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Abstract

In this paper, a numerical approximation is drafted for solving the generalized Abel’s integral equa-
tion by practicing Laguerre orthogonal polynomials. The proposed approximation is framed for the
first and second kinds of the generalized Abel’s integral equation. We have utilized the properties
of fractional order operators to interpret Abel’s integral equation as a fractional integral equation. It
offers a new approach by employing Laguerre polynomials to approximate the integrand of a frac-
tional integral equation. Given examples demonstrate the simplicity and suitability of the method.
The graphical representation of exact and approximate solutions helps in visualizing a solution at
discrete points, together with the absolute error function. We have also carried out a numerical
comparison with Chebyshev polynomials to display less error in the posed formulation.

Keywords: Fractional calculus; Generalized Abel’s integral equations; Laguerre polynomials;
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1. Introduction

The integral equation is considered to be the most effective tool for modeling various engineering
and physical phenomena, having enormous applications in pure and applied mathematics. These
can be broadly categorized into Volterra, Fredholm, homogeneous and inhomogeneous integral
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equations. A variety of integral equations consistently arises in many physical problems of science
and engineering such as electronics, optimization, microscopy, plasma spectroscopy, mechanics,
etc. (see Cremers and Birkebak (1966), De et al. (2010), Gorenflo and Vessella (1991), Fleurier and
Chapelle (1974), Jakeman and Anderssen (1975), Mirzaee and Alipour (2018)). The applicability
of this topic in most of the applied areas leads to deep exploration and investigation.

Earlier, Abel practiced 1/2-order derivative in the solution of an integral equation that appears in
the formulation of tautochrone problem, and is assumed to be the most remarkable application in
the development of fractional calculus. One may note that integral equations may not always pos-
sess an analytical solution. The absence of analytical solution motivates the researchers to enquire
new approaches for solving these type of integral equations numerically. Different type of methods
for solving the generalized Abel’s integral equation already exist in literature (see Avazzadeh et
al. (2011a), Avazzadeh et al. (2011b), Dixit et al. (2011), Saleh et al. (2014), Li and Zhao (2013),
and references therein). For instance, Avazzadeh et al. (2011a) and Saleh et al. (2014) presented
the solution by Chebyshev polynomials. Legendre polynomials and Bernstein polynomials have
also been used in Avazzadeh et al. (2011b) and Dixit et al. (2011). Solutions of a system of the
generalized Abel’s integral equation using fractional calculus is given by Mandal et al. (1996).

This work intends to propose a new solution scheme for the generalized Abel’s integral equations
of the first and second kind, with the approximation by Laguerre orthogonal polynomials. Frac-
tional calculus performs a significant role as Abel’s integral equations can be described nicely with
respect to fractional integrals. The primary motive of this method is to take advantage of the prop-
erties of fractional integrals and Laguerre polynomials, as the orthogonal property of Laguerre
polynomials scales down the complexity of the system. The adoption of Laguerre polynomials
assists in approximating the fractional integral, and thus, the original problem reduces into a sim-
pler system of algebraic equations. Given numerical examples and evaluated errors describe the
applicability and efficiency of the method.

2. Preliminaries

In this section, we present the necessary details of Abel’s integral equation, fractional order oper-
ators and Laguerre polynomials, which will be needed in the sequel.

2.1. Abel’s Integral Equation

Intregral equation refers to an equation which involves an unknown function and integral of that
function to be solved. Mathematically, for an unknown function u(x),

f(x) = A(x)u(x) +

∫ b(x)

a(x)

k(x, t)u(t) dt,

represents a general form of integral equation. Here, f(x), A(x), a(x), b(x) and k(x, t) are given
functions. k(x, t) is called the kernel of integral equation. These can be broadly categorized into
Volterra, Fredholm, homogeneous and inhomogeneous integral equations.



AAM: Intern. J., Vol. 14, Issue 2 (December 2019) 1053

• Volterra integral equations of the first kind:

f(x) =

∫ b(x)

a(x)

k(x, t)u(t) dt.

• If a and b are constants, it reduces to Fredholm integral equations of first kind.
• Volterra integral equations of second kind:

f(x) = u(x) +

∫ b(x)

a(x)

k(x, t)u(t) dt.

• If a and b are constants, it reduces to Fredholm integral equations of second kind.
• Clearly, f(x) ≡ 0 is known as homogeneous integral equation.

We primarily focus on generalized Abel’s integral equation, usually emerges in two different kinds:

• First Kind,

f(x) =

∫ x

0

u(t)

(x− t)α
dt. (1)

• Second Kind,

u(x) = f(x) +

∫ x

0

u(t)

(x− t)α
dt, (2)

where 0 < α < 1, f(x) ∈ C[0, T ], 0 ≤ x, t ≤ T , T is a constant. C[0, T ] denotes the class of all
continuous function defined over the closed interval [0, T ].

The term “Generalized" is introduced due to the presence of α, where 0 < α < 1. For α = 1
2
,

above integral equations are simply called Abel’s integral equations, introduced and investigated
by Abel in (1823). Taking a(x) = 0, b(x) = x, k(x, t) = (x − t)−α, Equations (1)-(2) can be
regarded as Volterra integral equations of first and second kind, respectively.

2.2. Fractional Derivatives/Integrals

The concept of fractional calculus is associated with integrals and derivative of a function of non-
integer order. The restriction on the order of integral (or derivative) to be an integer is removed,
eventually, it is allowed to be any real or complex number. Nowadays several definitions of a frac-
tional derivative are available in literature which includes Riemann-Liouville, Grunwald-Letnikov,
Weyl, Caputo, and Riesz fractional derivatives (see Kilbas et al. (2006), Miller and Ross (1993),
Oldham and Spanier (1974), Podlubny (1999)). We briefly give the definitions of fractional order
derivatives and integrals used throughout the work.

Let f ∈ C[a, b], where C[a, b] is the space of all continuous functions defined over [a, b].
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Definition 2.1.

For all t ∈ [a, b] and α > 0, Left Riemann-Liouville Fractional Integral (LRLFI) of order α is
defined as

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1f(τ) dτ, t > a.

Definition 2.2.

For all t ∈ [a, b] and α > 0, Right Riemann-Liouville Fractional Integral (RRLFI) of order α is
defined as

tI
α
b f(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1f(τ) dτ, t < b.

Let us consider f ∈ Cn[a, b], where Cn[a, b] is the space of n times continuously differentiable
functions defined over [a, b].

Definition 2.3.

For all t ∈ [a, b], n− 1 ≤ α < n, Left Riemann-Liouville Fractional Derivative (LRLFD) of order
α is defined as

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− τ)n−α−1f(τ) dτ.

Definition 2.4.

For all t ∈ [a, b], n − 1 ≤ α < n, Right Riemann-Liouville Fractional Derivative (RRLFD) of
order α is defined as

tD
α
b f(t) =

(−1)n

Γ(n− α)

(
d

dt

)n ∫ b

t

(τ − t)n−α−1f(τ)dτ.

Definition 2.5.

For all t ∈ [a, b], n− 1 ≤ α < n, Left Caputo Fractional Derivative (LCFD) of order α is defined
as

c
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ) dτ.

Definition 2.6.

For all t ∈ [a, b], n− 1 ≤ α < n, Right Caputo Fractional Derivative (RCFD) of order α is defined
as

c
tD

α
b f(t) =

(−1)n

Γ(n− α)

∫ b

t

(τ − t)n−α−1f (n)(τ) dτ.
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2.3. Laguerre Polynomials

The Laguerre polynomials denoted by Ln(x) are solutions of a second-order linear differential
equation xy′′+(1−x)y′+ny = 0, known as Laguerre’s equation (see Agarwal and Regan (2009),
Aizenshtadt et al. (1966)). One may observe that it has non-singular solutions only if n is a non-
negative integer. We list some of the useful properties when working with Laguerre polynomials.

• The power series representation for Laguerre polynomials

Ln(x) =
n∑
k=0

(−1)k

k!
C{n,k} x

k,

where

C{n,k} =
n!

k!(n− k)!
.

• The Rodrigue’s representation for Laguerre polynomials

Ln(x) =
ex

n!

dn

dxn
(xn e−x).

• Generating function of Laguerre polynomial is

e
−xt

1−t

1− t
=
∞∑
n=0

Ln(x)tn.

• The first few Laguerre polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 1− 2x+
x2

2
,

L3(x) = 1− 3x+
3x2

2
− x3

6
.

• Recurrence relation for Laguerre polynomials, for any n ≥ 1

Ln+1(x) =
(2n+ 1− x)Ln(x)− nLn−1(x)

n+ 1
.

• Laguerre polynomials are orthogonal with respect to an inner product defined as

< f, g >=

∫ ∞
0

f(x)g(x)e−x dx.

Remark 2.7.

One may mark with above inner product that Laguerre polynomials are orthogonal in [0,∞) with
e−x as the weight function, that is,∫ ∞

0

Ln(x)Lm(x) e−x dx = δnm =

{
1, if n = m,
0, otherwise.
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3. Main Results: Laguerre Orthogonal Approximation Scheme

In this section, we use Laguerre orthogonal polynomials to approximate the generalized Abel’s
integral equations with fractional order operators. One of the most significant point is to use La-
guerre polynomials over any desired interval. We explicitly focus on the interval (0, 1) as we wish
to consider the fractional derivative of order α, where 0 < α < 1. It is to be noted that we are not
concerned about the end points (α = 0, 1). For such values of α we reach a constant and a first
order derivative (both are classical cases).

In order to match our requirements, we choose the transformation of variable x to variable z as

x =
z

1− z
; z 6= 1,

dx =
1

(1− z)2
dz ; z 6= 1.

As x→ 0⇒ z → 0, and x→∞⇒ z → 1. Thus,∫ 1

0

Ln

(
z

1− z

)
Lm

(
z

1− z

)
e−

z

1−z
1

(1− z)2
dz = δnm =

{
1, if n = m,
0, otherwise.

To simplify, we further transform the variable z to variable t by taking

e−
z

1−z = t ; z 6= 1,

e−
z

1−z
1

(1− z)2
dz = −dt ; z 6= 1.

As z → 0⇒ t→ 1, and z → 1⇒ t→ 0. Thus, we can write

∫ 1

0

Ln (− ln(t))Lm (− ln(t)) dt = δnm =

{
1, if n = m,
0, otherwise.

(3)

The orthogonality relation (3) makes sense as the end points 0, 1 are excluded. Collectively, we
rewrite Laguerre polynomials in (0, 1) as

Ln(− ln(x)) =
n∑
k=0

(−1)k

k!
C{n,k} [− ln(x)]k,

=
n∑
k=0

C{n,k}
k!

[ln(x)]k,

together with the orthogonality relation∫ 1

0

Ln (− ln(x))Lm (− ln(x)) dx = δnm =

{
1, if n = m,
0, otherwise.

This conversion of interval from [0,∞) to (0, 1) is not a restriction of the approach. One may
arrange the change of variable to obtain any convenient interval accordingly. We now proceed with
constructing a numerical scheme for generalized Abel’s integral equation.
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3.1. Approximating Generalized Abel’s Integral Equations of the First Kind

For 0 < α < 1, consider the generalized Abel’s integral equation of first kind as

f(x) =

∫ x

0

u(t)

(x− t)α
dt, (4)

= Γ(1− α) 0I
1−α
x u(x), (5)

where 0I
1−α
x u(x) is the left Riemann-Liouville integral of u(x) of order (1− α).

The purpose of the present analysis is to find an approximate solution of u(x) for Equation (5). In
order to fulfil the objective, we employ Laguerre polynomials for approximating u(x),

u(x) =
∞∑
i=0

ai Li(x), (6)

where Li(x) denote the Laguerre polynomial of degree i. One may view the expression (6) as the
linear combination of Laguerre polynomials with the constants ai to be determined.

The proposed approximation (6) makes sense as we have already devised the change of variable to
obtain the required interval (0, 1). Further, we write u(x) as a truncated series with n terms,

un(x) =
n∑
i=0

ai Li(x), (7)

and Li(x) =
i∑

k=0

bik x
k, (8)

where bik are the coefficients of xk in Laguerre polynomial of degree i. Thus, we rewrite un(x) as

un(x) =
n∑
i=0

ai

i∑
k=0

bik x
k,

= a0 b
0
0 x

0 + a1 (b10 x
0 + b11 x

1) + ...+ an (bn0 x
0 + bn1 x

1 + ...+ bnn x
n),

=
n∑
i=0

ci x
i,

where

ck =
n∑
i=k

ai b
i
k ; k = 0, 1, 2..., n. (9)

We observe that c′is are the linear combination of undetermined constants a′is, for i = 0, 1, 2, ..., n.
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At last, we arrive at

f(x) = Γ(1− α)0I
1−α
x un(x),

= Γ(1− α)
n∑
i=0

ci 0I
1−α
x xi,

= Γ(1− α)
n∑
i=0

ci
Γ(i+ 1)

Γ(i− α + 2)
xi−α+1.

The constants a′is can now be obtained by solving the above system of linear equations. Substi-
tuting the value of constants in un(x) =

∑n
i=0 ai Li(x) leads to the approximate solution of the

generalized Abel’s integral equation of first kind.

3.2. Approximating Generalized Abel’s Integral Equations of the Second Kind

For 0 < α < 1, consider the generalized Abel’s integral equation of second kind as

u(x) = f(x) +

∫ x

0

u(t)

(x− t)α
dt, (10)

= f(x) + Γ(1− α) 0I
1−α
x u(x), (11)

where 0I
1−α
x u(x) is the left Riemann-Liouville integral of u(x) of order (1− α).

Following the same formulation (as in first kind) we approximate (11) as

u(x) = f(x) + Γ(1− α) 0I
1−α
x u(x),

f(x) =
n∑
i=0

ci
[
xi − Γ(1− α) 0I

1−α
x xi

]
,

f(x) =
n∑
i=0

ci

[
xi − Γ(1− α)

Γ(i+ 1)

Γ(i− α + 2)
xi−α+1

]
,

where ci is described by Equation (9).

4. Numerical Computations

In this section, we illustrate the working mechanism of the proposed method with the help of some
examples. We have also performed comparison and error estimation of the formulated approxima-
tion with Chebyshev polynomials (see Saleh et al. (2014)).

Example 4.1.

Consider the Abel’s integral of first kind∫ x

0

u(t)√
x− t

dt =
2

105

√
x(105− 56x2 + 48x3),
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with the exact solution x3 − x2 + 1.

Note: It is important to mark that the designed method is by virtue of n-degree approximation.
Thus, n should be fixed while attaining solution. Higher accuracy of solution can be reached by
taking larger values of n.

In order to find the third degree approximation for Example 4.1, choose n = 3. Here α = 1
2
,

f(x) = 2
105

√
x(105− 56x2 + 48x3), and

u(x) u u3(x) =
3∑
i=0

aiLi(x). (12)

u(x) is approximated using Laguerre polynomials {Li, i = 0, 1, 2, 3} as described earlier. We
intend to find the constants {ai, i = 0, 1, 2, 3} by employing the formulation for first kind

f(x) = Γ(1− α)
3∑
i=0

ci
Γ(i+ 1)

Γ(i− α + 2)
xi−α+1,

where ci’s are given by (9). Substitute α = 1
2

f(x) = 2c0 x
1

2 +
4

3
c1 x

3

2 +
16

15
c2 x

5

2 +
32

35
c3 x

7

2 .

Using Equation (9), we get

c0 = a0b
0
0 + a1b

1
0 + a2b

2
0 + a3b

3
0,

c1 = a1b
1
1 + a2b

2
1 + a3b

3
1,

c2 = a2b
2
2 + a3b

3
2,

c3 = a3b
3
3,

where bik are the coefficients of xk in Li(x).

Placing b00 = b10 = b20 = b30 = 1, b11 = −1, b21 = −2, b31 = −3, b22 = 1
2
, b32 = 3

2
, b33 = −1

6
, we obtain

f(x) = 2(a0 + a1 + a2 + a3)x
1

2 +
4

3
(−a1 − 2a2 − 3a3)x

3

2

+
16

15

(
a2
2

+
3 a3
2

)
x

5

2 +
32

35

(
−a3

6

)
x

7

2 .

Given f(x) = 2
105

√
x(105− 56x2 + 48x3). On comparing the coefficients of like powers of x,

2(a0 + a1 + a2 + a3) = 2,

−4

3
(a1 + 2a2 + 3a3) = 0,

16

30
(a2 + 3a3) = −16

15
,

− 16

105
(a3) =

96

105
.
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After simplification, we arrive at

a0 = 5, a1 = −14, a2 = 16, a3 = −6.

Using Equation (12), the third degree approximate solution is given by

u(x) u u3(x)

=
3∑
i=0

ai Li(x)

= 5(1)− 14(1− x) + 16(1− 2x) +
x2

2
− 6

(
1− 3x+

3

2
x2 − x3

6

)
= 1− x2 + x3 = Exact Solution.

In this example, both the Laguerre polynomial and Chebyshev polynomial (see Saleh et al. (2014))
yields the same solution which is exact. One may note that the orthogonality property of Laguerre
polynomials can also be used (if needed) to simplify the computations involved in the formulated
solution scheme.

Example 4.2.

Consider the Abel’s integral of second kind,

u(x) = x2 +
16

15
x

5

2 −
∫ x

0

u(t)√
x− t

dt,

with the exact solution x2.

As computed previously, a second order approximation to u(x) using Laguerre polynomials give
the approximate solution u(x) u u2(x) = x2, which is same as the exact solution.

Note: If the exact solution is a polynomial of degree k, the solution by Laguerre polynomial or
Chebyshev polynomial (see Saleh et al. (2014)) is the same as the exact solution for all n ≥ k.

Example 4.3.

Consider the Abel’s integral of first kind,∫ x

0

u(t)√
x− t

dt =
πx

2
,

and Abel’s integral of second kind,

u(x) =
πx

2
+
√
x−

∫ x

0

u(t)√
x− t

dt.

Both the integral equations have the same exact solution given by
√
x.

After applying the 5th-order approximation with Laguerre polynomials, a0 =
√
π
2
, a1 = −

√
π
4
,

a2 = −
√
π

16
, a3 = −

√
π

32
, a4 = −5

√
π

256
, a5 = −7

√
π

512
, for both integral equations, the same approxi-

mate solution u(x) =
∑5

i=0 aiLi(x) is obtained for both integral equations (first and second kind).
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Note: One may note that Chebyshev polynomials (see Saleh et al. (2014)) give distinct approximate
solutions for above Abel’s integral equations of first and second kind having exact solution

√
x.

Table 1. Comparison of approximate solutions by Laguerre polynomials with Chebyshev Polynomials (Example 4.3)

x Exact
Sol.

App. Sol.
(Laguerre)

Abs. Error
(Laguerre)

App. Sol.
(Chebyshev)

Abs. Error
(Chebyshev)

0.1 0.316228 0.323579 0.007352 0.326228 0.010001
0.2 0.447214 0.422221 0.024992 0.437091 0.010122
0.3 0.547723 0.514434 0.033288 0.551481 0.003759
0.4 0.632456 0.600615 0.031841 0.650405 0.017949
0.5 0.707107 0.681147 0.025959 0.727583 0.020477
0.6 0.774597 0.756399 0.018197 0.784353 0.009756
0.7 0.836660 0.826727 0.009933 0.827773 0.008887
0.8 0.894427 0.892469 0.001958 0.869568 0.024859
0.9 0.948683 0.953951 0.005268 0.927327 0.021355
1.0 1.000000 1.011691 0.011691 1.032311 0.032311

The numerical computations by Laguerre orthogonal polynomials is given in Table 1, one may
compare the approximate solution using Laguerre polynomials by one with Chebyshev polynomi-
als. One can also observe the action of u(x) in Figure 1, that shows the exact and approximate
solution for x ∈ [0, 1]. Additionally, Figure 2 represents the absolute error function for u(x).

0.2 0.4 0.6 0.8 1.0

x

0.2

0.4

0.6

0.8

1.0

uHxL

Figure 1. Plot of exact and approximate solutions of Example 4.3 (Note: Red dotted line represents the exact solution
whereas blue corresponds to approximate solution of u(x))

0.2 0.4 0.6 0.8 1.0

x

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Èx1�2
-u5HxLÈ

Figure 2. Absolute error function for u(x), Example 4.3



1062 N. Singha and C. Nahak

Example 4.4.

Consider the generalized Abel’s integral of first kind,∫ x

0

u(t)

(x− t) 1

3

dt =
2

3
√

3
πx,

with the exact solution x
1

3 .

After applying the orthogonal approximation by Laguerre polynomials for n = 5, we get
a0 = 0.892979, a1 = −0.297659, a2 = −0.09922, a3 = −0.055122, a4 = −0.036748, and
a5 = −0.026949.

Table 2. Comparison of approximate solutions by Laguerre polynomials with Chebyshev Polynomials (Example 4.4)

x Exact
Sol.

App. Sol.
(Laguerre)

Abs. Error
(Laguerre)

App. Sol.
(Chebyshev)

Abs. Error
(Chebyshev)

0.1 0.464159 0.467906 0.003747 0.456999 0.007159
0.2 0.584804 0.551447 0.033356 0.564806 0.019997
0.3 0.669433 0.628351 0.041082 0.674115 0.004682
0.4 0.736806 0.699046 0.037860 0.756718 0.019912
0.5 0.793701 0.763947 0.029754 0.809109 0.015408
0.6 0.843433 0.823451 0.019982 0.843098 0.000334
0.7 0.887904 0.877937 0.009967 0.872747 0.015156
0.8 0.928318 0.927773 0.000545 0.903743 0.024574
0.9 0.965489 0.973309 0.007819 0.961009 0.004481
1.0 1.000000 1.014881 0.014881 1.199736 0.199736

The numerical results are listed in Table 2 and can be compared with Chebyshev polynomial ap-
proximation. Figure 3 gives the exact and approximate solution for u(x), followed by the absolute
error function provided by Figure 4.

0.2 0.4 0.6 0.8 1.0

x

0.2

0.4

0.6

0.8

1.0

uHxL

Figure 3. The plot of approximate and exact solution of Example 4.4 (Note: Green dotted line represents the exact
solution whereas purple corresponds to approximate solution of u(x))
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0.2 0.4 0.6 0.8 1.0

x

0.02

0.04

0.06

0.08

Èx1�3
-u5HxLÈ

Figure 4. Absolute error function for u(x), Example 4.4

Example 4.5.

Consider the Abel’s integral equation of second kind,

u(x) =
πx

2
√

2
+ x

1

4 −
∫ x

0

u(t)√
x− t

dt,

with the exact solution x
1

4 .

For n = 5, the approximation by Laguerre polynomials give a0 = 0.906402, a1 = −0.226601,
a2 = −0.084975, a3 = −0.049569, a4 = −0.0340787, a5 = −0.025559.

Table 3. Comparison of approximate solutions by Laguerre polynomials with Chebyshev Polynomials (Example 4.5)

x Exact
Sol.

Approx. Sol.
(Laguerre)

Abs. Error
(Laguerre)

Approx. Sol.
(Chebyshev)

Abs. Error
(Chebyshev)

0.1 0.562341 0.563159 0.000818 0.641434 0.008421
0.2 0.668740 0.634195 0.034544 0.641434 0.027306
0.3 0.740083 0.699143 0.040939 0.733927 0.006690
0.4 0.795271 0.758405 0.038654 0.803974 0.008703
0.5 0.840896 0.812368 0.028528 0.850477 0.009580
0.6 0.880112 0.861402 0.018710 0.884577 0.004465
0.7 0.914691 0.905863 0.008828 0.915611 0.000919
0.8 0.945742 0.946095 0.000353 0.938756 0.006986
0.9 0.974004 0.982424 0.008420 0.974074 0.000071
1.0 1.000000 1.015162 0.015162 1.218950 0.218950

The numerical results are listed in Table 3 and can be compared by one with Chebyshev polyno-
mials. We plot the exact and approximate solutions for u(x) in Figure 5, followed by the absolute
error function in Figure 6.
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Figure 5. The plot of approximate and exact solution of Example 4.5 (Note: Pink dotted line represents the exact solution
whereas black corresponds to approximate solution of u(x))
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Figure 6. Absolute error function for u(x), Example 4.5

One may study the comparison of approximate solutions of generalized Abel’s integral equations
obtained by Legendre polynomials, Chebyshev polynomials or by other methods available in the
literature. We have used Mathematica software to plot the exact and approximate solutions obtained
by using Laguerre polynomials.

5. Conclusion

We have drafted an orthogonal approximation technique to solve the generalized Abel’s integral
equation, with the assistance of fractional calculus and Laguerre polynomials. It has been observed
that the proposed method is conveniently accessible, as well as efficient. The great efficiency is
described with the help of numerical examples and graphical plots. Further, a comparison of the
solutions obtained by distinct polynomials and techniques can be carried out in the future.
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