
 

 1067 

 

Series of divergence measures of type k, information inequalities 

and particular cases 
 

1*R. N. Saraswat and 
2
Ajay Tak 

 
Department of Mathematics and Statistics 

Manipal University Jaipur  

Jaipur, Rajasthan-303007, India 

 
1
saraswatramn@gmail.com; 

2
ajaytak86@gmail.com 

 

*Corresponding author 

 

Received: August 20, 2017; Accepted: January 25, 2019 
 

 

Abstract 
 

Information and Divergence measures deals with the study of problems concerning 

information processing, information storage, information retrieval and decision making. The 

purpose of this paper is to find a new series of divergence measures and their applications, 

discuss the mathematical tools for finding convexity of the functions. Applications of convex 

functions in information theory, relationship between new and well-known divergence 

measures are discussed. Also some new bounds have been established for divergence 

measures using new f divergence measures and its properties.    
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1. Introduction 

 
The first person; Harry Nyquist (1924) and (1928), Hartley (1928) discovered the logarithmic 

nature of measure of information. Harry Nyquist published the paper 'Certain Factors Affecting 

Telegraph Speed' in which discussed the relation W = K log m where W is the speed of 

transmission of intelligence, m is the number of difference voltage levels to choose from at each 

time step and K is a constant. Information Theory is the intersection of mathematics, statistics, 

computer science, physics, neurobiology, and electrical engineering. Its impact has been 

crucial to the success of the voyager missions to deep space, the invention of the compact 

disc, the feasibility of mobile phones, the development of the Internet, the study of linguistics 

and of human perception, the understanding of black holes and numerous other fields.  
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As a generalization of the uncertainty theory based on the notion of possibility; Hartley 

(1928), Information Theory consider the uncertainty of randomness perfectly. The concept of 

Shannon (1948) entropy is the central concept of Information Theory. Sometimes this 

measure or entropy is referred to as the measure of uncertainty. The entropy of a random 

variable is defined in terms of its probability distribution and can be shown to be a good 

measure of randomness or uncertainty. Shannon’s model used the formalized language of the 

classical set theory, so it is only suitable to be used in limitation of classical set theory.  

 

As to the divergence and inaccuracy of information; Kullback et al. (1951) studied a measure 

of information from statistical aspects of view involving two probability distributions 

associated with the same experiment, calling discrimination function, later different authors 

named as cross entropy, relative information etc. It is a non-symmetric measure of the 

difference between two probability distributions P andQ . Shannon (1948) introduced the 

following measure of information 
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Denote the set of all finite discrete complete and generalized probability distributions 

respectively. The equation (1.1) is Shannon’s entropy. The function nH (P) represents the 

expected value of uncertainty associated with the given probability distributions. It is uniquely 

determined by some rather natural postulates. 

 

Divergence measure is a distance or affinity between two probability distribution. Kullback et 

al. (1951) studied a measure of information from statistical of view and given by 
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where , nP Q .  

 

The measure (1.2) has many names given by different authors such as relative information, 

Directed Divergence, cross entropy, measure of discrimination etc. As a generalization of the 

uncertainty theory based on the notion of possibility, information theory considers the 

uncertainty of randomness perfectly.  Jain et al. (2012 and 2013) introduced new f-divergence 

measure and its properties which is given by 
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where :f  
 
is a convex function and  , nP Q  . Here we have discussed well-known 

divergence measures like as symmetric chi-square divergence; Dragomir et al. (2001), relative 
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Jensen-Shannon divergence; Sibson (1969), relative arithmetic-geometric divergence; Taneja 

et al. (2000), Hellinger discrimination; Hellinger (1909). These divergence measure, we can 

also obtain by using new f-divergence measure which are as following: 

 

(i) If 
21 1

2 1 2

t( t )
f ( t ) , t

( t - )


   ,

 
then, the symmetric chi-square divergence is given by  
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(ii) If ( ) - log ( )f t t , then, the relative Jensen-Shannon divergence measure is given by  
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(1.5) 

 

(iii) If ( ) log( )f t t t , then,
 
the relative arithmetic-geometric divergence measure is given by 
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(iv) If ( ) (1 )f t t  ,   then, the Hellinger discrimination is given by 
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2. New Information Divergence Measure 

 
Here, we will discuss about new convex function which is satisfied the properties of convex 

functions. Let us consider the function : (0.5, )f    given by  
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Therefore, the function ( )kf t  is always convex, 1 2t   and normalized (1) 0f  . Using new 

f-divergence measure, we get  
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Figure 2.1. Graph of function
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If 1k  , 
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where ( , )P Q  is known as symmetric chi-square divergence measure. 

 

If 2k  , 
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If 3k  , 
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3. Series of Divergence Measures 

 

In this section, we will discuss about different new information divergence measure with the 

help of new f-divergence measure and properties of convex functions. From equation (2.1)  
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Further, we know that if,  
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are convex functions. Then, the linear combination of these functions  
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from the properties of new f divergence measures, we get 
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It may be said combination of Symmetric Chi-Square divergence and Chi-Square divergence 

measure.  Again, if, we take 
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Then, we obtain the following divergence measure of new f-divergences class 
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Similarly, we get the following series of divergence measure 
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(ii) If, we take 1 2 3 4 51 1 0c , c , c c c , ...     , then, we have   
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Similarly, if, we take  1 2 3 4 51 1 0c , c , c c c , ...     , then 
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In this way, we can write for 1 2 3k , , ,...  
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4.  New information inequalities 

 
Various mathematicians and researchers have been used different inequalities for a variety of 

purposes. Taneja has been used the applications of inequalities for obtaining bounds on 

symmetric and non-symmetric divergence measures in terms of relative information of type’s; 

Taneja et al. (2000), for obtaining relationships among mean divergence measures; Taneja et 

al. (2004), for obtaining bounds on symmetric divergence measures in terms of non-

symmetric divergence measures; Taneja et al. (2000 and 2004). Unified and generalized three 

theorems studied by Dragomir et al. (2001 and 2016) and Cerone et al. (2016) which provide 

bounds on
fI (P,Q)(Csiszar’s 1961 and 1978). Saraswat (2015) and Saraswat et al. (2018 and 

2019) have provided different new information inequalities and applications. Here, we will 

discuss Theorem 4.1, 4.2 and 4.3 using new f- divergence measure in which Theorem 4.1 and 

4.2 have proved by Jain et al. (2012) and (2013), Dragomir et al. (2016) respectively. 

Theorem 4.3, we have to prove here. It is may be interested in Information Theory and 

Statistics. 
 

 

Theorem 4.1.  
 

If, the function f is convex and normalized, i.e., ''( ) 0 0f t  t    and (1) 0f  respectively, 

then the new f-divergence, ( , )fS P Q  and its adjoint ( , )fS Q P  are both non-negative and 

convex in the pair of probability distribution  , .n nP Q    

 

Theorem 4.2.  
 

Let 1 2, : (0.5, )f f R R    be normalized i.e.
 1 2(1) (1) 0f f   and twice differentiable 

functions on ( , )r R  and there are m and M such that 
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m M  f t  t

f t
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then, the following inequalities hold 
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Theorem 4.3.  
 

Let : (0.5, )f R  is normalized, i.e., (1) 0,f   and satisfies the following assumptions 

(i) f is twice differentiable on ( , )r R where 0.5 1r R , 

(ii)  There exist constants m , M  such that, 
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If, P,Q are discrete probability distributions satisfying the assumption 
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then, we have the inequality 
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for all ( , )t r R , implied by the first inequality in (4.1).  It follows that (.)mF  is convex on 

( , )r R . Applying the non-negativity property of the new f-divergence functional for (.)mF  and 

the linearity property (by proposition 1.2), we may state that 

 

 0 ( , ) ( , ) - ( , ) ( , ) - ( , ),
m kF f f fS P Q S P Q mS P Q S P Q m P Q   

             (4.7)
 

 

from where we get the first inequality in (4.5). Now again, Define a mapping, 
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t
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which is obviously normalized, twice differentiable and by (4.1), convex on(r,R) . Applying 

the non-negativity property and by proposition 1.2 of the new f-divergence for MF (.) , we 

obtain the second part of (4.5). 
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5. Some particular results 

 
Here, we will discussed the particular cases of Theorem 4.1, 4.2, 4.3 for the relationship 

between new and well-known divergence measure which are given in results 5.1, 5.2, 5.2, 5.3, 

5.4 and 5.5 as following:  

 

Result 5.1. 

 

 Let ( , )P Q  and ( , )h P Q be defined as in (1.8), (2.5) and (4.2) respectively. For , nP Q , 

we have 

 

(i) If,  0.5 1,r    then, 
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since, 2 ''( ) 0, 0.5f t t    and 2 (1) 0,f   So 2 ( )f t  is convex and normalized function 

respectively.  
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where 1 ''( )f t and 2 ''( )f t are given by (2.3) and (5.10) respectively. If 1 '( ) 0 1g t t     . It is 

clear that '
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increasing in (1, ] . So 1( )g t has a minimum value at 1t  because  
"(1) 18 0g . So, 

 

(i) If, 0.5 1,r   then, 

 

                1 1
( , )
inf ( ) (1) 2.000,

t r R
m g t g


                                           (5.5) 

 

                                             

3 3
2 2

1 1 1
( , )

2 2

sup ( ) max[ ( ), ( )]

2 (4 - 6 3) 2 (4 - 6 3)
max , .

(2 -1) (2 -1)

t r R

M g t g r g R

r r r R R R

r R



 

  
  

  

                            (5.6) 

 

(ii) If, 1 ,r    then, 

 

         
2

1 1 2( , )

2 (4 - 6 3)
inf ( ) ( ) ,

(2 -1)t r R

r r r
m g t g r

r


                (5.7) 

 

               
2

1 1 2
( , )

2 (4 - 6 3)
sup ( ) ( ) .

(2 -1)t r R

R R R
M g t g r

R


                           (5.8) 

 

The results (5.1) and (5.2) are obtained by using (2.5), (5.5), (5.6), (5.7), and (5.8). 

 

Result 5.2.  
 

Let ( , )P Q and ( , )KL P Q be defined as in (1.4), (2.5) and (4.2) respectively. For , nP Q , 

we have 
 

 

(i) If, 0.5 1.12r  , then, 

 

1
(0.472591) ( , ) ( , )

8
KL P Q P Q 

 

                 
2 2

2 2

(4 -6 3) (4 -6 3)
max , ( , )

2(2 -1) 2(2 -1)

r r r R R R
KL P Q

r R

  
  

 
.                (5.9)

 
 

(ii) If, 1.12 ,r    then, 
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2 2

2 2

(4 - 6 3) 1 (4 - 6 3)
( , ) ( , ) ( , ).

2(2 -1) 8 2(2 -1)

r r r R R R
KL P Q P Q KL P Q

r R

 
             (5.10) 

 

Proof:  

 

Let us consider 

                             2 ( ) (2 -1) log(2 -1),f t t t                                              (5.11) 

 

2 '( ) 2[1 log(2 -1)],f t t   

 

2

4
''( ) 0, (0.5, ).

(2 -1)
f t t   

t
     

 

Since, 2 ''( ) 0, 0.5f t t    and 2 (1) 0f  . So 2 ( ) f t is convex and normalized function 

respectively. Now put 2 ( )f t  in (1.1), we get from (1.7)  

 

2

1

( , ) log ( , ),
n

i
f i

i i

p
S P Q p KL P Q

q

 
  

 
  

 
2

1 2

1 (4 - 6 3)
( ) ,

2 (2 -1)

t t t
g t

t


  

 
3 2

1 3

(8 -12 6 -3)
'( ) ,

2(2 -1)

t t t
g t  

t


   

1 4

6
''( ) ,

(2 -1)
g t

t
  

 

where 1 ''( )f t  and 2 ''( )f t  are given by (2.3) and (5.10) respectively.

 
 

If 1 1.129960524947437 1.12'( ) 0g t t   . It is clear 1 '( )g t that 1 '( ) 0g t   in 0.5,  1.12  

and 0 in 1.12, . That is, 1( )g t  is decreasing in 0.5,  1.12 and increasing in 1.12,  ). 

So, 1( )g t  has a minimum value at 1.129960524947437 1.12t   because 

1.12 2.537842  0.g  So, 

 

(i) If, 0.5 1.12r  , then, 

 

                 1 1
( , )
inf ( ) (1.12) 0.472591,

t r R
m g t g


                          (5.12) 

       

1 1 1
( , )

sup ( ) max[ ( ), ( )]
t r R

M g t g r g R


   
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2 2

2 2

(4 -6 3) (4 -6 3)
max , .

2(2 -1) 2(2 -1)

r r r R R R

r R

  
  

 
                            (5.13) 

 

(ii) If, 1.12 ,r    then, 

               
2

1 1 2( , )

(4 - 6 3)
inf ( ) ( ) ,

2(2 -1)t r R

r r r
m g t g r

r


                          (5.14) 

 

              
2

1 1 2
( , )

(4 - 6 3)
sup ( ) ( ) .

2(2 -1)t r R

R R R
M g t g R

R


                          (5.15) 

 

The results (5.9) and (5.10) are obtained by using (1.7), (2.5), (5.11), (5.12), (5.13), (5.14) and 

(5.15).  

 

Result 5.3.  
 

Let ( , )P Q    and ( , )KL Q P be defined as in (1.4), (2.5) and (4.2) respectively. For , nP Q , 

we have 
 
 

(i) If,  0.5 0.89,r   then, 

 

1
(0.472613) ( , ) ( , )

8
KL Q P P Q   

                                     
2 21 (4 -6 3) (4 -6 3)

, ( , ).
2 (2 -1) (2 -1)

r r r R R R
Max KL Q P

r R

  
  

 
                    (5.16)

   
 

(ii) If,  0.89 1,r    then, 

 
2 2(4 - 6 3) 1 (4 - 6 3)

( , ) ( , ) ( , ).
2(2 -1) 8 2(2 -1)

r r r R R R
KL Q P P Q KL Q P

r R

 
               (5.17) 

 

Proof:  

 

Let us consider  

 

2 ( ) - log(2 -1),f t t                                                   (5.18) 

 
 

 
 

2 2

4
''( ) 0, (0.5, )

(2 -1)
f t t

t
     . 

 

 

2

2
'( ) - ,

(2 -1)
f t

t

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Since, 2 ''( ) 0, 0.5f t t    and 2 (1) 0f  . So 2 ( )f t  is convex and normalized function 

respectively. Now put 2 ( )f t in (1.1), we get  

 

                  
2

1

( , ) log ( , ),
n

i
f i

i i

q
S P Q q KL Q P

p

 
  

 
             (5.19) 

 
2

1

1 (4 - 6 3)
( ) ,

2 (2 -1)

t t t
g t

t




 
 

3 2

1 2

(16 - 24 12 -3)
'( ) ,

2(2 -1)

t t t
g t  

t


  

2

1 3

4 (4 - 6 3)
''( ) ,

(2 -1)

t t t
g t

t


  

 

where 1 ''( )f t   and 2 ''( )f t are given by (2.3) when 1k .

 
 

If, 1 '( ) 0 0.8968502629920499 0.89g t t    . It is clear that 1 '( ) 0g t  in 0.5,  0.89  and 

0  in 0.89,  ,  i.e., 1 '( )g t is decreasing in 0.5,  0.89  and increasing in 0.89,  . So 

1( )g t  has a minimum value at

 

0.8968502629920499 0.89t  

 

because 

0.89 6.214501 0g . So, 

 

(i) If, 0.5 0.89r  , then, 

 

     1 1
( , )
inf ( ) (0.89) 0.472613,

t r R
m g t g


                           (5.20) 

 

     

1 1 1
( , )

2 2

sup ( ) max[ ( ), ( )]

(4 - 6 3) (4 - 6 3)
max , .

2(2 -1) 2(2 -1)

t r R

M g t g r g R

r r r R R R

r R



 

  
  

 

                 (5.21) 

 

(ii) If, 0.89 1r  , then, 

 

        
2

1 1
( , )

(4 - 6 3)
inf ( ) ( ) ,

2(2 -1)t r R

r r r
m g t g r

r


               (5.22) 

 

      
2

1 1
( , )

(4 - 6 3)
inf ( ) ( ) .

2(2 -1)t r R

R R R
M g t g r

R


                           (5.23) 

 

The results (5.16) and (5.17) are obtained by using (2.5), (5.18), (5.19), (5.20), (5.21), (5.22) 

and (5.23). 

 

Result 5.4.  
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Let ( , )P Q    and ( , )G Q P be defined as in (1.7), (2.5) and (4.2) respectively. For , nP Q , 

we have  

 

(i) If, 0.5 1.2r  , then, 

 

1
(1.617038) ( , ) ( , )

8
G Q P P Q   

                                        
2 2 2 2

3 3

2 (4 -6 3) 2 (4 -6 3)
max , ( , ).

(2 -1) (2 -1)

r r r R R R
G Q P

r R

  
  

 
               (5.24) 

 

(ii) If, 1.2 r   , then, 

  
2 2 2 2

3 3

2 (4 - 6 3) 1 2 (4 - 6 3)
( , ) ( , ) ( , ).

(2 -1) 8 (2 -1)

r r r R R R
G Q P P Q G Q P

r R

 
        (5.25) 

 

Proof:  

 

Let us consider  

 

                               2 ( ) log( ),f t t t                                                         (5.26) 

 

2 '( ) (1 log ),f t t   

 

2

1
''( ) 0, (0.5, ),f t t

t
      

 

Since, 2 ''( ) 0, 0.5f t t    and 2 (1) 0f  . So 2 ( )f t is convex and normalized function 

respectively. Now put 2 ( )f t in (1.1), we get 

  

                                            
2

1

( , ) log ( , ),
2 2

n
i i i i

f

i i

p q p q
S P Q G Q P

q

   
   

   
                    (5.27) 

 
2 2

1 3

2 (4 - 6 3)
( ) ,

(2 -1)

t t t
g t

t


  

 
3 2

1 4

4 (4 -8 6 -3)
'( ) ,

(2 -1)

t t t t
g t   

t


  

1 5

12(2 1)
''( ) ,

(2 -1)

t
g t

t


  

 

where 1 ''( )f t  and 2 ''( )f t are given by (2.3) when 1k and in (6.33), respectively.
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If, 1 '( ) 0 1.287371536943511 1.2g t t    .
 
It is clear that 1 '( ) 0g t  in  0.5,  1.2  and  0

in  1.2,   , i.e., 1( )g t is decreasing in  0.5,  1.2 and increasing in  1.2,   . So 1( )g t  has a 

minimum value at 1.287371536943511 1.2t  
 
because  1.2 4.429733 0g   . So, 

(i) If, 0.5 1.2r  , then, 

 

1 1
( , )
inf ( ) (1.2) 1.617038,

t r R
m g t g


                (5.28) 

 

1 1 1
( , )

2 2 2 2

3 3

sup ( ) max[ ( ), ( )]

2 (4 - 6 3) 2 (4 - 6 3)
max , .

(2 -1) (2 -1)

t r R

M g t g r g R

r r r R R R

r R



 

  
  

 

                                       (5.29) 

 

(ii). If, 1.2 r   , then,    

 

     
2 2

1 1 3( , )

2 (4 - 6 3)
inf ( ) ( ) ,

(2 -1)t r R

r r r
m g t g r

r


               (5.30) 

 

     
2 2

1 1 3( , )

2 (4 - 6 3)
inf ( ) ( ) .

(2 -1)t r R

R R R
M g t g R

R


                                       (5.31) 

 

The results (5.24) and (5.25) are obtained by using (2.5), (5.26), (5.27), (5.28), (5.29), (5.30) 

and (5.31). 

 

Result 5.5. 

 

 Let ( , )P Q  and ( , )F Q P be defined as in (1.8), (2.5), (4.2), respectively. For , nP Q , we 

have  

 

(i) If, 0.5 1.1r  , then,  

 

1
(1.910203) ( , ) ( , )

8
F Q P P Q   

                                            

3 2 3 2

3 3

2 (4 -6 3) 2 (4 -6 3)
max , ( , )

(2 -1) (2 -1)

r r r R R R
F Q P

r R

  
  

 
             (5.32)

  

 

(ii) If, 1.1 r  , then, 

   

                           
3 2 3 2

3 3

2 (4 - 6 3) 1 2 (4 - 6 3)
( , ) ( , ) ( , )

(2 -1) 8 (2 -1)

r r r R R R
F Q P P Q F Q P

r R

 
   .     (5.33) 

 

Proof:  

 

Let us consider  



1082 R. N. Saraswat and A. Tak 

 

 

                                  
2 ( ) - log( ),f t t                                                      (5.34) 

 

2

-1
'( ) ,f t

t
    

2 2

1
''( ) 0, (0.5, ),f t t   

t
     

 

Since, 2 ''( ) 0, 0.5f t t    and 2 (1) 0f  , So 2 ( )f t  is convex and Normalized function 

respectively. Now put 2 ( )f t in (2.1), we get  

 

           
2

1

2
( , ) log ( , ),

n
i

f i

i i i

q
S P Q q F Q P

p q

 
  

 
                                     (5.35)

 
 

3 2

1 3

2 (4 - 6 3)
( ) ,

(2 -1)

t t t
g t

t


  

 
2 3 2

1 4

2 (16 -32 24 -9)
'( ) ,

(2 -1)

t t t t
g t  

t


  

4 3 2

1 5

4 (16 - 40 40 -18 9)
''( ) ,

(2 -1)

t t t t t
 g t

t

 
  

 

where 1 ''( )f t  and 2 ''( )f t are given by (2.3) when 1k  and in (5.41) respectively. 

 

If  1 '( ) 0 1.102047318427496 1.1g t t    . It is clear that 1 '( ) 0g t  in  0.5,  1.1  and  0  

in  1.1,   , i.e., 1( )g t  is decreasing in )0.5,  1.1(  and increasing in  1.1,   . So, 1( )g t  has a 

minimum value at 1.102047318427496 1.1t    because  1.1 13.59545 0g   . So, 

(i) If, 0.5 1.1r  , then 

 

    1 1
( , )
inf ( ) (1.1) 1.90203,

t r R
m g t g


                (5.36) 

 

  

1 1 1
( , )

3 2 3 2

3 3

sup ( ) max[ ( ), ( )]

2 (4 - 6 3) 2 (4 - 6 3)
max , .

(2 -1) (2 -1)

t r R

M g t g r g R

r r r R R R

r R



 

  
  

 

                                      (5.37) 

 

(ii)  If, 1.1 r  , then,  

   

      
3 2

1 1 3( , )

2 (4 - 6 3)
inf ( ) ( ) ,

(2 -1)t r R

r r r
m g t g r

r


                                          (5.38) 

 

     
3 2

1 1 3( , )

2 (4 - 6 3)
inf ( ) ( ) .

(2 -1)t r R

R R R
M g t g R

R


                                     (5.39) 
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The results (5.32) and (5.33) are obtained by using (2.5), (5.34), (5.35), (5.36), (5.37), (5.38) 

and (5.39). 

 

6.   Conclusion 

 
The main purpose of the paper is to present k-series for different new and well-known 

divergence measures and may be useful in information theory and statistics. From the new 

established divergence measure, we can find applications in the computer science like pattern 

recognition, information retrieval, image processing, face detection techniques. Given new 

information inequalities helps to find relations between new and well-known divergence 

measures. Results 5.1, 5.2, 5.3, 5.4 and 5.5 are the particular cases of information inequalities 

theorem 4.1, 4.2 and 4.3. These inequalities are based on new f divergence measure and 

established k series of divergence measures.  
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