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Abstract

This paper presents a numerical investigation on some characteristics and parameters related to the
motion of an infinitesimal body with variable mass in five-body problem. The other four bodies
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are considered as primaries. The whole system forms a cyclic kite configuration and moves on a
circle, the center of which is taken as the origin. We assume that the motion of the fifth infinitesimal
body is affected by the other components of the system but it has no effect on their behavior. We
started by setting the equations of motion of the fifth body by using Jeans’ law and Meshcherskii’s
space-time transformations. Further, we determined numerically, using Mathematica software, the
positions of Lagrangian points and basins of attraction in various planes. Finally, we investigated
the linear stability of the Lagrangian points and noticed that all the Lagrangian points are unstable.
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1. Introduction

The restricted three-body and four-body problems, respectively denoted in the sequel by (R3BP)
and (R4BP), attracted many researchers and are considered as important subjects of research in
both celestial mechanics and astrophysics. Among the researchers that studied these problems,
Jeans (1928) evaluated the binary system in the structure of the two-body problem with variable
mass. Meshcherskii (1949) considered that the mass was emitted uniformly from the two-body
system at high speeds towards the decay of the system. He also observed that there is change in
orbits, angular momentum, and energy of the considered system. Abouelmagd et al. (2014) and
Abouelmagd and Mostafa (2015) reviewed the perturbation effects on the R3BP and compressed
the secular solution to the periodic solution. Abouelmagd and Ansari (2019) also studied the mo-
tion properties of the infinitesimal body in the framework of bi-circular Sun-perturbed Earth-Moon
system with Jacobian integral, regions of motion, Poincaré surfaces of section and basins of attrac-
tion.

Ansari (2016(a), 2016(b), 2017(a), 2017(b), 2018), Ansari and Prasad (2018), Ansari and Alhus-
sain (2019), and Ansari and Kellil (2019) revisited various restricted problems including three,
four and five bodies with different perturbations as solar-radiation pressure, albedo-effect, differ-
ent forms of the primaries (oblate, heterogeneous), and variation of mass etc. In their studies, they
illustrated the graphs for equilibrium points, zero-velocity curves, Poincaré surfaces of section and
basins of attraction and studied the stability of the stationary points and observed that in most
cases, these stationary points are unstable. Kumari and Kushvah (2013) studied the effect of solar
wind drag on the equilibrium points and zero-velocity curves in the restricted four-body problem.
Marchesin et al. (2013) treated the spatial restricted rhomboidal Sitnikov’s five-body problem and
determined the Hamiltonian function and noticed that it has three degrees of independence de-
pending periodically on time. In the same work, they characterized the regions of possible motion
and shown that there are no chaos. Ollongren (1988), using the muMath package, studied the posi-
tions and stability of equilibrium points and generalized the study of classical restricted three-body
problem to a particular restricted five-body problem.

Pandey and Ahmad (2013) investigated the motion of the infinitesimal body in the generalized
frame of the Sitnikov problem. They considered that the four bodies, in which three are equal oblate



AAM: Intern. J., Vol. 14, Issue 2 (December 2019) 987

spheroids (the primaries), placed at the vertices of an equilateral triangle and moving in the circular
orbits nearby their common center of mass and the infinitesimal body moving in the gravitational
fields generated by the primaries in the z-direction and have no effect on the primaries. Ragos et
al. (1997) investigated numerically the regions of quasi-periodic motion around non-symmetric
periodic orbits in neighborhood of the triangular equilibrium points. They also observed that the
regions studied surround in general the linearly stable segments of the corresponding families and
become smaller as the mass ratio increases. Shahbaz and Hassan (2014) and Shahbaz et al. (2014)
investigated the Sitnikov problem with cyclic kite configuration. They established the connection
between three-body and four-body configurations of the problem, when the masses are close to
zero. Shoaib et al. (2017) explored numerically and analytically the regions of possible motion on
the planar central configuration of rhomboidal and triangular four-body and five-body problems.

Shrivastava and Ishwar (1983) determined equations of motion of the restricted three-body problem
with decreasing mass, under the assumption that the mass of the infinitesimal body varies with
respect to time. For the stability of equilibrium points in the restricted three-body problem with
variable mass, we can cite Lukyanov (2009), where he noticed that for any set of parameters, all
the stationary points in the problem are unstable with respect to the Meshcherskii’s space-time
transformations. Lichtenegger (1984) studied the dynamical behavior of the celestial bodies under
the variable mass effect. Singh and Ishwar (1984, 1985, 2003, 2010 and 2016) studied various
aspect of the effect of small perturbations in the coriolis and the centrifugal forces on the stability
and location of stationary points, in the R3BP and R4BP. Zhang et al. (2012) studied the impact
of solar radiation pressure on the R3BP with variable infinitesimal mass by using Jeans’ law and
Meshcherskii’s space-time transformations.

As a contribution to the previously cited literature, we present in this paper the study of cyclic-
kite-configuration in a restricted five-body problem, when the mass of the fifth body assumed
infinitesimal, varies with time. The paper is organized as follows. In Section 2, we present and
explain the model of our problem and determine the equation of motion. In Section 3, using Math-
ematica software, we draw the graphs for Lagrangian points and basins of attraction in various
planes. The fourth section is devoted to the stability of the Lagrangian points. Finally, the fifth
section represents a conclusion of our study.

2. Model of the problem and Equations of Motion

Assume that m1, m2, m3, m4 and m(t) (with m1 = m3) are five masses, where m1, m2, m3, and
m4 will be the primaries, placed at the vertices of a cyclic kite ABCD with radius R and move
around a circle, center of which is taken as originO. On the geometry of the kite, we introduce two
restricted conditions: Firstly, ABC will be an equilateral triangle with AB = BC = CA = ` and
secondly, ACD will be an isosceles triangle such that AD = CD = R, AC = `, and ` =

√
3R.

The fifth variable massm(t) is moving under the gravitational forces
−→
F 1,
−→
F 2,
−→
F 3 and

−→
F 4, exerted

by m1, m2, m3, and m4 respectively but its action on the primaries is supposed unimportant. Let
−→r 1,
−→r 2,
−→r 3 and−→r 4 be the distances between the primaries, m1, m2, m3, and m4 to the fifth body

respectively. We also assume that m1 is placed on the x-axis. Moreover, the coordinate axes are as
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h
Figure 1. Cyclic kite configuration of the restricted five-body problem with infinitesimal variable mass.

clearly defined in Figure 1.

Let us consider the synodic coordinate system (Oxyz) that coincides initially with the inertial
coordinate system (OXY Z), and revolving with angular velocity ω about the z-axis. In Figure 1
the five bodies m1, m2, m3, m4 and m(t) are denoted by A, B, C, D and P respectively and their
coordinates are (x1, 0, 0) = (R, 0, 0), (x2, y2, 0) = (−R

2
,−
√
3R
2
, 0), (x3, y3, 0) = (−R

2
,
√
3R
2
, 0),

(x4, y4, 0) = (R
2
,
√
3R
2
, 0) and (x, y, z), respectively.

Using a procedure similar to that used by Abouelmagd and Mostafa (2015), we got the following
equations of motion of the fifth body in rotating coordinates system subjected to non-isotropic
variation of mass with zero momentum resulting from one point,

ṁ(t)
m(t)

(ẋ− ny) + (ẍ− 2nẏ) = Πx,

ṁ(t)
m(t)

(ẏ + nx) + (ÿ + 2nẋ) = Πy,

ṁ(t)
m(t)

ż + z̈ = Πz,

(1)

where

Π = n2

2
(x2 + y2) +G

∑4
i=1

mi

ri
, (2)

Πx, Πy, and Πz represent the partial derivatives of Π with respect to x, y and z, respectively,
dot represents the differentiation with respect to time t and n is the mean motion which is also
magnitude of the angular velocity ω.

For different dimensionless variables, we assume that,

R = 1,m1 +m2 +m3 +m4 = 1,G = 1, n = 1,m2 = µ,m4 = α1µ

⇒ m1 = m3 =
1− µ− α1µ

2
, α1 << 1.
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Hence, Equations (1) and (2) are reduced to

ṁ(t)
m(t)

(ẋ− y) + (ẍ− 2ẏ) = Wx,

ṁ(t)
m(t)

(ẏ + x) + (ÿ + 2ẋ) = Wy,

ṁ(t)
m(t)

ż + z̈ = Wz,

(3)

where 
W = 1

2
(x2 + y2) + 1−µ−α1µ

2r1
+ µ

r2
+ 1−µ−α1µ

2r3
+ α1µ

r4
,

r2i = (x− xi)2 + (y − yi)2 + z2, i = 1, 2, 3, 4.

(4)

Due to variation of mass of the fifth body, using Jeans’ law and Meshcherskii’s space-time trans-
formations, the above equations can be simplified as

dm(t)

dt
= −λ1m(t), α = ε

1

2x, β = ε
1

2y, γ = ε
1

2 z, dτ = dt, ρi = ε
1

2 ri, (i = 1, 2),

where ε = m(t)
m0

, (it is clear that ε is less than unity when the mass decreases and greater than unity
when the mass increases respectively to m0, the initial mass of the fifth body) and λ1 is a variation
parameter which is constant. We got

dε
dt

= −λ1ε,

ẋ = ε−1/2(α′ + λ1

2
α), ẍ = ε−1/2(α′′ + λ1α

′ + λ2
1

4
α),

ẏ = ε−1/2(β′ + λ1

2
β), ÿ = ε−1/2(β′′ + λ1β

′ + λ2
1

4
β),

ż = ε−1/2(γ′ + λ1

2
γ), z̈ = ε−1/2(γ′′ + λ1γ

′ + λ2
1

4
γ),

(5)

where (′) denotes the differentiation with respect to τ .

Finally, the equations of motion become
α̈− 2β̇ = Ψα,

β̈ + 2α̇ = Ψβ,

γ̈ = Ψγ,

(6)

where 
Ψ = 1

2
(α2 + β2) + λ2

1

8
(α2 + β2 + γ2) + ε3/2{1−µ−α1µ

2ρ1
+ µ

ρ2
+ 1−µ−α1µ

2ρ3
+ α1µ

ρ4
},

ρ2i = (α− xiε1/2)2 + (β − yiε1/2)2 + γ2, i = 1, 2, 3, 4.

(7)
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Figure 2. Positions of Lagrangian points in α− β− plane. Where red colors denote the positions of the primaries

3. Numerical Analysis

In this section, from our data we have drawn Lagrangian points and basins of attraction in various
planes. These graphs reveal the dynamical behavior of the infinitesimal body. In all our numerical
calculations, we took µ = 0.019, α1 = 0.01 and λ1 = 0.2.

3.1. Lagrangian points

The Lagrangian points can be determined by solving the equations

∂Ψ

∂α
= 0,

∂Ψ

∂β
= 0 and

∂Ψ

∂γ
= 0,

in the following two different planes:

• In-plane motion (α, β, γ = 0),
• Out-of planes motion ((α, β = 0, γ) and (α = 0, β, γ)).

3.1.1. In-plane motion

In this subsection, we have plotted the locations of Lagrangian points in (α, β)−plane (Figure 2),
for the values ε = 1.3, ε = 1 and ε = 0.9. We found four Lagrangian points that we have denoted
by L1, L2, L3 and L4. One, say (L1) is on the α-axis and the others Lagrangian points L2, L3, L4

are non-collinear. All the Lagrangian points are located near the primaries. More precisely, L1 is
located near m1, L2 and L3 are located near m2 and L4 is located near m3. However, there is no
Lagrangian point located near the primary m4. Furthermore, from the figure, we observed that L1
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is moving towards m1, L2 is moving towards m2 while L3 is moving away from m2 and L4 is
moving towards m3, as the value of ε decreases. So, the variation of ε produces a great impact on
the Lagrangian points during in-plane motion.

3.1.2. Out-of-plane motion

During the out-of-plane (α, β = 0, γ), we found at most four Lagrangian points (L1, L2, L3, L4).
L1 and L2 are located on α− axis, while L3 and L4 are located on γ−axis (Figure 3).

On the other hand, during the out-of-plane (α = 0, β, γ),we found at most three Lagrangian points
(L1, L2, L3) in which L1 is on β−axis, located near the origin and (L2, L3) are on γ−axis (Figure
4). It is easy to see that, the variation constant ε has also in this situation a qualitative impact on
the location of Lagrangian points.

(a) (b)

(c)

Figure 3. Positions of Lagrangian points in α− γ− plane at ε = 1.3(a), 1(b), 0.9(c)
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(a) (b)

(c)

Figure 4. Positions of Lagrangian points in β − γ− plane at ε = 1.3(a), 1(b), 0.9(c)

3.2. Basins of attraction

By using simple, fast and accurate N-R iterative method to solve the multivariate functions, we
have drawn in this subsection, the basins of attraction for our cyclic kite configuration. The regions
of convergence are composed by all the initial values that tend to a specific Lagrangian points. The
basins of convergence is one of the most important qualitative properties of the dynamical systems.
It is illustrated by following procedure: After classifying dense uniform grid of 1024× 1024 initial
conditions, multiple scan of the configuration plane is done. By considering the maximum num-
ber of iterations as 500, we set the predefined accuracy as 10−15. Using the cited above iterative
method, we plotted the basins of convergence in three planes; (α, β)−plane (Figure 6a), (α, γ)-
plane (Figure 7a) and (β, γ)-plane (Figure 7b)). The algorithm of our problem in (α, β)−plane
when γ = 0, is represented by the following iterative process:

αn+1 = αn −
(

ΨαΨββ −ΨβΨαβ

ΨααΨββ −ΨαβΨβα

)
(αn,βn)

, (8)
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(a) (b)

Figure 5. (a) Basins of Convergence with cyclic kite configuration of the primaries in α− β− plane at ε = 1.3
(b) Zoomed part of (a) near the cyclic kite configuration

(a) (b)

Figure 6. (a) Basins of Convergence with cyclic kite configuration of the primaries in α− β− plane at ε = 0.9
(b) Zoomed part of (a) near the cyclic kite configuration

βn+1 = βn −
(

ΨβΨαα −ΨαΨβα

ΨααΨββ −ΨαβΨβα

)
(αn,βn)

, (9)

where αn, βn are the values of α and β coordinates of the nth step of the N-R iterative process.
If the initial point converges rapidly to one of the Lagrangian points then this point (α, β) will
be a member of the basin of convergence. This process stops when the successive approximation
converges to a Lagrangian point. For the classification of different Lagrangian points on the planes,
we used a color code.

In (α, β)-plane, we have drawn the basins of convergence for ε = 1.3 (Figure 5a) and for ε = 0.9
(Figure 6a). We observed that there are four attracting points L1, L2, L3, and L4 in both these
figures. From Figure 5a, we found that L1 corresponds to the cyan color region, L2 corresponds
to the yellow color region, L3 corresponds to the green color region and L4 corresponds to the
magenta color region. And from Figure 6a, we found the same color regions for L1, L2, and L3 but
for L4 purple color region. And we also observed that L1 and L2 have finite color regions but L3

and L4 extend to the infinite color regions.
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(a) (b)

Figure 7. (a) Basins of Convergence with cyclic kite configuration of the primaries in α− γ− plane at ε = 1.3
(b) Zoomed part of (a) near the cyclic kite configuration

(a) (b)

Figure 8. (a) Basins of Convergence with cyclic kite configuration of the primaries in α− γ− plane at ε = 0.9
(b) Zoomed part of (a) near the cyclic kite configuration

Similarly, we easily determined the algorithm for the other two (α, γ)-plane (Figures 7a, 8a), and
(β, γ)-plane (Figures 9a, 10a).

In (α, γ)−plane, we found four attracting points L1, L2, L3, and L4. L1 and L2 represented by,
cyan color regions, while L3 and L4 by green and blue color regions respectively. Moreover, all
the color regions extend to infinity.

In (β, γ)−plane, we found the same phenomenon as in (α, γ)−plane for three attracting points
L1, L2, and L3. In the figures, L1, L2 and L3 were represented by, cyan, green and blue color
regions respectively. Furthermore, all the color regions extend to infinity.

We observed, when we reduced the values of the variation constant ε, that the corresponding curves
are shrinking in all the studied planes. Notice that, in all the figures related to this subsection, red
points represent the positions of the primaries.
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(a) (b)

Figure 9. (a) Basins of Convergence with cyclic kite configuration of the primaries in β − γ− plane at ε = 1.3
(b) Zoomed part of (a) near the cyclic kite configuration

(a) (b)

Figure 10. (a) Basins of Convergence with cyclic kite configuration of the primaries in β − γ− plane at ε = 0.9
(b) Zoomed part of (a) near the cyclic kite configuration

4. Linear stability of Lagrangian points

This section is devoted to the stability of Lagrangian points by giving the displacements
((u, v, w) << 1) to (α0, β0, γ0) as 

α = u+ α0,

β = v + β0,

γ = w + γ0,

(10)

where (α0, β0, γ0) is the Lagrangian point that corresponds to a fixed value of time t0. The varia-
tional equations deduced from the equations (6) and (10) can be written as follows:

ü− 2v̇ = (Ψαα)0u+ (Ψαβ)0v + (Ψαγ)0w,

v̈ + 2u̇ = (Ψβα)0u+ (Ψββ)0v + (Ψβγ)0w,

ẅ = (Ψγα)0u+ (Ψγβ)0v + (Ψγγ)0w.

(11)
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In the phase-plane, system (11) can be expressed as

u̇ = u1,

v̇ = v1,

ẇ = w1,

u̇1 = (Ψαα)0u+ (Ψαβ)0v + (Ψαγ)0w + 2v1,

v̇1 = (Ψβα)0u+ (Ψββ)0v + (Ψβγ)0w − 2u1,

ẇ1 = (Ψγα)0u+ (Ψγβ)0v + (Ψγγ)0w.

(12)

Due to the variation of distances between primaries and the Lagrangian points (α0, β0, γ0), meth-
ods usually used to study stability were inadequate. We therefore used the following Meshcherskii’
space-time inverse transformations

x′ = ε−1/2u, y′ = ε−1/2v, z′ = ε−1/2w, u′ = ε−1/2u1, v
′ = ε−1/2v1, w

′ = ε−1/2w1.

These transformations reduced the previous equations to the following, expressed in the matrix
form as 

dx′

dt
dy′

dt
dz′

dt
du′

dt
dv′

dt
dw′

dt

 = A×



x′

y′

z′

u′

v′

w′

 , (13)

where

A =



λ1

2
0 0 1 0 0

0 λ1

2
0 0 1 0

0 0 λ1

2
0 0 1

(Ψαα)0 (Ψαβ)0 (Ψαγ)0
λ1

2
2 0

(Ψβα)0 (Ψββ)0 (Ψβγ)0 −2 λ1

2
0

(Ψγα)0 (Ψγβ)0 (Ψγγ)0 0 0 λ1

2

 .

Due to the invariance of the distances from the primaries to the Lagrangian points, the linear
stability of (6) and (13) should be consistent. Thus, the linear stability of this solution depends on
the existence of stable region of the Lagrangian point, which in turn depends on the boundedness
of the solution of a linear homogenous system of Equation (13).

And hence, we deduced the characteristic equation of the matrix A as

λ6 + a5λ
5 + a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0, (14)
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where
a5 = −3λ1,

a4 = 4−Ψαα −Ψββ −Ψγγ +
15

4
λ21,

a3 = 2(−4 + Ψαα + Ψββ + Ψγγ)λ1 −
5

2
λ31,

a2 = −Ψ2
αβ −Ψ2

αγ + ΨααΨββ −Ψ2
βγ − 4Ψγγ

+ΨααΨγγ + ΨββΨγγ −
3

2
(−4 + Ψαα + Ψββ + Ψγγ)λ

2
1 +

15λ41
16

,

a1 = (Ψ2
αβ + Ψ2

αγ −ΨααΨββ + Ψ2
βγ − (−4 + Ψαα + Ψββ)Ψγγ)λ1

+
1

2
(−4 + Ψαα + Ψββ + Ψγγ)λ

3
1 −

3

16
λ51,

a0 =
λ61
64
− λ41

16
(−4 + Ψαα + Ψββ + Ψγγ)−

λ21
4

(Ψ2
αβ + Ψ2

αγ −ΨααΨββ + Ψ2
βγ

−(−4 + Ψαα + Ψββ)Ψγγ) + Ψ2
αγΨββ − 2ΨαβΨαγΨβγ + Ψ2

αβΨγγ + Ψαα(Ψ2
βγ −ΨββΨγγ).

The roots (called in the sequel characteristic roots) of the above equation have been calculated
in three planes and for various values of the mass parameter ε (see Tables 1 − 6). We observed
from the tables the existence of at least one positive real root (dark black in tables) or having a
positive real part corresponding to each Lagrangian points. Therefore, all the Lagrangian points
either in-plane or out-of-planes are unstable.

5. Conclusion

We studied the effect of the variation of mass parameter ε of the infinitesimal body in the restricted
five-body problem having cyclic kite configuration. We found that the variation of this parameter
ε has a great impact on the Lagrangian points, basins of attraction and on the stability of the
Lagrangian points. Due to the variation of this parameter, our equations of motion are different
from those characterizing the classical case by the parameters λ1 and ε. As we decreased the value
of ε, we observed that the Lagrangian points are moving towards the origin. Moreover, for the
basins of attraction, we found that they are shrinking. Finally, from the data recorded in Tables 1-6,
we concluded that all the Lagrangian points are unstable.
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Table 1. Characteristic roots and their nature of stability for each Lagrangian points at µ = 0.019, α1 = 0.1, λ1 =
0.2, ε = 1.3 in α− β−plane

No. Lagrangian points Corresponding Characteristic roots Nature
(α, β) (λ1, λ2, λ3, λ4, λ5, λ6)

1 -0.6526803875, -1.1304755924 0.0999999999 ± 2.5670651738 i,
0.1000000000 ± 2.5280212457 i,

3.4182397481, -3.2182397481 Unstable
2 1.7927222166, 0.0253181224 0.0999999999 ± 1.6961750281 i,

0.1000000000 ± 1.6265290970 i,
1.9848359689, -1.7848359689 Unstable

3 -0.8744349710, 1.5652020427 0.0999999999 ± 1.6265290970 i,
0.1000000000 ± 1.6961750281 i,

1.9848359689, -1.7848359689 Unstable
4 -0.2266201602, -0.3925176315 -0.4490762472 ± 0.9976146600 i,

0.0999999999 ± 0.7632165030 i,
0.6490762472 ± 0.9976146600 i, Unstable

Table 2. Characteristic roots and their nature of stability for each Lagrangian points at µ = 0.019, α1 = 0.1, λ1 =
0.2, ε = 0.9 in α− β−plane

No. Lagrangian points Corresponding Characteristic roots Nature
(α, β) (λ1, λ2, λ3, λ4, λ5, λ6)

1 -0.5430657660, -0.9406174986 0.0999999999 ± 2.5669125092 i,
0.1000000000 ± 2.5278668397 i,

3.4180040068, -3.2180040068 Unstable
2 1.4916350480, 0.0210659512 0.0999999999 ± 1.6265290970 i,

0.1000000000 ± 1.6961750281 i,
1.9848359689, -1.7848359689 Unstable

3 -0.7275738750, 1.3023268203 0.0999999999 ± 1.6265290970 i,
0.10000000000 ± 1.6961750281 i,

1.9848359689, -1.7848359689 Unstable
4 -0.1884963043, -0.3264851761 -0.4491137791 ± 0.9976205608 i,

0.1000000000 ± 0.7632550807 i,
0.6491137791± 0.9976205608 i, Unstable
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Table 3. Characteristic roots and their nature of stability for each Lagrangian points at µ = 0.019, α1 = 0.1, λ1 =
0.2, ε = 1.3 in α− γ−plane

No. Lagrangian points Corresponding Characteristic roots Nature
(α, β) (λ1, λ2, λ3, λ4, λ5, λ6)

1 -0.0020627558, -5.1821717268 0.0723888473 ± 0.9999958748 i,
0.1276111526 ± 0.9999958748 i,

0.2686972074, -0.0686972074 Unstable
2 -0.0020627558, 5.1821717268 0.0723888473 ± 0.9999958748 i,

0.1276111526 ± 0.9999958748 i,
0.2686972074, -0.0686972074 Unstable

3 1.6781872907, 0.0000000000 0.0999999999 ± 2.1699514381 i,
0.1000000000 ± 2.2308597011 i,

2.8776652516, -2.6776652516 Unstable
4 -0.2472617685, 0.0000000000 -0.5315273567 ± 0.9570503970 i,

0.0999999999 ± 0.9673482720 i,
0.7315273567 ± 0.9570503970 i, Unstable

Table 4. Characteristic roots and their nature of stability for each Lagrangian points at µ = 0.019, α1 = 0.1, λ1 =
0.2, ε = 0.9 in α− γ−plane

No. Lagrangian points Corresponding Characteristic roots Nature
(α, β) (λ1, λ2, λ3, λ4, λ5, λ6)

1 -0.0022342685, 4.2993018357 0.0999999999 ± 0.9278855224 i,
0.1000000000 ± 1.0720816689 i,

0.3008249180, -0.1008249180 Unstable
2 -0.0022342685, -4.2993018357 0.0999999999 ± 1.0720816689 i,

0.1000000000 ± 0.9278855224 i,
0.3008249180, -0.1008249180 Unstable

3 1.4919710745, 0.0000000000 0.0999999999 ± 4.1274407531 i,
0.1000000000 ± 4.0925249867 i,

5.7404368570, -5.5404368570 Unstable
4 -0.1426340457,0.0000000000 -0.5457439910 ± 0.9652293089 i,

0.1000000000 ± 0.9698635813 i,
0.7457439910 ± 0.9652293089 i, Unstable
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Table 5. Characteristic roots and their nature of stability for each Lagrangian points at µ = 0.019, α1 = 0.1, λ1 =
0.2, ε = 1.3 in β − γ−plane

No. Lagrangian points Corresponding Characteristic roots Nature
(α, β) (λ1, λ2, λ3, λ4, λ5, λ6)

1 -0.0046552311, -5.1675230862 0.0736526666 ± 0.9999957424 i,
0.1263473333 ± 0.9999957424 i ,

0.2690993970, -0.0690993970 Unstable
2 -0.0046552311, 5.1675230862 0.0736526666 ± 0.9999957424 i,

0.1263473333 ± 0.9999957424 i,
0.2690993970, -0.0690993970 Unstable

3 -0.4268478186, 0.0000000000 -0.4635081962 ± 0.9879433393 i,
0.0999999999 ± 0.8080958427 i,
0.6635081962 ± 0.9879433393 i, Unstable

Table 6. Characteristic roots and their nature of stability for each Lagrangian points at µ = 0.019, α1 = 0.1, λ1 =
0.2, ε = 0.9 in β − γ−plane

No. Lagrangian points Corresponding Characteristic roots Nature
(α, β) (λ1, λ2, λ3, λ4, λ5, λ6)

1 -0.0038880775, -4.2939476570 0.0742974156 ± 0.9999956998 i,
0.1257025843 ± 0.9999956998 i,

0.2692972345, -0.0692972345 Unstable
2 -0.0038880775, -4.2939476570 0.0742974156 ± 0.9999956998 i,

0.1257025843 ± 0.9999956998 i,
0.2692972345, -0.0692972345 Unstable

3 -0.3386262196, 0.0000000000 -0.4697483286 ± 0.9885728388 i,
0.0999999999 ± 0.8152752914 i,
0.6697483286 ± 0.9885728388 i, Unstable
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