Srivastava and Manocha (1984)) of the type:

A(t) exp(xH(t)) =
∞∑
n=0

sn(x)
tn

n!
, (1)

where

A(t) =
∞∑
n=0

an
tn

n!
, (a0 6= 0) ,

H(t) =
∞∑
n=0

hn
tn

n!
, (h0 = 0) .

(2)

According to a different characterization (refer to Roman (1984), [p. 18]), the same polynomial
sequence can be defined by means of the pair (g(t), f(t)), where g(t) is an invertible series and
f(t) is a delta series:

g(t) =
∞∑
n=0

gn
tn

n!
, (g0 6= 0) ,

f(t) =
∞∑
n=0

fn
tn

n!
, (f0 = 0, f1 6= 0) .

(3)

Denoting by f−1(t) the compositional inverse of f(t) (i.e. such that f (f−1(t)) = f−1 (f(t)) = t),
the exponential generating function of the sequence {sn(x)} is given by

1

g[f−1(t)]
exp

(
xf−1(t)

)
=
∞∑
n=0

sn(x)
tn

n!
, (4)

so that

A(t) =
1

g[f−1(t)]
, H(t) = f−1(t) . (5)

When g(t) ≡ 1, the Sheffer sequence corresponding to the pair (1, f(t)) is called the associated
Sheffer sequence {σn(x)} for f(t), and its exponential generating function is given by

exp
(
xf−1(t)

)
=
∞∑
n=0

σn(x)
tn

n!
. (6)
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A list of known Sheffer polynomial sequences and their associated ones can be found in Boas and
Buck (1958b).

3. Adjointness for Sheffer polynomial sets

According to the above considerations, Sheffer polynomials are characterized both by the ordered
couples (A(t), H(t)), or by (g(t), f(t)).

Definition 3.1.

Adjoint Sheffer polynomials are defined by interchanging the ordered couple (A(t), H(t)) with
(g(t), f(t)), when writing the generating function.

Here and in the following, the tilde “∼” above the symbol of a polynomial set stands for the
adjective “adjoint”.

3.1. Adjointness for Appell polynomial sets

In the case of Appell polynomials, since H(t) ≡ t, so that f(t) = H−1(t) = t, and A(t) = 1/g(t),
the above definition becomes:

Definition 3.2.

Adjoint Appell polynomials are simply defined by changing A(t) with 1/A(t) in the generating
function.

The simplest examples are given by the Adjoint Appell-Euler and the Adjoint Appell-Bernoulli
polynomials of the first kind:

1. Adjoint Appell-Euler polynomials

A(t) =
et + 1

2
,

G(t, x) =
et + 1

2
ext =

∞∑
n=0

ε̃n(x)
tn

n!
.

(7)

2. Adjoint Appell-Bernoulli polynomials of the first kind

A(t) =
et − 1

t
,

G(t, x) =
et − 1

t
ext =

∞∑
n=0

β̃n(x)
tn

n!
.

(8)



AAM: Intern. J., Vol. 14, Issue 2 (December 2019) 1115

4. Adjoint Appell-Euler polynomials

We recall that a polynomial set {pn(x)} is called quasi-monomial if and only if there exist two
operators P̂ and M̂ such that

P̂ (pn(x)) = n pn−1(x) ,

M̂ (pn(x)) = pn+1(x) , (n = 1, 2, . . . ).
(9)

P̂ is called the derivative operator and M̂ the multiplication operator, as they act in the same way
of classical operators on monomials.

This definition traces back to a paper by Steffensen (1941), recently improved by Dattoli (2000)
and widely used in several applications (refer to Dattoli et al. (2003), Dattoli et al. (2009), and the
references therein).

Since we are considering an Appell polynomial set, the derivative operator is simply given by the
derivative with respect to x, that is

P̂ = Dx , Dx ε̃n(x) = n ε̃n−1(x) . (10)

This can be easily checked by partially differentiating the generating function (7) with respect to
x.

The relevant differential equation is given by

∂G

∂x
= t

et − 1

2
ext . (11)

4.1. Recurrence relation

Theorem 4.1.

For any k ≥ 0, the polynomials ε̃k(x) satisfy the recurrence relation:

ε̃k+1(x) = (1 + x) ε̃k(x)−
xk

2
. (12)

Proof:

Differentiating equation (7) with respect to t we find:

∂G

∂t
=
∞∑
k=0

ε̃k+1(x)
tk

k!
= (1 + x)G(t, x)− ext

2
= (1 + x)

∞∑
k=0

ε̃k(x)
tk

k!
− 1

2

∞∑
k=0

xk
tk

k!
, (13)

so that the recurrence (12) follows. �
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4.2. Generating function’s PDE

Theorem 4.2.

The generating function (7) satisfies the linear PDE

t
∂G

∂t
= (1 + x)

∂G

∂x
− 1

et + 1

∂G

∂x
. (14)

Proof:

It is sufficient to eliminate the exponential function between the partial derivatives given in (11)
and (13). �

Note that the last addend becomes negligible when t increases.

4.3. Differential equation

We start noting that

A′(t)

A(t)
=

et

et + 1
=
∞∑
k=1

(−1)k+1tk . (15)

Now, we can apply a general result by Ben Cheikh (2003) (Corollary 3.2), in order to find the
multiplication operator for the quasi-monomial set {ε̃k(x)}, which at present is given by

M̂ =
A′(Dx)

A(Dx)
+ x =

∞∑
k=1

(−1)k+1Dk
x + x , (16)

According to the results of monomiality principle (refer to Dattoli (2000)), the quasi-monomial
polynomials {ε̃n(x)} satisfy the differential equation

M̂P̂ ε̃n(x) = n ε̃n(x) . (17)

In the present case, we have

M̂P̂ =

[
∞∑
k=1

(−1)k+1Dk
x + x

]
Dx , (18)

so that we have the following theorem.

Theorem 4.3.

The adjoint Appell-Euler polynomials {ε̃n(x)} satisfy the differential equation[
n∑

k=2

(−1)kDk
x + xDx

]
ε̃n(x) = n ε̃n(x) , (19)
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because, for any fixed n, the series expansion in Equation (18) reduces to a finite sum when it is
applied to a polynomial of degree n.

Remark 4.4.

The first few values of the adjoint Appell-Euler polynomials are as follows:

ε̃0(x) = 1,
ε̃1(x) = x+ 1

2
,

ε̃2(x) = x2 + x+ 1
2
,

ε̃3(x) = x3 + 3
2
x2 + 3

2
x+ 1

2
,

ε̃4(x) = x4 + 2x3 + 3x2 + 2x+ 1
2
,

ε̃5(x) = x5 + 5
2
x4 + 5x3 + 5x2 ++5

2
x+ 1

2
,

ε̃6(x) = x6 + 3x5 + 15
2
x4 + 10x3 + 15

2
x2 + 3x+ 1

2
,

ε̃7(x) = x7 + 7
2
x6 + 21

2
x5 + 35

2
x4 + 35

2
x3 + 21

2
x2 + 7

2
x+ 1

2
,

ε̃8(x) = x8 + 4x7 + 14x6 + 28x5 + 35x4 + 28x3 + 14x2 + 4x+ 1
2
.

Remark 4.5.

Note that the above scheme satisfy a particular symmetry. Writing the polynomials in the form

ε̃n(x) = cn,0x
n + cn,1x

n−1 + · · ·+ cn,n−1x+ cn,n , (n ≥ 0) ,

the coefficients cn,h , (0 ≤ h ≤ n) verify the conditions:

cn,0 = 1 , ∀ n ≥ 0,

cn,n = 1
2
, ∀ n ≥ 1,

ch,k = ch,h−k , ∀ 1 ≤ h ≤ n− 1 , 1 ≤ k ≤ n− 1 .

5. Adjoint Appell-Bernoulli polynomials of the first kind

Even in this case, the derivative operator is simply given by the derivative with respect to x, that is

P̂ = Dx , Dx β̃n(x) = n β̃n−1(x) , (20)

as it can be easily checked by differentiating the generating function (8) with respect to x.

The relevant differential equation is given by

∂G

∂x
= (et − 1) ext . (21)
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5.1. Recurrence relation

Theorem 5.1.

For any k ≥ 0, the polynomials ε̃k(x) satisfy the recurrence relation:

(k + 1)β̃k(x) = (1 + x) k β̃k−1(x) + xk . (22)

Proof:

Differentiating Equation (8) with respect to t we find:

∂G

∂t
=

(
tet − et + 1

t2
+ x

et − 1

t

)
ext ,

and consequently

t
∂G

∂t
= (1 + x) tG(t, x)−G(t, x) + ext ,

that is
∞∑
k=0

kβ̃k(x)
tk

k!
= (1 + x)

∞∑
k=0

k β̃k−1(x)
tk

k!
−
∞∑
k=0

β̃k(x)
tk

k!
+
∞∑
k=0

xk
tk

k!
,

so that the recurrence (21) follows. �

5.2. Generating function’s PDE

Theorem 5.2.

The generating function (7) satisfies the linear PDE

t
∂G

∂t
=

[
(1 + x)− 1

t

]
∂G

∂x
+

1

et − 1

∂G

∂x
, (t > 0) . (23)

Proof:

It is sufficient to eliminate the exponential function between the partial derivatives stated in (11)
and (13). �

Note that the last addend becomes negligible when t increases.

5.3. Differential equation

First, note that the following expansion holds:

tet − et + 1

t(et − 1)
= a0 + a1t+ a2t

2 + a3t
3 + . . . , (24)
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where the coefficients ak are solution of the following triangular system

a0 =
1
2
,

a1 =
1
3
− a0

2!
,

a2 =
1
8
− a1

2!
− a0

3!
,

. . .

ak =
k+1

(k+2)!
−

k−1∑
`=0

a`
(k + 1− `)!

,

(25)

so that, for the first few values, we find:

a0 =
1
2
, a1 =

1
12
,

a2 = 0, a3 = − 1
720
,

a4 = a2h = 0 , ∀h ≥ 1
a5 =

1
30240

, a7 = − 1
1209600

,

a9 =
1

479001160
, a11 = − 1

1307674368000
,

By applying the same result by Ben Cheikh (2003) (Corollary 3.2), and using expansion (24), we
find that the multiplication operator for the quasi-monomial set

{
β̃k(x)

}
is given by

M̂ =
A′(Dx)

A(Dx)
+ x =

∞∑
k=0

akD
k
x + x . (26)

Therefore, we have the result:

Theorem 5.3.

The adjoint Appell-Bernoulli polynomials of the first kind {β̃n(x)} satisfy the differential equa-
tion

M̂P̂ β̃n(x) =

(
∞∑
k=0

akD
k+1
x + xDx

)
β̃n(x) = n β̃n(x) ,

that is (
n−1∑
k=0

akD
k+1
x + xDx

)
β̃n(x) = n β̃n(x) , (27)

because, for any fixed n, the series expansion in Equation (26) reduces to a finite sum when it is
applied to a polynomial of degree n.
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Remark 5.4.

The first few values of the adjoint Appell-Bernoulli polynomials of the first kind are as follows:

β̃0(x) = 1,

β̃1(x) = x+ 1
2
,

β̃2(x) = x2 + x+ 1
3
,

β̃3(x) = x3 + 3
2
x2 + x+ 1

4
,

β̃4(x) = x4 + 2x3 + 2x2 + x+ 1
5
,

β̃5(x) = x5 + 5
2
x4 + 10

3
x3 + 5

2
x2 + x+ 1

6
,

β̃6(x) = x6 + 3x5 + 5x4 + 5x3 + 3x2 + x+ 1
7
,

β̃7(x) = x7 + 7
2
x6 + 7x5 + 35

4
x4 + 7x3 + 7

2
x2 + x+ 1

8
,

β̃8(x) = x8 + 4x7 + 28
3
x6 + 14x5 + 14x4 + 28

3
x3 + 4x2 + x+ 1

9
.

Remark 5.5.

Note that the above scheme satisfy a particular symmetry. Writing the polynomials in the form

β̃n(x) = dn,0x
n + dn,1x

n−1 + · · ·+ dn,n−1x+ dn,n , (n ≥ 0) ,

the coefficients dn,h , (0 ≤ h ≤ n) verify the conditions:

dn,0 = 1 , ∀ n ≥ 0,

dn,n−1 = 1 , ∀ n ≥ 2,

dn,n = 1
n+1

, ∀ n ≥ 1,

dh,k = dh,h−k−1 , ∀ 1 ≤ h ≤ n− 1 , 1 ≤ k ≤ n− 1 , (n ≥ 4) .

6. Conclusion

We have introduced two set of adjoint Appell polynomials, called adjoint Euler and adjoint
Bernoulli polynomials, in the framework of a general technique associating a new Appell poly-
nomial set starting from a given one. We have derived their main characteristics by using the
monomiality property and we have found their shift operators by means of a preceding result by Y.
Ben Cheihk. Therefore, the differential equation satisfied by these polynomials have been shown.

It is worth to note that the relevant differential equations are of infinite order, but actually they
reduce to finite order when applied to each polynomial.

For the classical Euler and Bernoulli polynomials the same result was proved in He and Ricci
(2002), where a similar phenomenon was found for the recursion satisfied by the classical Euler and
Bernoulli polynomials. In fact, it was noticed that the order of these recurrence relations increases
with polynomial degree.
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