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Abstract 

 

Our objective is to obtain the non-similarity solution of non-Newtonian fluid for Powell-

Eyring model by a local non-similarity method. Here, free stream velocity is considered in 

power-law form (𝑈 = 𝑥𝑚). The governing equations are transformed using non-similar 

transformations and derived equations are treated as ordinary differential equations. Non-

similar solutions are obtained for different values of power-law index 𝑚 and stream-wise 

location 𝜉. Influence of various parameters on velocity and temperature field are presented 

graphically using MATLAB bvp4c solver. 
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Nomenclature: 

 

𝐴, 𝐵 - Constants 

u ,𝑣 - Velocity component in X and Y directions respectively 
𝑥, 𝑦 - Cartesian co-ordinates 

𝜌 - The fluid density 

𝛼 - The thermal diffusivity 

𝜗 - kinematic viscosity 

𝑇 - Temperature of fluid 

Ψ -  Stream function 

𝜉, - Transformed variables 

𝜇 - Dynamic viscosity 

𝛽, 𝐶 - Powell-Eyring fluid parameter 

U - Free stream velocity 

𝑚 - Power law index 

𝑇𝑤 - Surface temperature   

𝑇∞ - Ambient temperature   

𝑓, 𝑔, ℎ,𝜃 - Dependent functions 

𝑝𝑟 - Prandtl number 

τ𝑦𝑥 - Stress component  

 

1. Introduction 

 
The concept of similarity solution depends on invariance postulate. If any of the governing 

equations or boundary conditions are not followed by this invariance postulate, in such 

circumstances similarity solution does not exist, hence one can depend on the non-

similarity solution.  

 

Hansen and Na (1968) found a similarity solution of non-Newtonian Powell-Eyring fluid 

model using a linear group of transformations and observed the possibility of similarity 

solution only for the flow over a 90-degree wedge. Na (1994) analyzed the two-

dimensional Reiner-Philippoff, non-Newtonian fluid model. He found a similarity solution 

for a boundary layer flow over a 90-degree wedge and non-similarity solution on boundary 

layer flow over any body shape using the finite difference method. Patil et al. (2015) also 

conclude that the similarity solution exists only for the flow past a 90-degree wedge for 

non-Newtonian fluid model characterized by composite and implicit types of stress-strain 

relationship. He analyzed the three-dimensional Reiner-Philippoff model and established 

non-similarity on flow past any body shape other than a 90-degree wedge. The similarity 

solution is found recently by Shukla et al. (2017) for forced convection flow of Powell-

Eyring and Prandtl-Eyring model and had taken free stream velocity 𝑈 in power-law form 

with power 1/3 for boundary layer flow over a 90-degree wedge. The similarity solution 

exists only for the value of 𝑚 = 1/3 when free stream velocity is in power-law form 

𝑈 = 𝑥𝑚.  

 

Stream-wise variations in the free-stream velocity, surface mass transfer, transverse 

curvature, stream-wise variations in surface temperature, surface heat flux, volume heat 
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generation etc… are causes which give non-similarity in a boundary layer (Sparrow et al. 

1970, Sparrow and Yu 1971, Massoudi 2001).  

 

Sparrow et al. (1970) had introduced the method of local non-similarity and applied it on 

different non-similar velocity boundary value problems. Thermal boundary value 

problems are analyzed using the local non-similarity method by Sparrow and Yu. (1971). 

Many researchers like to apply the local non-similarity method because of simplicity in 

concept and computation. There are two attractive features of the method one is local 

solutions independent of upstream information and second is obtained equations can be 

treated as ordinary differential equations as in similarity solutions. 

 

Non-Newtonian power law model is investigated by Massoudi (2001). He discussed 

similarity, local-similarity, and local non-similarity method by considering the free stream 

velocity, the injection velocity, and the surface temperature as varying functions of the 

streamwise coordinate x for the flow over a porous wedge. Isomen et al. (2015) done 

similarity and non-similarity analysis to study the effect of buoyancy force on velocity and 

temperature for the steady incompressible flow of fluid over an impermeable wedge and 

obtained ordinary equations are solved using Runge-Kutta Gill with Shooting method. 

 

Governing equations of Casson non-Newtonian fluid flow are converted in non-similar 

form by Subba Rao et al. (2016) and employed Keller-Box implicit difference method to 

solve the non-similar equations. The MHD Powell-Eyring fluid flow over a vertical plate 

in a porous medium is examined numerically by applying the implicit finite difference 

Keller-Box method by Readdy et al. (2018). Mureithi and Mason (2010) obtained non-

similarity solution for a forced–free convection boundary layer flow over a horizontal 

plate with power-law variations in the freestream velocity and wall temperature using 

local non-similarity method. Chiam (1993) demonstrated the efficiency of local non-

similarity method using the two-equation model and three-equation model by analysing 

the MHD boundary layer flow over continuously moving flat plate.  

 

Yian & Amin (2002) had applied the local non-similarity method to study laminar free 

convection boundary layer flow over a vertical flat plate with an exponential variation in 

surface temperature. Effect of different physical parameters over forced convective 

Hiemenz flow in porous media is studied by Isomen et al. (2015).  By applying the local 

non-similarity method. Akgul and Pakdemirli (2012) had obtained the local non-similarity 

solution for the flow of an electrically conducting fluid over a Microcantilever-Based 

Sensor by considering mass transfer and chemical reaction at the sensor surface.  

 

Abdullah et al. (2018) studied unsteady mixed convection in the stagnation flow on a 

heated vertical surface embedded in a Nano fluid-saturated porous medium. The 

governing system of nonlinear partial differential equations is transformed using the 

Sparrow-Quack-Boerner local non-similarity method and the obtained system is 

considered as a system of ordinary differential equations. 

 

Since more work is still needed to understand the effect of various parameters involving 

different non-Newtonian models and the formulation of accurate method of analysis for 

any body shape of engineering significance. So, from the literature review, we got 

inspiration to find the non-similar solution and examined effects of the different physical 

parameter on velocity and temperature profile for two dimensional steady incompressible, 
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laminar flow over a flat plate for Non-Newtonian fluid model namely Powell-Eyring fluid 

model by applying local non-similarity method. The aim of this paper is to study the 

boundary layer flow whose non-similarity is caused by variations in the freestream 

velocity by considering shapes other than a 90-degree wedge by entering the expression of 

the free stream velocity into a power law form 𝑥𝑚. 

 

2. Governing Equation  
 

The basic equations of continuity, momentum, and energy of two-dimensional, steady, 

incompressible, laminar flow over a vertical flat plate with a Cartesian co-ordinate system 

in usual notations are (Shukla et al. (March-2017), MJIS): 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0.                                                                                                                  (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+𝑣

𝜕𝑢

𝜕𝑦
= 𝑈

𝑑𝑈

𝑑𝑥
+

1

𝜌

𝜕

𝜕𝑦
(𝜏𝑦𝑥).                                                                                  (2) 

    

𝑢
𝜕𝑇

𝜕𝑥
+𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2.                        (3) 

                                             

Subject to the boundary conditions: 

 

𝑦 = 0: 𝑢 = 0, 𝑣 = 0 , 𝑇 = 𝑇𝑤.               (4) 

 

𝑦 = ∞: 𝑢 = 𝑈(𝑥), 𝑇 = 𝑇∞.               (5) 

 

Here, 𝑢, 𝑣 are velocity components in the 𝑥, 𝑦 directions respectively.  

T - The fluid temperature, 𝜌 - The fluid density, 𝛼 - the thermal diffusivity, 𝑇𝑤- Surface 

temperature, 𝑇∞ - ambient temperature, 𝑈 - free stream velocity. 

 

We define stream function 𝜓(𝑥, 𝑦), to reduce one dependent variable which satisfies 

equation (1). 

 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
.                                                                                                      (6) 

 

Equations (1) to (5) transform as follows: 

 
𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑦𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2 = 𝑈
𝑑𝑈

𝑑𝑥
+

1

𝜌

𝜕

𝜕𝑦
(𝜏𝑦𝑥).                                                                         (7) 

 
𝜕ψ

𝜕𝑦

𝜕𝑇

𝜕𝑥
−

𝜕ψ

𝜕𝑥

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
.                (8) 

 

With boundary conditions: 

 

𝑦 = 0: 
𝜕𝜓

𝜕𝑦
=

𝜕𝜓

𝜕𝑥
= 0, 𝑇 = 𝑇𝑤.                (9) 
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𝑦 = ∞: 
𝜕𝜓

𝜕𝑦
= 𝑈(𝑥), 𝑇 = 𝑇∞.              (10) 

 

Mathematically, Powell-Eyring model is written as  

 

 𝜏𝑦𝑥 = 𝜇
𝜕𝑢

𝜕𝑦
+

1

𝛽
𝑠𝑖𝑛ℎ−1(

1

𝐶

𝜕𝑢

𝜕𝑦
),                 (11) 

 

where 𝜇 is dynamic viscosity, 𝛽 and 𝐶 are material constants of Powell-Eyring fluid. 

 

 𝑠𝑖𝑛ℎ−1(
1

𝐶

𝜕𝑢

𝜕𝑦
) ≅

1

𝐶

𝜕𝑢

𝜕𝑦
−

1

6
(

1

𝐶

𝜕𝑢

𝜕𝑦
)3 for |

1

𝐶

𝜕𝑢

𝜕𝑦
| ≤ 1.                 (12) 

 

Substituting values from equations (11) and (12) in equation (7) we get, 

 
𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑦𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2 = 𝑈
𝑑𝑈

𝑑𝑥
+

1

𝜌
( 𝜇 +

1

𝛽𝐶
)

𝜕3𝜓

𝜕𝑦3 −
1

2𝜌𝛽𝐶3 (
𝜕2𝜓

𝜕𝑦2)2 𝜕3𝜓

𝜕𝑦3 .         (13) 

 

3. Transformation of the Governing equation 
 

Now, defining new variables 𝜉 and 𝜂 (Akgul and Pakdemirli (2012)). 

 

𝜉 = 𝑥
1−𝑚

2 , 𝜂 =
𝑦√𝑈

√𝜗𝑥
, 𝑓(𝜉, 𝜂) =

𝜓

√𝑥𝜗𝑈
, 𝑈 = 𝑥𝑚 , 𝜃(𝜉, 𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
,                      (14) 

 

where variable 𝜂 is chosen as a similarity variable if the boundary layer is similar which 

depends on variable 𝑥 and 𝑦. Variable  𝜉  depends only on a variable 𝑥. 

 

Applying above transformations we had converted equations (7) to (13) in the following 

form. 

 

(1 + 𝐴)𝑓′′′ − 𝐴𝐵𝜉
2(3𝑚−1)

1−𝑚 (𝑓′′)2𝑓′′′ + 𝑚(1 − (𝑓′)2) +
𝑚+1

2
𝑓𝑓′′  

 

                                                                       = 
1−𝑚

2
𝜉[𝑓′ 𝜕2𝑓

𝜕𝜉𝜕𝜂
− 𝑓′′ 𝜕𝑓

𝜕𝜉
] .       (15)

                         
1

𝑝𝑟
𝜃′′ +

𝑚+1

2
𝑓𝜃′ =

𝑚−1

2
 𝜉[𝜃′ 𝜕𝑓

𝜕𝜉
− 𝑓′

𝜕𝜃

𝜕𝜉
] .           (16)

   

With boundary conditions: 

 

𝑓(𝜉, 0) = 0, 𝑓′(𝜉, 0) = 0, 𝑓′(𝜉, ∞) = 1, 𝜃(𝜉, 0) = 1, 𝜃(𝜉, 0) = 0,         (17) 

      

where ‘des’ on the functions denotes the differentiation with respect to  𝜂 and 

  

𝐴 =
1

𝜇𝛽𝑐
, 𝐵 =

1

2𝜗𝑐2 , 𝑝𝑟 =
𝜗

𝛼
. 
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4. Local Non-similarity method 

 
Sparrow et al. (1970, 1971) introduced the so-called method of local non-similarity.  

Differentiating the original governing equations with respect to a variable ξ and 

considering the obtained equations as auxiliary equations combined with original equation. 

Then considering the variable ξ in this partial differential equation to be a constant so, we 

can reduce the system as a system of ordinary differential equation. 

 

Take 𝑔(𝜉, 𝜂) =
𝜕𝑓(𝜉,𝜂)

𝜕𝜉
, ℎ(𝜉, 𝜂) =

𝜕𝜃(𝜉,𝜂)

𝜕𝜉
 in equation (15) - (17) with boundary conditions.  

Equations are transformed as follows. 

 

(1 + 𝐴)𝑓′′′ − 𝐴𝐵𝜉
2(3𝑚−1)

1−𝑚 (𝑓′′)2𝑓′′′ + 𝑚(1 − (𝑓′)2) +
𝑚+1

2
𝑓𝑓′′  

 

                                                                        =
1−𝑚

2
𝜉[𝑓′𝑔′ − 𝑓′′𝑔].         (18) 

 
1

𝑝𝑟
𝜃′′ +

𝑚+1

2
𝑓𝜃′ =

𝑚−1

2
 𝜉[𝜃′𝑔 − 𝑓′ℎ].            (19) 

 

With boundary conditions: 

 

𝑓(𝜉, 0) = 0, 𝑓′(𝜉, 0) = 0, 𝑓′(𝜉, ∞) = 1, 𝜃(𝜉, 0) = 1, 𝜃(𝜉, 0) = 0.         (20) 

 

Differentiating equations (18)-(19) with boundary conditions with respect to 𝜉 we get 

 

(1 + 𝐴)𝑔′′′ − 𝐴𝐵𝜉
2(3𝑚−1)

1−𝑚 (𝑓′′)2𝑔′′′ − 𝐴𝐵
2(3𝑚−1)

1−𝑚
𝜉

2(3𝑚−1)

1−𝑚
−1(𝑓′′)2𝑓′′′   

 

−2𝐴𝐵𝜉
2(3𝑚−1)

1−𝑚 𝑓′′𝑓′′′𝑔′′ − 2𝑚𝑓′𝑔′ +
𝑚+1

2
𝑔𝑓′′ +

𝑚+1

2
𝑓𝑔′′ +

𝑚−1

2
[𝑓′𝑔′ − 𝑓′′𝑔]  

 

                                                                                   =  
𝑚−1

2
𝜉

𝜕

𝜕𝜉
[−𝑓′𝑔′ + 𝑓′′𝑔].    (21) 

  
1

𝑝𝑟
ℎ′′ +

𝑚+1

2
𝑓ℎ′ +

𝑚+1

2
𝑔𝜃′ −

𝑚−1

2
 [𝜃′𝑔 − 𝑓′ℎ] =

𝑚−1

2
 𝜉

𝜕

𝜕𝜉
[𝜃′𝑔 − 𝑓′ℎ],             (22) 

 

with 

 

 𝑓(𝜉, 0) = 0, 𝑓′(𝜉, 0) = 0, 𝑓′(𝜉, ∞) = 1, 𝜃(𝜉, 0) = 1, 𝜃(𝜉, 0) = 0, 
 

𝑔(𝜉, 0) = 0, 𝑔′(𝜉, 0) = 0, 𝑔′(𝜉, ∞) = 0, ℎ(𝜉, 0) = 0, ℎ(𝜉, ∞) = 0.         (23) 

 

Equations (21) - (23) are auxiliary equations to the governing equations (18) - (20) with 

their boundary conditions in equation (23). Now, deleting the terms from the auxiliary 

equations (21) - (22) containing the differentiation with respect to stream-wise co-ordinate 

from the right- hand side of equations as discussed by Sparrow and Yu (1971). With the 

above assumption, the momentum and energy boundary-layer equations (18)-(19) and its 

auxiliary equations (21) - (22) could be brought together with their boundary conditions as 
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(1 + 𝐴)𝑓′′′ − 𝐴𝐵𝜉
2(3𝑚−1)

1−𝑚 (𝑓′′)2𝑓′′′ + 𝑚(1 − (𝑓′)2) +
𝑚+1

2
𝑓𝑓′′  

 

                                                                     −
1−𝑚

2
𝜉[𝑓′𝑔′ − 𝑓′′𝑔] = 0.                   (24) 

 

      (1 + 𝐴)𝑔′′′ − 𝐴𝐵𝜉
2(3𝑚−1)

1−𝑚 (𝑓′′)2𝑔′′′ − 𝐴𝐵
2(3𝑚−1)

1−𝑚
𝜉

2(3𝑚−1)

1−𝑚
−1(𝑓′′)2𝑓′′′  − 2𝑚𝑓′𝑔′   

                   −2𝐴𝐵𝜉
2(3𝑚−1)

1−𝑚 𝑓′′𝑓′′′𝑔′′ +
𝑚+1

2
𝑔𝑓′′ +

𝑚+1

2
𝑓𝑔′′ +

𝑚−1

2
[𝑓′𝑔′ − 𝑓′′𝑔] = 0. (25) 

 
1

𝑝𝑟
𝜃′′ +

𝑚+1

2
𝑓𝜃′ −

𝑚−1

2
 𝜉[𝜃′𝑔 − 𝑓′ℎ]=0.                

(26) 

 
1

𝑝𝑟
ℎ′′ +

𝑚+1

2
𝑓ℎ′ +

𝑚+1

2
𝑔𝜃′ −

𝑚−1

2
 [𝜃′𝑔 − 𝑓′ℎ] = 0,                      

(27) 

 

with  

 

𝑓(𝜉, 0) = 0, 𝑓′(𝜉, 0) = 0, 𝑓′(𝜉, ∞) = 1, 𝜃(𝜉, 0) = 1, 𝜃(𝜉, 0) = 0,  
 

𝑔(𝜉, 0) = 0, 𝑔′(𝜉, 0) = 0, 𝑔′(𝜉, ∞) = 0, ℎ(𝜉, 0) = 0, ℎ(𝜉, ∞) = 0.            (28) 

   

By considering 𝜉 as a constant parameter, equations (24) to (27) may be treated as a 

system of ordinary differential equations. 

 

5. Result and Discussion 

 
The system of ordinary differential equations (24) to (27) with boundary conditions (28) 

are solved numerically using MATLAB bvp4c solver. Results are presented graphically 

for different physical parameters of the flow model. Figure 1 shows the effect of different 

Prandtl numbers on the temperature profile. Figure 1 indicates that the temperature profile 

move towards the boundary when Prandtl number is increased. As Physical aspect of 

Prandtl number this is attributed to the fact that a larger Prandtl number has a relatively 

lower thermal diffusivity causing a reduction in the thermal boundary layer thickness.  

 

Figure 2 indicates the effect of Powell-Eyring fluid parameter 𝐴 on temperature profile for 

𝑚 = 0 means on a flat plate. From observation of Figure 2 temperature 𝜃 enhances when 

Powell-Eyring fluid parameter 𝐴 is increased. The thermal boundary layer thickness is 

negligibly affected by varying fluid parameter 𝐵 at a wedge of 90 degree depicted from 

Figure 3. From the zoom area of Figure 3, we observed that as 𝐵 increases the thermal 

boundary layer thickness decreases.  
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Figure 1. Effect of fluid parameter A on temperature 

profile for B=0.1, pr =1, m=0, ξ =0.1 
Figure 2. Effect of Prandtl number on 

temperature profile for A=5, 

B=0.1, m=0, ξ =0.1 
  
   

 Figure 3. Effect of fluid parameter B on temperature profile 

for A=5, pr =1, m=1/3, ξ =0.1 
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The effects of the stream-wise location on the temperature profile are also shown in Figure 

4.  

 

Temperature profile enhances with increase of ξ. Effect of the free stream velocity power-

law index m on temperature profile is shown in Figure 5. As an increasing value of m 

thermal boundary layer thickness reduces. 

 

Figures 6 and 7 show the effects of the Powell-Eyring fluid parameters A and B, 

respectively, on the velocity profile. The velocity profiles decrease as A increases and 

increases as B increases. 

 

Figure 8 shows the velocity profile for different wedge angle. It is found that velocity 

increase with the increase of free stream velocity power law index m. 

 

The effects of the stream-wise location on the velocity profile are also shown in Figure 9.    

  

Figure 4. Effect of xi on temperature profile for 

A=1, B=0.1, pr =0.7, m=0 
 

Figure 5. Effect of parameter m on temperature 

profile A=5, B=1, pr =1, ξ =0.1 
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Figure 6. Effect of fluid parameter A on 

velocity profile for B=0.1, pr =1, 

m=0, ξ =0.1 

Figure 7.  Effect of fluid parameter B on 

velocity profile for A=5, pr =1, 

m=1/3, ξ =0.1 
 

 

Figure 8. Effect of fluid parameter m on 

velocity profile for A=5, B=0.1, 

pr =1, ξ =0.1 

Figure 9. Effect of fluid parameter xi on 

velocity profile for A=1, B=0.1, pr 

=0.7, m=0 
 

6. Conclusions 

 
In this paper, we examined the influence of different physical parameters on Powell-

Eyring fluid flow. We investigated the Powell-Eyring model by considering free-stream 

velocity in power-law form and found the non-similarity solution using the local non-

similarity method at other than the 90-degree wedge. Transformed governing equations 

are considered as ordinary differential equations and solved graphically using MATLAB 

bvp4c solver. We had compared temperature and velocity profile for different values of 

power-law index m that means at different body shape. We also observed the effect of 

stream-wise co-ordinate on velocity and temperature profile. 
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