g,
f \\ Available at Applications and Applied
- g d m http://pvamu.edu/aam Mathematics:
t\- B ,i' Appl. Appl. Math. An International Journal
ISSN: 1932-9466 (AAM)

Vol. 14, Issue 2 (December 2019), pp. 1020 — 1038

Bifurcation Analysis for Prey-Predator Model with
Holling Type III Functional Response Incorporating Prey Refuge

'Lazaar Oussama and >Mustapha Serhani

TSI Team, MACS Laboratory
Faculty of Sciences
University Moulay Ismail
Meknes, B.P. 11201
Zitoune, Morocco
o.lazaar@edu.umi.ac.ma

2 TSI Team, MACS Laboratory
FSJES, University Moulay Ismail
Meknes, B.P. 3012
Toulal, Morocco
m.serhani @fsjes.umi.ac.ma

Received: July 13, 2019; Accepted: October 4, 2019

Abstract

In this paper, we carried out the bifurcation analysis for a Lotka-Volterra prey-predator model with
Holling type III functional response incorporating prey refuge protecting a constant proportion of
the preys. We study the local bifurcation considering the refuge constant as a parameter. From the
center manifold equation, we establish a transcritical bifurcation for the boundary equilibrium. In
addition, we prove the occurrence of Hopf bifurcation for the homogeneous equilibrium. Moreover,
we give the radius and period of the unique limit cycle for our system.
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1. Introduction

In last decades, there have been many achievements in the theory of prey-predator interactions
(Britton (2012)). The first definitive theoretical treatment of population dynamics was Thomas
Malthus’s essay in 1798, on the Principle of Population. Then, it comes Lotka’s Elements of
Physical Biology in 1925, which was the next major advance in population dynamics theory.
Lotka proposed the first model of predator-prey interactions, we refer to (Sauer and Scholl
(2016)) for more details about the philosophy behind this studies. Afterwards, Volterra (Anisi
(2014)) assumed that the response of the populations would be proportional to the product of
their biomass densities, which had led to the original Lotka-Volterra model (Berryman (1992);
Murray (2011)).

dt

& = NP —dP.

{ﬂ = aN — bNP,
In this model, the prey population grows infinitely in the absence of predators. Hence, to correct
this unreasonable assumption, a logistic self- limitation term is often added to the prey equation.
dN
— =aN(1 - NK)—-bNP.
dt
The next major contribution to this theory was the addition of a predator functional response.
Solomon and then Holling pointed out that there is a nonlinear function of prey density describes
the prey death, because predators can only handle a finite number of prey in a unit of time (Holling

(1965)).
dN N

where b(N) is the functional response of the predator to prey density.

Lastly, many research emphasized that, in several situations, there was a constant proportion of
prey which were protected from predation by "refugia”, which occur in the interaction between
predator-prey shall impact the stability of the model by vanishing equilibrium point, setting up
instability, oscillation, and chaos phenomena (Haque et al. (2014); Ma et al. (2017); Wang and
Wang (2012)).

In their article, Yunjin Huang, Fengde Chen and Li Zhong (Huang et al. (2006)) introduced a
predator-prey model with Holling type III functional response incorporating prey refuge (noted
m). They studied the existence and local stability of three different equilibria (origin, boundary
equilibrium and homogeneous (coexistence) equilibrium). Furthermore, they have shown the exis-
tence of a unique asymptotically stable limit cycle.

Many manuscripts, in recent years, were interested to understand the behavior of prey-predator
interaction by the study of stability and bifurcation as (Sarkar et al. (2017); Almanza-Vasquez et
al. (2018); Xiao et al. (2018); Zhou et al. (2019)). While, we decide to investigate the bifurcation
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of the model presented in (Huang et al. (2006)) because the Holling type III functional response is
used to show that the predators develop their capture’s efficiency by learning as they hunt, where
incorporate the prey refuge to the functional response can be defined in order to include decreasing
strategies of predation risk, prey aggregations, or reduced search activity by prey.

In this paper, our main objective is to provide an explanation to the shifting in the behavior of the
dynamic, relatively to the prey refuge parameter, as shown in paragraph (2.2.2). The theoretical
process for this purpose is the analysis of local bifurcation with respect to m, for the equilibrium
resulting the extinction of predator population (i.e, Boundary equilibrium) and the equilibrium
representing coexistence of predators and preys (i.e, Homogeneous equilibrium). Our motivation
is to prove the major impact of refuge parameter on the stability of the dynamic, deducing that the
existence of refuge can clearly have important effects on the coexistence of the two species.

This worksheet is organized as follows. In Section 2, for our suitable, we reconvene the main
results of existence and stability without using the change of variables involved in (Huang et al.
(2006)), and we give some numerical simulations. In Section 3, we announce the main theorems
of transcritical and Hopf bifurcation. In Section 4, we give bifurcation diagrams. Some essential
conclusions are laying out in Section 5.

2. Modeling and Dynamical Behavior
2.1. Modeling

The basic model considered in this worksheet is based on the Lotka-Volterra prey-predator model
with Holling type III functional response that was defined in (Jun-ping and Hong-de (1986)):

do a2 ax’y
5 =ar —br Forar 0
dy kaz?y

a Y + B2+x2)’

where z, y denote prey and predator population respectively at the time ¢. The constants
«, B, a, b, ¢ and k are all positive. The coefficient a represents the intrinsic growth rate and
a/b the carrying capacity of the prey; c is the death rate of predator; & is the conversion factor
denoting the number of newly born predators for each captured prey. Unless otherwise stated, we
consider in the following that ¢ < ka < 2c¢. The left hand side of this assumption assures the
sustainability of predators. Meanwhile, the right hand side of this inequality keeps the growth of
predator under the given bound of twice the predator’s death rate. Otherwise, the population of
predators will be greater than the supply (preys).

The previous model is extended by (Huang et al. (2006)) to incorporate a refuge protecting mx of
the prey, allowing (1 — m)z of the prey reachable to predation, where m is a constant in [0.1), this
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modifies (1) into the following:

dz _ 2 a(l-m)’z?y

d_f = ar — bl’ - Bz+(1_m)2$27 (2)
dy _ ka(l—m)?z?y

P ) + B+(1—m)2z2"

To ensure the existence and uniqueness of solution for the system, we search for a solution in
R2 = {(z,y) : * > 0,y > 0}. Therefore, we have the following well posedness result:

Theorem 2.1.

For each initial condition (zy, yo), the dynamical system (2) admits a unique solution (x(t), y(t))
defined on R* and starting at (o, yo). Furthermore, the domain R = {(z,y) : @ > 0,y > 0} is
invariant by (2).

Proof:

The proof of this theorem is given in (Huang et al. (2006)). n

2.2. Stability analysis

The equilibrium points and local stability analysis investigated here are similar to the ones in
(Huang et al. (2006)). The only difference is that, they compute the equilibria in a new model with
change of variables, while we expressed them in the original model without the change of variables
to simplify the local bifurcation analysis in next section.

2.2.1.  Equilibrium points
In this paragraph, we provide the positive equilibria of the system (2), which are:

e The trivial equilibrium F(0, 0).
e The boundary equilibrium, which can be interpreted by the absence of predators P;(%,0).
e The interior (the coexistence) equilibrium denoted P, = (¢, yo), where

I6; c Bk ( b3 c )
To Yo = a .

“1-m\Vka—¢ (1 —m)/c(ka —c) “1-mVEka-c

To ensure the positivity of P, we need to assume that m satisfies 0 < m < 1 — B, with

B-1-2 /=

2.2.2. Local stability analysis

In the next table, we draw the nature of equilibrium points relatively to the parameter m achieved
in (Huang et al. (2006)):



1024

Table 1. The impact of refuge parameter on the stability of equilibria
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Parameter Py P P phase portrait
m € [0, A) | Unstable | Unstable | Unstable, limit cycle occurs Figure 1
m=A Unstable | Unstable | Unstable, limit cycle occurs Figure 2
m € (A, B) | Unstable | Unstable Asymptotically stable Figure 3
m=2D Unstable | Unstable Doesn’t exist Figure 4
m € (B, 1] | Unstable | stable Doesn’t exist Figure 5

Those results are supported by the simulations presented in the next figures, illustrating the exis-
tence and stability properties for the equilibria of the system (2) with the parameter values a = 0.5,

=02,aa=03,k=0.1,¢=0.024, 8 = 0.3, and the initial conditions (ug, v9) = (3,1) [Red],
(uo,v0) = (1, 3) [Blue], (ug, v9) = (3, 3) [Greenl].
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Figure 1. The phase portrait of system (2) for m = 0,15 Figure 2. The portrait phase of the system (2) for m = 0, 36
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Figure 3. The portrait phase of the system (2) form = 0,5

In Figure (1), where m = 0.15, we clearly notice that the three distinct solutions of the system
converge to an attractive limit cycle, which is an outcome of the existence of a unique asymp-
totically stable limit cycle. The same conclusion is true in Figure (3) where m = 0.36, the only
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Figure 4. The portrait phase of the system (2) for m = 0,76 Figure 5. The portrait phase of the system (2) for m = 0,8

difference is that the radius of the limit cycle shrinks. Hence, from Figure (2) with m = 0.5, we can
notice that all the curves converge asymptotically to the coexistence equilibrium. Lastly, Figures
@)(m = 0.76) and (5)(m = 0.8) show that the coexistence equilibrium disappears for the three
initial values, while the boundary equilibrium becomes asymptotically stable.

3. Local Bifurcation

As previous figures show, it is obvious that there is a change in the local behavior of the dynamic for
certain parameter values of m. Therefore, in this section, we review the local bifurcation depending
on the refuge parameter m for boundary and interior equilibrium. For more details about the local
bifurcation theory, we refer to (Guckenheimer and Holmes (1983); Dang-Vu and Delcarte (2000);
Wiggins (2003)).

Firstly, we will prove that the dynamic switch from the local stability of the coexistence equilibrium
to the stability of the equilibrium representing the extinction of predators, which indicates that a
transcritical bifurcation occurs at the point (P, m = B). Next, we can notice the occurrence of
Hopf bifurcation in (P2, m = A), which can be explained by the convergence of the dynamic’s
population to an asymptotically stable limit cycle when the equilibria are unstable.

3.1. Transcritical bifurcation

Under this heading, we review the local bifurcation for the boundary equilibrium, proving that
adding a large refuge parameter m to the model phased-out the oscillatory behavior in favor of a
stable equilibrium.

Theorem 3.1.

The system (2) undergoes a transcritical bifurcation at the equilibrium P; when m = B.
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Proof:

First of all, we consider the parameter m as a variable in the system (2), which can be written as
follow:

X =F(X,m), X= (5) . 3)

The first step is to translate the equilibrium P; of the system (2) into the origin by the following
variable change
T=rv—a, Yy=1y, /L:m_B7

but, for the sake of simplicity, we will keep the same old variables notations, i.e, we will note

Then, the system becomes

dr— bz + &)z —

g2 +(1—u—B)(z+2)”
dy _ ka(l—p—B)? (erb) (4)
t 62+(1_N_B)2(x+%)2'

The Jacobian matrix at the point (0,0, ), p € [—B,1 — B) for this system is given by

701(1 u—DB) (b)

_ +(1-pu—B)? (3)2
O B)z(%)
For ;1 = 0, we get the result
J(0,0,0)= (~% k). (6)
Y ) 0 O
Noticing that det(J(0,0,0)) = 0, it implies that there is a bifurcation at the equilibrium P, when
1 = 0. Besides, we can easily establish the eigenvalues of (6) which are A\ = —a < 0 and A\, = 0.

Then, by the Center Manifold theorem (Carr (1982); Dang-Vu and Delcarte (2000)), we have the
existence of a center manifold W€, a stable manifold 1/ and an empty unstable manifold W*, for
which

dimWe =1, dimW?* =1, dimW"=0< W"=(.

The next step is focused on changing the coordinate basis of the system into the basis containing
the vectors from the span set of eigenspaces of .J(0, 0, 0).

By a simple calculation, we establish the eigenspaces of J in (0,0, 0):
E*(0) = {(2,y) € R*ly =0},

50) = {(z.y) e Bz = —y}.
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Thereby, we can notice that B = { <(1)> , <_1‘1_’“ ) } is a base of R2.

In these coordinates, the differential equations (4) becomes:

U= (Z‘) = T71J(0,0,0)TU + F(U, n), (7)

C

where T — (‘17 é) T = ((1) i) U = T7'X and F(U,p) = T-'F(TU, p) is the

nonlinear term.

Then, we can notice that

and
Fl(Ua :u’)>
F U7 = - )

with

. 20c(ka — c) c 2a(ka — ¢)? c

U p) =229 (€ -

iU 1) ako ( ak + U) ¢ Bbka ko —ch?
bie(ka — c)(ka — 4c) c 2 a*(ka — ¢)*(ka — 4c)
+ a?k?a? (—%u + U) ‘- b232k2 a2 s

and

(U p)=—b (—iu—kv)z + (—1 + E) [M <—£ —i—v> u

a ak?a ak

 2a(ka —c)? c N be(ka — ¢)(ka — 4c) <_ ¢ ot >2
Bbk2a ko — a?k3a? ak' Y)Y

We add to the system (7) the trivial equation
p=0. ®)

To identify the center manifold for the system (7)-(8), we express the variable v as a function of u
and p. Considering a function hg such that

v = hg(u, ).
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We know that v is a solution of the second equation of the system (7). Therefore, we obtain by
substituting v with the Taylor expansion of hg(u, p), i.e,

hs(u, ) = diot® + dagupt + doy pi® + dizu® + dgou’pn + dogup® + day 1
in the first equation of (7), so that

A

Dh8<u7 N)Fl(uv hs(“v :u)a :U’) = —ahs(u, h8<u7 N)? /L) + FQ(“? hs(“v :u)a :U’>7

where Dhg(u, p1) is the Jacobian matrix of hg(u, ).

Hence, we establish the coefficients d;; as next

2(ka — ¢)? ¢ g bc? - 2(—=14 2)(ka —¢)
Bbk2a \ka—c ? T a3k2 ko ’

dy1 = d31 = 0, dop =

4y, bk =) [4+ be(ka — c) (—1+5)] 2w <1+2<_1+5> ka—c)z’

a?k2a a?k3a a at a ko

d23 =

(ka —¢) [4e(ka — c)
- B2b2Ba {

c —2c(ka —¢)? [=2c(ka—c¢) ka—-c
d3y = + —1
ka —c a?fk3a aka ko

4% (ka — c)? e\ ka—c
— 1+ 214+ - .
* a’Bk3a ( - ( * a) ko ) )

. +<c—a><ka—4c>} |

Then,
vV = hs (U, ,u) = d12u2 + dggu,u + d13u3 + d32u2,u + dggu,LL2. (9)

Therefore, substituting (9) in the system (7)-(8), we get

i = Fy(u, h(u, p) == G(u, ), (10)
io=0.
Let
oG 0*G
Gy = p and G = Ipoq’

The Taylor expansion of G around the origin gives, by adding the conditions G(0,0) = G,(0,0) =
0, which express that the center manifold is tangent to the axis of u at the origin, that

= G(u,p) = G,(0,0)u + % (Guu(0,0)u? 4+ 2G4,,(0,0)pu + G (0,0)%) + O(3).  (11)

To provide that the bifurcation is transcritical, we need to prove the following

GL(0,0) =0, Guu(0,0) #0.



AAM: Intern. J., Vol. 14, Issue 2 (December 2019) 1029

We compute the Taylor expansion of the first equation of (10) and we identify it with the expansion
(11). It results that

_ B S NZ(pr
Gu(u, i) :Mdn/ﬂ +2 le(ka ) da1 — @”(ka — ) (ka - dc)

aka aka b232k2«

2a(ka — ¢)? c
+ .
Bbka ko — ¢

up

So G,,(0,0) = 0.
Moreover,

4bc* (ka — c) 20c(ka — ) v’ (ka — ¢)?(ka — 4c)

Guu ) = - 6 d
(1, 1) a?k3« aka 2+ a*kia?
Abe(ka — ¢)?
+ gdmﬂa
aka
which implies that
4bc* (ka — )
Guu(0,0) = ———= #0.
(0,0) pyE R

Hence, the bifurcation is transcritical as required. -

3.2. Hopf bifurcation

Previously, we notice that exactly one stable limit cycle occurred in the system with a small refuge
parameter (i.e, when the positive equilibria are unstable), which is in accordance with ecological
considerations, for which populations are reported to oscillate in a preferred reproducible periodic
manner.

Now, we will study the Hopf bifurcation for the system (2) and determine the properties of its
unique limit cycle.

Theorem 3.2.

The system (2) undergoes a supercritical Hopf bifurcation at (P,,m = B). It yields a unique

—7'(A —A
™ (A4)(m ) and a period T' ~ l, where
aq Wo

ay (the first Lyapunov coefficient), T (m) and wy are respectively given by (30), (19) and (20) in
the proof .

asymptotically stable limit cycle of radius r = \/

Proof:

The proof is based on the algorithm of Hassard, Kazarinoff and Wan (see (Dang-Vu and Delcarte
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(2000))), which leads to calculate the first coefficients of Poincare’s normal form for Hopf bi-
furcation. Its real part aq, called the first Lyapunov coefficient, provides to evaluate the periodic
orbit’s radius emerging at the bifurcation point. Moreover, the sign of this coefficient determine
the supercritical or subcritical behavior of the bifurcation.

We started out by the substitution © — & 4 xy and y — ¥ + ¥y, to bring back the fixed point to the
origin. Then, we get the following system

2 a(l—m)?(z+xz)? o
4 = a(w + 29) — bz + w0)? — Wi i),

- (12)
d a(l-—m)?(z+x0)? 0
= —cly +w) +
The matrix
= 2(ka—c) a—%1 e B
N ari(m) aiz(m) = 127&31 ka—c ( ka ) Tk
J(m) = = (13)
azi (m) azz(m) 2(ka—) (o= 12 /7)) 0
is the Jacobian matrix for system (12) at the origin.
Furthermore, our system can be expressed by the equation
X =3(m)X + F(X,m), (14)
where X = (;) and F is a nonlinear term to determinate after.
The characteristic equation of (13) is
det(J(m) — M) = N* + Po(m)A + Q(m) = 0, 15)
Py(m) = —tr(J(m)) and Q(m) = det(J(m)).
By simple computation, we get
Bb C
Qﬁb C 2(]{70[ - C) <a T 1-m kafc>
P =— 16
() a+1—m k:oz—c+ ko ’ (16)
and
Bb C
26(1{704 - C) <a T 1-m kafc)
Q(m) = : a7

This lead us to prove respectively that Py(A) = 0 and Q(A) = a(ka — ¢) > 0.

Now, we conclude that the characteristic equation has a pure imaginary roots for the parameter
value m = A. Therefore, by the theorem of Poincare-Andronov-Hopf, (P(A), A) is Hopf bifur-
cation point.
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Carrying A(m) = 7(m) + iw(m) into the derivative of (15), will provide us to have for m = A the
following system

—2w(A)w'(4) +Q'(4) =0,

(18)
2w(A)T (A) + w(A)Py(A) = 0.
Hence, we can notice that 7(A) = 0 and
, Py(A) Bbe c
A)= -2 =— : 1
(4 2 ka(l — A)? ka—c<0 (19)

Thus, we have a center manifold of dimension 2. Moreover, we get an empty stable and unstable
manifolds.

To obtain the center manifold equation, we need at first to establish the passage matrix 7" from the

system’s base to the base {eq, eo} where e; = Real(v;) = Rv; and ey = —Imaginary(v,) = Juy,
vy is the eigenvector associated to A(A) = iwy with
wy = /Q(A) = Va(ka — ¢). (20)

At first, let v; = (g), we can provide

(& _ 1 aiz(A) )
v = (77) = a1 (A) <—(l11(A) tiwg ) 2D
So,
T = [Rv, —Tuv] ! wald) 0
= v —Ju| =
' ' CL12(A) —&11(A) —Wo
(22)
1 0
N (O% a(ka — c)) '
Then,
1 0
T = . . (23)
ky/a(ka—c)

Carrying the transformation U = T~ X, where U = <Zl> , into (14) for m = A we obtain
2

{al = —WoU2 + Fl (Ul, Ug), (24)

Uy = wouy + Fo(uy, ug),
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with F' = (Fy, F3) is defined by F' = T*1F(TX, A).
Now, we need to determine the function F'.

If we rewrite (12) as

the function F can be formulated as follow

n 10%f .2 0% fi 10%f1,2 10%f1,..3 1 8% .2 1 0%f 2 10%f1, 3
<F1(X’ m)> 2922 T + 8x8yxy + 2 9y? Y+ 6 08 L + §8x28yx y+ §8x8y2xy + Ea_zﬁy
n C\12f 2 | &5 10,2 | 1% 3 | 1 8f 2 1 8f 2 | 18f 3
F2(X’ m> 2 a2 =+ Bccayxy + 2 0y? Y + 6 93 z°+ 5696283/'1: Y + 58:1:8y2'ry + ga_y:”y
(25)
o' o
where Apr = _fp. (X, m).
8x]1y]2 oxi yJ2
To simplify the previous expression, we denote the derivatives as
o) (X, m) €202? + €112y + €2y + €302° + €127y + e122y® + €3y°
_ = ,  (20)
FQ(X, m) 52033'2 + (5111:;9 + (502y2 + 5301‘3 + (52191;2y + (512xy2 + (503]/3

where €ij = EiJ’(X, m) and 5i,j = 5i,j(X7 m)

After calculating those derivatives at the origin, we get

20(ka — ¢)(ka — 4c) _Ab (ko —c) A8V (ko —¢)
ka(ka —2¢) 7 u

pum —2 pum— pum
20 bt ak?a(ka — 2¢)’ €30 (ka — 2¢)(ka)?’

—8v?(ka — 4¢)(ka — ¢)

€21 = P2 (ko — 207 €02 = €12 = €03 = 0.
27
5o — 20(ka — ¢)(ka — 4c) _ 4bc*(ka — ¢ _ —A8v* (ko — ¢)
0 alka — 2¢) » T aka(ka—2¢) T (ko 20)ka?

—8b*c*(ka — 4¢)(ka — ¢)
091 = PP (ka — 207 do2 = 012 = do3 = 0.
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Uy
Knowing that TU = ( ) , we provide

Ea(ka — c)us

1 0 w
=0 e F(( (Fa =) >A>
kry/a(ka—c) VAR = ¢)u

(28)
or? + anay + oy’ + azor® + ana’y + apry’ + 0403?/3>
Bo0a® 4 Briwy + Boay® + Baor® + Bna®y + Braay® + Bosy®
where,
Qo2 = g = a3 = 0,
4bc(ka — ¢)y/a(ka — ¢)
11 = )
aka(ka — 2¢)
8b*c?(ka — ¢)
Q30 = 75 5 )
k2a?(ka — 2¢)
—4b*c*(ka — 4¢)(ka —¢) k
a2 = a?k20?(ka — 2¢)2 ¢ alka =),
oy = —b b(ka — ¢)(ka — 4c)
ka(ka — 2c)
(29)
Boz = P2 = Boz = 0,
—4bc? (ka — ¢)
511 = )
aka(ka — 2¢)
By = =823 (ka — ¢)
% k202 (ka—2¢)\/a(ka — ¢)’
By = 4% (ka — 4c¢)(ka — ¢)
T @k2a?(ka — 202
By = be(ka — ¢)(ka — 4c)
* ka(ka — 2¢)\/a(ka —¢)
Now, we can calculate the coefficient a;, which is defined by the expression
1
8ay = —————=[a0a11 — Ba0f11 — 2002020] + 330 + P
a(ka — ¢)
6b%c (ka — ¢)(ka — 4c) 40*3(ka — 4c¢)(ka — )
— 22 (1 - (30)
aka ka(ka — 2c) a’k?a?(ka — 2¢)?

240°c*(ka — ¢)  4b*cA(ka — ¢)*(ka — 4c)
ak?a?(ka — 2c) a’k?a?(ka — 2¢)?
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Set
¢ = &20 14 (ka —c)(ka —4c)\ 40%c3 (ka — 4c¢) (ka — c)‘ 31)
ako ka(ka — 2c) a’k?a?(ka — 2¢)?
Then, the terms a3 and [ are evidently negative. Next, we need to determine the sign of (.
Simplifying the expression of {, we can prove that
20%c (ka — ¢)(ka — 4¢) 2c?
=— -3 33— —— 32
¢ aka { i ka(ka — 2¢) a(ka —2¢) ]’ (32)

which is negative; this proves that a; is negative. Then, the Hopf bifurcation point is supercritical.

To end up, we have 7' (A) < 0 and a; < 0 so the equilibrium point P, is asymptotically stable if
m > A. Moreover, it is unstable if m < A added to the existence of a unique asymptotically
—7(A — A 2 /
(A)(m ) and a period T' ~ T with 7 (A)
a a(ka — c)
expression is given in (19). m

stable limit cycle of radius r =

4. Numerical Simulation

Keeping the same parameter values as subsection (2.2.2), we will simulate the bifurcation diagram
for both the transcritical and Hopf bifurcation, in addition to the radius of the limit cycle relatively
to the parameter refuge.

x = the preys density.
y = the predators density.

4.1. Transcritical bifurcation diagram

In Figures (6) and (7), the stability of the fixed points is illustrated for the initial conditions
(ug, vo) = (5, 3). Thus, those simulations undergo a transcritical bifurcation at m = 0.76 = B. We
model an ecological system and then look forward to observe the system in a stable equilibrium
state, in a neighborhood of m = B, which is the extinction of predators. For m < B, the fixed
points, except F, converge to collide at the parameter value B and become locally asymptotically
stable equilibrium for m > B.
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Figure 7. Bifurcation diagram (predators)

4.2. Hopf bifurcation diagram and limit cycle radius simulation

In an ecological system, we are interested in the coexistence. Keeping the same initial conditions
as the previous simulation, in Figures (8) and (9), we show the occurrence of a periodic orbit that is
pointed asymptotically stable, when the fixed point P, is unstable (i.e, m < 0.36), while the system
moves forward to the locally asymptotically stable fixed point P, representing the coexistence.
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Figure 9. Bifurcation diagram (predators)

In Figure (10), we show how the radius of periodic orbit varies relatively to the refuge parameter.
We notice that the radius value decline until vanishing at the bifurcation point, where the limit
cycle switches to an equilibrium that is locally asymptotically stable.

5. Conclusion

In this worksheet, we studied the impact of the prey refuge on the dynamic behavior of the model
based on a Lotka-Volterra model following the Holling type III functional response. We have no-
ticed the major effect of "refugia" on the stability of system (2). As an ecological model, we search
for the coexistence of species in our system which is realizable for small parameter values of
refuge where the Hopf bifurcation phenomena appears. Furthermore, as expected for large values
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of refuge, the system shift from the stability of coexistence to the extinction of predators. This was
clearly explained by the occurrence of a transcritical bifurcation. Then, we can notice the inter-
est of studying this model taking into consideration the prey’s mobility away from predation and
understand the changes of behavior for our dynamical system by bifurcation analysis.

Acknowledgment:

The authors would like to thank the reviewers and Editor-in-Chief for their critical reviews, helpful
suggestions and positive comments which helped to improve the manuscript.

REFERENCES

Almanza-Vasquez, E., Ortiz-Ortiz, R.-D. and Marin-Ramirez, A.-M. (2018). Stability in
predator-prey system Lotka-Volterra model incorporating a prey refuge like the law
of mass action, Contemporary Engineering Sciences, Vol. 11, No. 42, pp. 2049-2057.
https://doi.org/10.12988/ces.2018.85218

Anisiu, M.-C. (2014). Lotka, volterra and their model, Didactica Mathematica, Vol. 32, pp. 9-17.

Berryman, A.A. (1992). The Orgins and Evolution of Predator-Prey Theory, Ecology, Vol. 73, No.
5, pp- 1530-1535.

Britton, N.F. (2012). Essential Mathematical Biology, Springer Science & Business Media. DOI:
10.1007/978-1-4471-0049-2

Carr, J. (1982). Applications of Centre Manifold Theory. Applied Mathematical Sciences. Springer-
Verlag, New York. DOI: 10.1007/978-1-4612-5929-9



1038 L. Oussama and M. Serhani

Dang-Vu, H. and Delcarte, C. (2000). Bifurcations et chaos: une introduction Ai la dynamique
contemporaine avec des programmes en Pascal, Fortran et Mathematica. Ellipses.

Guckenheimer, J. and Holmes, P. J. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifur-
cations of Vector Fields. Applied Mathematical Sciences. Springer-Verlag, New York. DOI:
10.1007/978-1-4612-1140-2

Haque, M., Rahman, M. S., Venturino, E. and Li, B.-L. (2014). Effect of a functional response-
dependent prey refuge in a predatordASprey model, Ecological Complexity, Vol. 20, pp. 248-
256. DOI:10.1016/j.ecocom.2014.04.001

Holling, C. S. (1965). The Functional Response of Predators to Prey Density and its Role in
Mimicry and Population Regulation, The Memoirs of the Entomological Society of Canada,
Vol. 97, No. S45, pp. 5-60. https://doi.org/10.4039/entm9745fv

Huang, Y., Chen, F. and Zhong, L. (2006). Stability analysis of a preyAASpredator model with
holling type III response function incorporating a prey refuge, Applied Mathematics and Com-
putation, Vol. 182, No. 1, pp. 672-683. https://doi.org/10.1016/j.amc.2006.04.030

Jun-ping, C. and Hong-de, Z. (1986). The qualitative analysis of two species predator-prey model
with Holling’s type III functional response, Applied Mathematics and Mechanics, Vol. 7, No.
1, pp. 77-86. https://doi.org/10.1007/BF01896254

Ma, Z., Wang, S., Wang, T. and Tang, H. (2017). Stability analysis of prey-predator system with
holling type functional response and prey refuge, Advances in Difference Equations, Vol.
2017, No. 1, pp. 243. https://doi.org/10.1186/s13662-017-1301-4

Murray, J. D. (2011). Mathematical Biology: 1. An Introduction. Springer Science & Business
Media.

Sarkar, M., Das, T. and Mukherjee, R. N. (2017). Bifurcation and Stability of Prey-Predator Model
with Beddington- DeAngelis Functional Response, Applications and Applied Mathematics,
Vol. 12, No. 1, pp. 17.

Sauer, T. and Scholl, R., editors (2016). The Philosophy of Historical Case Studies. Boston
Studies in the Philosophy and History of Science. Springer International Publishing.
DOI:10.1007/978-3-319-30229-4

Wang, Y. and Wang, J. (2012). Influence of prey refuge on predatoraASprey dynamics, Nonlinear
Dynamics, Vol. 67, No. 1, pp. 191-201. https://doi.org/10.1007/s11071-011-9971-z

Wiggins, S. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in
Applied Mathematics. Springer-Verlag, New York, 2 edition. DOI: 10.1007/b97481

Xiao, Z., Xie, X. and Xue, Y. (2018). Stability and bifurcation in a Holling type II predator-prey
model with Allee effect and time delay, Advances in Difference Equations, Vol. 2018, No. 1,
pp- 288. https://doi.org/10.1186/s13662-018-1742-4

Zhou, Y., Sun, W., Song, Y., Zheng, Z., Lu, J. and Chen, S. (2019). Hopf bifurcation analysis of
a predator-prey model with Holling-II type functional response and a prey refuge, Nonlinear
Dynamics, Vol. 97, No. 2, pp. 1439-1450. https://doi.org/10.1007/s11071-019-05063-w



