
 1085 

 

Certain Quadruple Hypergeometric Series and their Integral  

Representations 
 

1
Maged Bin-Saad and 

2
Jihad Younis  

 

Department of Mathematics 

Aden University- Khormaksar 

P.O. Box 6014 

Aden, Yemen 

jihadalsaqqaf@gmail.com
2
 ;mgbinsaad@yahoo.com

1
 

 

Received: November 21, 2018; Accepted: April 26, 2019 

 
 

Abstract 

 
While investigating the Exton's list of  twenty one hyper-geometric functions of four variables 

and the Sharma's and Parihar's list of eighty three  hyper-geometric functions of four variables, 

we noticed existence of  new hyper-geometric series of four variables. The principal object of this 

paper is   to introduce  new  hyper-geometric series of four variables and  present a natural further 

step toward the mathematical integral presentation concerning  these new series of four variables. 

Integral representations of Euler type and Laplace type involving Appell's hyper-geometric 

functions and the Horn's series of two variables, Exton's  and Lauricella's triple functions and 

Sharma and Parihar hyper-geometric functions of four variables are established. 

 

Keywords:  Quadruple hyper-geometric functions; Integrals of Euler type; Laplace integral; 

Exton’s hyper-geometric functions; Appell functions   
   

MSC 2010 No.: 33C20, 33C65 
 

1.  Introduction 

Admittedly, the first basic problem in the study of multiple Gaussian hyper-geometric series             

(in n  variables) involves the construction of the set of all such distinct series. There are many 

papers on this subject in the literature (for example Ahmad (2013), Appell and Kampé de Fériet 

(1926), Erdélyi et al. (1953), Exton (1976), Niukkanen (1983), Saran (1954), Srivastava (1985), 

Srivastava and Karlsson (1985) and Srivastava and Manocha (1984)). The problems concerning 

the construction of the sets of all distinct Gaussian hypergeometric series when 4n  , become 

more and more involved. In addition to the Lauricella series 
)4()4( ,..., DA FF  some examples of 

quadruple Gaussian hypergeometric series are considered by Exton (1972), (1973) and Karlsson 

(1976) studies certain 2m-dimensional series which, for 2m  , would belong to the set of 

Gaussian hypergeometric series when 4.n   Exton (1982) introduced twenty distinct triple 

hyper-geometric functions namely )20...,,2,1( iX i . By the motivation of double and triple 
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hyper-geometric functions, Exton (1976) defined twenty one complete hyper-geometric functions 

of four variables by symbols 1 2 21, ,..., .K K K  Sharma and Parihar (1989) introduced eighty three 

complete hyper-geometric 
)4(

83

)4(

2

)4(

1 ,...,, FFF  of four variables. Each quadruple hyper-geometric 

series in Exton (1976) and Sharma and Parihar (1989) is of the form 

 

(4)

, , , 0

(.) ( , , , )
! ! ! !

m n p q

m n p q

x y z u
X m n p q

m n p q





  , 

 

where ),,,( qpnm is a certain sequence of complex parameters and there are twelve 

parameters in each series (.))4(X ( eight a᾽s and four c’s ). The 1st, 2nd, 3rd and 4th parameters 

in (.))4(X  are connected with the integers , ,m n p  and q , respectively. Each repeated parameter 

in the series (.))4(X  points out a term with double parameters in ),,,( qpnm . For example, 
(4)

1 1 2 2 3 3 4 5( , , , , , , , )X a a a a a a a a  means that ),,,( qpnm  includes the term 

1 2 3 4 5( ) ( ) ( ) ( ) ( ) .  m n p q m n p qa a a a a  Similarly, 
(4)

1 1 3 1 1 2 4 4( , , , , , , , )X a a a a a a a a  points out the term 

 
qppnqnm aaaa

 43221 )()()(  and 
(4)

1 1 1 2 1 2 2 2( , , , , , , , )X a a a a a a a a  shows the existence of the term

1 2 2 2( ) ( )m n p p n qa a    . Thus, it is possible to form various combinations of indices. There seems to 

be no way of  establishing independently the number of distinct Gaussian hyper-geometric series 

for any given integer 2n    without stating explicitly all such series. Thus, in every situation 

with 4n  , one ought to begin by actually  constructing the set just as in the case 3n   (see 

Srivastava and Karlsson (1985)). Motivated by this fact the fact that only a comparatively small 

number of quadruple Gaussian hyper-geometric series have appeared in the literature Bin-Saad 

and Younis (2018a), (2018b) and Bin-Saad et al. (2018a), (2018b) introduced a number  of new 

quadruple series together with their basic properties.  

 

2.  New quadruple series and their integral representations 

By using the conventions and notations above, we introduce the following five new quadruple 

hypergeometric series: 

 

                                          

(4)

26 1 1 3 1 1 2 4 4 1 1 1 2

1 2 2 3 4

, , , 0 1 2

( , , , , , , , ; , , , ; , , , )

( ) ( ) ( ) ( )

( ) ( ) ! ! ! !

m n p q
m n q n p p q

m n p q m n p q

X a a a a a a a a c c c c x y z u

a a a a x y z u

c c m n p q


  

  

  ,                                        (1) 

 

                                          

(4)

27 1 1 3 1 1 2 4 4 2 1 1 3

1 2 2 3 4

, , , 0 1 2 3

( , , , , , , , ; , , , ; , , , )

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ! ! ! !

m n p q
m n q n p p q

m n p q n p m q

X a a a a a a a a c c c c x y z u

a a a a x y z u

c c c m n p q


  

 

                                         (2) 

 

                                         
 

(4)

28 1 1 1 1 1 2 3 4 1 1 2 3

1 2 2 3 4

, , , 0 1 2 3

( , , , , , , , ; , , , ; , , , )

( ) ( ) ( )

( ) ( ) ( ) ! ! ! !

m n p q
m n p q n p q

m n p q m n p q

X a a a a a a a a c c c c x y z u

a a a a x y z u

c c c m n p q


  

 

  ,                                        (3) 
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   

(4)

29 1 1 3 4 1 2 5 6 1 2 1 1

1 2 2 3 4 5 6

, , , 0 1 2

( , , , , , , , ; , , , ; , , , )

( ) ( ) ( ) ( )

( ) ( ) ! ! ! !

m n p q
m n n p q p q

m n p q m p q n

X a a a a a a a a c c c c x y z u

a a a a a a x y z u

c c m n p q




  

  ,                                  (4) 

 

                                      
       

(4)

30 1 1 3 4 1 2 5 6

1 2 2 3 4 5 6

, , , 0

( , , , , , , , ; , , , ; , , , )

( ) ( )

( ) ! ! ! !

m n p q
m n n p q p q

m n p q m n p q

X a a a a a a a a c c c c x y z u

a a a a a a x y z u

c m n p q




   

   ,                                 (5) 

 

where the numerator and the denominator parameters are separated via a semicolon.    

 

This paper is devoted to obtain several integral representations for these new quadruple functions 

defined above.  In subsection 2.1, we present five integral representations of Euler-type for each 

series 
)4(

iX (i = 26, 27, 28, 29, 30) in terms of Appell's functions of two variables 2F  and 3F , the 

Horn's functions 3H  and 4H  of two variables, the Gaussian hyper-geometric function 12 F , the 

Exton's triple series 2X ,
 3X ,

 6X ,
 8X , 16X ,

 17X ,
 18X , 19X  and 20X  (see Exton (1982)), the 

Lauricella's triple series  3

BF , PF  and RF , and the quadruple series
 

 4

48F ,  4

53F ,  4

73F ,  4

27X  and 

 4
.CF  In the subsection 2.2, Laplace-type integrals are obtained for each series 

)4(

iX (i = 26, 27, 

28, 29, 30). 

 

2.1.  Integral Representations of Euler-Type 

 

We recall Gaussian hyper-geometric function 12 F  defined by (see Srivastava and Karlsson 

(1985)) 

 
   

 
 2 1

0

, ; ; | | 1 .
!

n
n n

n n

a b x
F a b c x x

c n





   

 

Appell's hypergeometric functions 2F  and 3F  of two variables and the Horn's series 3H  and 4H  

of two variables are given by 

                                                                                           

 

 
     

   
 2

, 0

, , ; , ; , , 1 ,
! !

m n
m n m n

m n m n

a b c x y
F a b c d e x y x y

d e m n






    

       

 
       

 
  3

, 0

, , , ; ; , , max , 1 ,
! !

m n
m n m n

m n m n

a b c d x y
F a b c d e x y x y

e m n



 

   

          

 
   

 

2

2
3

, 0

1 1
, ; ; , , , , ,

! ! 2 4

m n

m n n

m n m n

a b x y
H a b c x y x r y s r s

c m n




 

  
          


 

and 

             
   

   
  22

4

, 0

, ; , ; , , , , 4 1 ,
! !

m n
m n n

m n m n

a b x y
H a b c d x y x r y s r s

c d m n






      

 

Respectively, (see Srivastava and Karlsson (1985)). Exton's triple functions 
2X , 3X ,

 6X ,
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8X , 16X , 17X ,
18X ,

19X  and 20X  (see Exton (1982)) are defined as follows: 

 

   
2 2

2

, , 0

( ) ( )
( , ; , , ; , , ) ,

( ) ! ! !

m n p
m n p p

m n p m n p

a b x y z
X a b c d e x y z

c d e m n p


 



   

                                     

                                    
 

2

3

, , 0

( ) ( )
( , ; , ; , , ) ,

( ) ! ! !

m n p
m n p n p

m n p m n p

a b x y z
X a b c d x y z

c d m n p


  

 

   

 

       

 
,

!!!)(

)()(
),,;,;,,(

0,,

2

6
p

z

n

y

m

x

ed

cba
zyxedcbaX

pnm

pnm pnm

pnpnm




 


  

 

        

   
,

!!!)(

)()(
),,;,,;,,(

0,,

2

8
p

z

n

y

m

x

fed

cba
zyxfedcbaX

pnm

pnm pnm

pnpnm







  

 

  
 

 
2

16

, , 0

( ) ( )
( , , ; , ; , , ) ,

( ) ! ! !

m n p
m n n p p

m n p m p n

a b c x y z
X a b c d e x y z

d e m n p


 

 

   

 

       

   
2

17

, , 0

( ) ( )
( , , ; , , ; , , ) ,

( ) ! ! !

m n p
m n n p p

m n p m n p

a b c x y z
X a b c d e f x y z

d e f m n p


 



   

 

                                       
,

!!!)(

)()(
),,;;,,,(

0,,

2

18
p

z

n

y

m

x

e

dcba
zyxedcbaX

pnm

pnm pnm

ppnnm




 


  

                

 
2

19

, , 0

( ) ( )
( , , , ; , ; , , ) ,

( ) ! ! !

m n p
m n n p p

m n p m n p

a b c d x y z
X a b c d e f x y z

e f m n p




 

   

and 

                                       

 
2

20

, , 0

( ) ( )
( , , , ; , ; , , ) .

( ) ! ! !

m n p
m n n p p

m n p m p n

a b c d x y z
X a b c d e f x y z

e f m n p




 

   

 

Lauricella's triple functions  3

BF , PF  and RF  (see Saran (1954)) are given by 

 

       1 2 3 1 2 33

1 2 3 1 2 3

, , 0

( ) ( ) ( )
( , , , , , ; ; , , ) ,

( ) ! ! !

m n p
m n p m n p

B

m n p m n p

a a a b b b x y z
F a a a b b b c x y z

c m n p



  

   

 

 

, , 0

( ) ( ) ( )
( , , , , , ; , , ; , , )

( ) ( ) ! ! !

m n p
m p n m n p

P

m n p m n p

a b c d x y z
F a b a c c d e f f x y z

e f m n p


 

 

  , 

and 

 

, , 0

( ) ( ) ( )
( , , , , , ; , , ; , , ) .

( ) ( ) ! ! !

m n p
m p n m p n

R

m n p m n p

a b c d x y z
F a b a c d c e f f x y z

e f m n p


 

 

   

 

Sharma and Parihar hyper-geometric functions of four variables  4

48F ,  4

53F and  4

73F are as follows                    

(see Sharma and Parihar (1989)): 
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 

         

   

4

48 1 1 2 2 1 1 2 3 1 2 1 2

1 2 1 2 3

, , , 0 1 2

( , , , , , , , ; , , , ; , , , )

,
! ! ! !

m n p q
m n p q m n p q

m n p q m p n q

F a a a a b b b b c c c c x y z u

a a b b b x y z u

c c m n p q


  

  

   

 
 

           

   

4

53 1 1 2 3 1 1 2 3 1 2 1 2

1 2 3 1 2 3

, , , 0 1 2

( , , , , , , , ; , , , ; , , , )

! ! ! !

m n p q
m n p q m n p q

m n p q m p n q

F a a a a b b b b c c c c x y z u

a a a b b b x y z u

c c m n p q


 

  

  , 

and 

 
 

           

   

4

73 1 1 2 3 1 1 2 3 1 2 1 1

1 2 3 1 2 3

, , , 0 1 2

( , , , , , , , ; , , , ; , , , )

.
! ! ! !

m n p q
m n p q m n p q

m n p q m p q n

F a a a a b b b b c c c c x y z u

a a a b b b x y z u

c c m n p q


 

  

   

 

Lauricella hyper-geometric function of four variables 
)4(

CF is recalled  (see Srivastava and 

Karlsson (1985)) : 

   

       
(4)

1 2 3 4

, , , 0 1 2 3 4

( , ; , , , ; , , , ) ,
! ! ! !

m n p q
m n p q m n p q

C

m n p q m n p q

a b x y z u
F a b c c c c x y z u

c c c c m n p q


     



   

where 

  1 .x y z u      

 

Now, by means of the Gauss hyper-geometric function 12 F , Appell hyper-geometric functions
 

2F  and 3F , Horn’s functions 3H  and 4H of two variables, Exton's triple series 2X ,
 3X ,

 6X ,
 8X

, 16X ,
 17X ,

 18X , 19X  and 20X , Lauricella's triple series 
 3

BF , PF  and RF , and quadruple series 

 4

48F ,  4

53F ,  4

73F ,  4

27X  and 
 4

CF , we investigate some further integral representations of Euler-

type for 
)4(

iX ( i = 26, 27, 28, 29, 30) as follows: 

 

        

 
   

   

  
    

1 1
(4) 1

26 1 1 3 1 1 2 4 4 1 1 1 2
0

1

(4)

27 1 1 3 1 1 2 4 4 1 2

1

( , , , , , , , ; , , , ; , , , ) 1

, , , , , , , ; , , , ; 1 , , , ,

Re 0, Re 0 ;

a c ac
X a a a a a a a a c c c c x y z u e e

a c a

X a a a a a a a a c a a a c x e y e z e u d

a c a

 

   

  
 

  


  
  

  

  


                  (6) 

          

        

   
       

       

 

 

1 3 2 4

(4) 1 3 2 4

26 1 1 3 1 1 2 4 4 1 1 1 2

1 2 3 4

1 1 1 1
2 2 2 22 2 2 2 2 2

0 0

4 2 2 2 2 2 2

3 1 3 2 4 1 2

4
( , , , , , , , ; , , , ; , , , )

sin cos sin cos

, ; , ; sin , sin sin cos cos , sin cos ,

Re 0

a a a a

i

a a a a
X a a a a a a a a c c c c x y z u

a a a a

X a a a a c c x y z u d d

a

 

   

        

   

   

   



   



 

 , 1, 2, 3, 4 ;i 

                    (7) 

 

3where is Exton function of three variables;X
 

 



M. Bin-Saad and J. Younis  1090 

 

      

     

     

             

 

       

       

2 1 2

1 1

12 1 2 1 1

(4) 1

26 1 1 3 1 1 2 4 4 1 1 1 2 1

2 1 2

1 1

16 1 4 3 1 2 1 2 3

1

( , , , , , , , ; , , , ; , , , )

, , ; , ; , , ,

a c a

c a

S aa c a a c

R

c S T R T
X a a a a a a a a c c c c x y z u

a c a S R

R S T S R T S T R y

X a a a c c x u z d

S R R T S T

S R T S T R y

    

   

 


 



 

   

  

   

          



   


    



   
       

   
       

    

22

3

2 1 2

, ,

,

Re 0, Re 0, ;

S R T

S R T S T R y

R T S

S R T S T R y

a c a T R S




 




 

  
 
         

 
 

       

    
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Proof of formulas (6) to (30) :  
 

Once substituting the series definition of the special function in each integrand and then, 

changing the order of integral and summation, and finally taking into account the following 

integral representations of Beta function and their various associated Eulerian integrals (see, e.g., 

Erdélyi et al. (1953), Srivastava and Choi (2001), (2012) and Srivastava and Manocha (1984)), 

we derive each of integral representations from (6) to (30). 
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2.2.  Integrals of Laplace-Type 
 

We present integral representations of Laplace transform type for
)4(
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26 ,,,, XXXXX . 

The Laplace integral representations of these quadruple series are given as follows: 
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a a a c sy tz vu s x ds dt dv
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       

  
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  

  
                                        (39) 

 

where 0 1 1 1 2 3, , , ,F F  
 3

3  and 
 4

3 are the confluent hyper-geometric functions defined, 

respectively, by 
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Proof of formulas (35) to (39) :  
 

It is noted that each of the integral representations (35) to (39) can be proved mainly by 

expressing the series definition of the involved special functions in each integrand and changing 

the order of the integral sign and the summation, and finally using the following well-known 

integral formula (see Erdélyi et al. (1953)). 

 

3.  Conclusion 

 
We have considered the problem of introducing new hyper-geometric series of four variables and 

the establishing of integral  representations of Euler and Laplace  types for these new series. The 

study of hyper-geometric series  of four variables  for applications as well as for its connections 

with various other hyper-geometric series  is an interesting problem for further research. We 

conclude this investigation by remarking that the schema suggested in the derivation of the 

results in this work can be applied to find other new hyper-geometric series of four variables and 

study their properties integral representations, generating functions, operational relations, 

expansions and so on, and discuss the link with various  hyper-geometric series. 
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