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Abstract 
 

The prime objective of commenced article is to determine q-Sumudu transforms of a product of 

unified family of q-polynomials with basic (or q-) analog of Fox’s H-function and q-analog of I-

functions. Specialized cases of the leading outcome are further evaluated as q-Sumudu transform 

of general class of q-polynomials and q-Sumudu transforms of the basic analogs of Fox’s H-

function and I-functions. 
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1. Introduction 

 
In the past few decades, diverse techniques of q-calculus have been investigated and largely used 

in many other areas of mathematics. In recent articles, applications of q-calculus operators have 

been studied to define certain new classes of functions which are analytic in the open disk, see 

(Purohit and Raina 2011, 2015, 2015), (Murugusundaramoorthy et al. 2017) and (Govindaraj 

and Sivasubramanian 2017). About applications of q-calculus in the field of approximation 
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theory, one may refer the current books by Aral et al. (2013) and Gupta et al. (2013). Recently in 

the field of adaptive filtering the utilization of q-calculus has also been discussed by Al-Saggaf 

et al. (2015), Ahmed et al. (2018) and Arif et al. (2018). In addition, for more applications q-

calculus, one may see such type of works Annaby et al. (2012), Ernst (2012, 2017), and 

references there in. On the other hand, integral transform is also one of the major tools to solve 

differential equations. Laplace, Fourier, Mellin and Hankel transforms are frequently using for 

the same. Present-days, some new integral transforms like Sumudu, natural and Mangontarum 

etc. are used over and over in the literature.  

 

The integral transform of Sumudu type was introduced through Watugala (1993), and he put 

forward to obtain the result of ordinary differential equations in problems of control engineering. 

Although, the Sumudu transform is not a new integral transform, even it is a simply s-multiplied 

Laplace transform, but the major influence of the Sumudu transform is that it is useful to obtain 

solution of problems beyond resorting to a different frequency domain, by cause of it conserve 

scale and unit properties. Thus a lot of work has been done on the theory and applications of 

Sumudu transforms. In 2003, Belgacem et al. given explanatory observation for the Sumudu 

transform, and investigated number of fundamental properties of it. Nowadays, the Sumudu 

transform is an important integral transform to solve ordinary differential equation, see Nisar and 

Belgacem (2017), Nisar et al. (2017), (2017) and Silambarasan et al. (2018). 

 

In 2013, Albayrak et al. gives q-analog of the Sumudu transforms, and they also obtained q-

Sumudu transforms of certain special functions, including q-polynomials. Certain inversion and 

representation formulas and their applications for q-Sumudu transforms were also discussed in 

2014. More recently Purohit and Ucar (2018), using q-Sumudu transform gives an alternative 

solution for the q-kinetic equation involving the Riemann-Liouville fractional q-integral 

operators. Moreover, for q-analog of other integral transforms, q-image formulas and their recent 

applications one can see (Al-Omari 2016, 2017) and (Al-Omari et al. 2018) Motivated by these 

avenues of applications, a large number of workers have made use of the q-Sumudu transforms 

in the theory of special functions of one and more variables. In the present paper, we aimed to 

evaluate the q-Sumudu transforms for a product of general class of q-polynomials and basic 

analogue of some generalized special functions. Special cases of our main results have also been 

discussed. 

 

2. Preliminaries  

 
For our investigation, we need q-analogs of the Sumudu transform, introduced by Albayrak et al. 

(2013), as follow: 
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On the other hand, the q-version of exponential series are defined by 
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The basic improper integration cf. (Jackson, 1905) and (De Sole and Kac 2005) are defined as 
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By using the results of (7) and (8), the q-Sumudu transforms perhaps expressed as: 
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For our purpose, we suppose   is real or complex and q 1, then the q-shifted factorial is 

expressed as under (cf. Gasper and Rahman, 1990)    
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and its natural extension is given by 
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For =n  the definition (1) remains useful as a convergent infinite by-product, provided 1<q , 

as under: 
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Moreover, the (basic) q-analog of the binomial (power) function nyx )(   cf. Ernst (2003), is 

given by  
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where the q-version of binomial coefficient is given as:  
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n
n

n

xAxf 


=

=)(  

 

be a power series in x , defined over a bounded sequence of real or complex numbers, (cf. 

Gasper and Rahman, 1990) thereupon we have  
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Further, the q-gamma function is defined as follows:  (cf. De Sole and Kac, 2005)  
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For the variable t, the above function K (A; t) gives the subsequent interesting relation: 
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Here the q-gamma function can also be written in the following form  
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where .,2,1,0   

 

Now, we lead by looking back on a system of q-polynomials  qxf Nn ;,  in terms of a bounded 

complex sequence  
0, jqjS  , given as (cf. Srivastava and Agarwal,1989) 
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fixed up with positive integer N. 

 

By virtue of the Mellin-Barnes category q-contour integral, Saxena and Kumar (1995) made 

known a basic analog of the I-function as under: 

 





















i

i

ii
Bmjjmjj

Anjijinjj
nm
BA

bb

aa

qxI

,1,1

,1,1
,
,

),(,),(

),(,),(

;





 



1104 V. K. Vyas et al. 

                ,

sin)()()(

)()(

2

1

1

1

11

1

1

1

1


 





































C
r

i

s
A

nj

sa
B

mj

sb

s
n

j

sa
m

j

sb

ds

sqGqGqG

xqGqG

i
jiji

i
jiji

jjjj










             (24) 

 

where 
ii AnBm  0;0  ; ;,,2,1 ri   r is finite; ;1 and 

 








 












 
);(

1
)1()(

1

0 qq
qqG

a
n

naa . 

 

Also jijijj  ,,,  are real and positive and jijijj baba ,,, are arbitrary numbers of complex 

type. 
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the contour, in other words if xarg  , the basic integral defined above converges. It may be 

observed that the contour of integration C can be replaced by other suitably indented contours 

parallel to the imaginary axis.   

 

It is readable to note that as ;;,1 11 BBAAr   definition (24) yields the basic equivalent (q-

analog) of the Fox’s H-function due to Saxena et al. (1983), namely    
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Again, if we consider iji  ,1 and j  in the definition (25), it reduces to a basic analog of 

the Meijer’s G-function defined by Saxena et al. (1983), namely 
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where AnBm  11 0,0  and  ]sinlog)log(Re[ sxs   0. 

 

Moreover, if we take Bmn  ,0  in the definition (26), we obtain the basic analog of E-function 

(MacRobert’s function) as Agarwal (1960):                     
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For remarkable fundamental properties, along with numerous applications of the Meijer's G-

function or Fox H-functions, one is allowed to refer the research treatise by Mathai and Saxena 

(1973, 1978) and Mathai et al. (2010) 

 

3. Main Results 

 
In this segment, we shall investigate the q-Sumudu transforms of a product of the universal 

system of q-polynomials and q-analogs of the H- function and I-functions. We state our results in 
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provided ]sinlog)log(Re[ sxs   0. 

 

Proof: 
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On making use of definitions (23) and (25), the left hand side (let L) of the main result (28) can 

be represented as 
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On using the known result due Albayrak et al. (2013), namely 
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The desired right-hand side of (28) may be obtained by further simplification, as under 
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provided ]sinlog)log(Re[ sxs   0.  

 

In similar fashion, we derive another result as under:      

                                                          

Theorem 3.2.  
 

Consider 0)Re(   and ]sinlog)log(Re[ sxs   0, then the q-Sumudu transform for a product of 

q-analog of I-function and q-polynomials family  qxf Nn ;,  is given by the subsequent formula: 
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where ii AnBm  11 0;0  ; ;,,2,1 ri   r is finite, 1q ,  
0, jqjS be a bounded complex 

sequence and   is any arbitrary. 

 

Proof: 

 

On making use of definitions (23) and (24), the left hand side (say L) of the main result (29) 

becomes 
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Again, on using the known result, namely 
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On further simplification in above relation, we easily obtain the right hand side of the result (29). 
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4. Extraordinary Cases 

 
In the indicated segment, we shall deal with certain particular cases of our main sequel. For 

example, if we set ;,1 1 AAr   and ,1 BB   in the main result (29), it yields to result (28). 

Also, if we fixed iji  ,1 and j  in the result (28), we arrive at the coming result: 
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By conveying particular values to the sequence 
0, jqjS , our main result (28) can be brought to 

bear certain image formulas under q-Sumudu transforms involving orthogonal q-polynomials 

and the basic analog of Fox's H-function. To illustrate the same, we deal with the following case. 
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Thereupon, the result (28) yields to 
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A detailed account of various hypergeometric orthogonal q-polynomials can be found in the 

research monograph by Koekoek et al. (2010). Therefore, one can derive similar type of results 

by taking into consideration the definitions of the q-polynomials given in same paper.  

5. Concluding Remarks 

 

We conclude this paper with the remark that, by virtue of the unified nature of q-analog of I-

function and general class of family of q-polynomials, the q-image formulas given by the 
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relations (28) and (29) being are of general nature, and will lead to several q-Sumudu transforms 

for the product of orthogonal q-polynomials and q-special functions. Moreover, they are 

expected to find some importance in establishing solutions of differential equations involving q-

special functions. 
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