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Abstract

Our objective is to obtain the non-similarity solution of non-Newtonian fluid for Powell-
Eyring model by a local non-similarity method. Here, free stream velocity is considered in
power-law form (U = x™). The governing equations are transformed using non-similar
transformations and derived equations are treated as ordinary differential equations. Non-
similar solutions are obtained for different values of power-law index m and stream-wise
location &. Influence of various parameters on velocity and temperature field are presented
graphically using MATLAB bvp4c solver.
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Nomenclature:

A, B - Constants

U ,v - Velocity component in X and Y directions respectively
x,y - Cartesian co-ordinates

p - The fluid density

« - The thermal diffusivity

I - kinematic viscosity

T - Temperature of fluid

Y - Stream function

&, m - Transformed variables

u - Dynamic viscosity

B, C - Powell-Eyring fluid parameter
U - Free stream velocity

m - Power law index

T,, - Surface temperature

T, - Ambient temperature

f, g, h,6 - Dependent functions

pr - Prandtl number

Ty - Stress component

1. Introduction

The concept of similarity solution depends on invariance postulate. If any of the governing
equations or boundary conditions are not followed by this invariance postulate, in such
circumstances similarity solution does not exist, hence one can depend on the non-
similarity solution.

Hansen and Na (1968) found a similarity solution of non-Newtonian Powell-Eyring fluid
model using a linear group of transformations and observed the possibility of similarity
solution only for the flow over a 90-degree wedge. Na (1994) analyzed the two-
dimensional Reiner-Philippoff, non-Newtonian fluid model. He found a similarity solution
for a boundary layer flow over a 90-degree wedge and non-similarity solution on boundary
layer flow over any body shape using the finite difference method. Patil et al. (2015) also
conclude that the similarity solution exists only for the flow past a 90-degree wedge for
non-Newtonian fluid model characterized by composite and implicit types of stress-strain
relationship. He analyzed the three-dimensional Reiner-Philippoff model and established
non-similarity on flow past any body shape other than a 90-degree wedge. The similarity
solution is found recently by Shukla et al. (2017) for forced convection flow of Powell-
Eyring and Prandtl-Eyring model and had taken free stream velocity U in power-law form
with power 1/3 for boundary layer flow over a 90-degree wedge. The similarity solution
exists only for the value of m = 1/3 when free stream velocity is in power-law form
U=x".

Stream-wise variations in the free-stream velocity, surface mass transfer, transverse
curvature, stream-wise variations in surface temperature, surface heat flux, volume heat
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generation etc... are causes which give non-similarity in a boundary layer (Sparrow et al.
1970, Sparrow and Yu 1971, Massoudi 2001).

Sparrow et al. (1970) had introduced the method of local non-similarity and applied it on
different non-similar velocity boundary value problems. Thermal boundary value
problems are analyzed using the local non-similarity method by Sparrow and Yu. (1971).
Many researchers like to apply the local non-similarity method because of simplicity in
concept and computation. There are two attractive features of the method one is local
solutions independent of upstream information and second is obtained equations can be
treated as ordinary differential equations as in similarity solutions.

Non-Newtonian power law model is investigated by Massoudi (2001). He discussed
similarity, local-similarity, and local non-similarity method by considering the free stream
velocity, the injection velocity, and the surface temperature as varying functions of the
streamwise coordinate x for the flow over a porous wedge. Isomen et al. (2015) done
similarity and non-similarity analysis to study the effect of buoyancy force on velocity and
temperature for the steady incompressible flow of fluid over an impermeable wedge and
obtained ordinary equations are solved using Runge-Kutta Gill with Shooting method.

Governing equations of Casson non-Newtonian fluid flow are converted in non-similar
form by Subba Rao et al. (2016) and employed Keller-Box implicit difference method to
solve the non-similar equations. The MHD Powell-Eyring fluid flow over a vertical plate
in a porous medium is examined numerically by applying the implicit finite difference
Keller-Box method by Readdy et al. (2018). Mureithi and Mason (2010) obtained non-
similarity solution for a forced—free convection boundary layer flow over a horizontal
plate with power-law variations in the freestream velocity and wall temperature using
local non-similarity method. Chiam (1993) demonstrated the efficiency of local non-
similarity method using the two-equation model and three-equation model by analysing
the MHD boundary layer flow over continuously moving flat plate.

Yian & Amin (2002) had applied the local non-similarity method to study laminar free
convection boundary layer flow over a vertical flat plate with an exponential variation in
surface temperature. Effect of different physical parameters over forced convective
Hiemenz flow in porous media is studied by Isomen et al. (2015). By applying the local
non-similarity method. Akgul and Pakdemirli (2012) had obtained the local non-similarity
solution for the flow of an electrically conducting fluid over a Microcantilever-Based
Sensor by considering mass transfer and chemical reaction at the sensor surface.

Abdullah et al. (2018) studied unsteady mixed convection in the stagnation flow on a
heated vertical surface embedded in a Nano fluid-saturated porous medium. The
governing system of nonlinear partial differential equations is transformed using the
Sparrow-Quack-Boerner local non-similarity method and the obtained system is
considered as a system of ordinary differential equations.

Since more work is still needed to understand the effect of various parameters involving
different non-Newtonian models and the formulation of accurate method of analysis for
any body shape of engineering significance. So, from the literature review, we got
inspiration to find the non-similar solution and examined effects of the different physical
parameter on velocity and temperature profile for two dimensional steady incompressible,
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laminar flow over a flat plate for Non-Newtonian fluid model namely Powell-Eyring fluid
model by applying local non-similarity method. The aim of this paper is to study the
boundary layer flow whose non-similarity is caused by variations in the freestream
velocity by considering shapes other than a 90-degree wedge by entering the expression of
the free stream velocity into a power law form x™.

2. Governing Equation

The basic equations of continuity, momentum, and energy of two-dimensional, steady,
incompressible, laminar flow over a vertical flat plate with a Cartesian co-ordinate system
in usual notations are (Shukla et al. (March-2017), MJIS):

du  ov

4 =

ax 9y 0. (1)
ou du au 10
—_—ty — = —_— e —

Usxvs dx pay( yx) @)
oT , aT 2T
= = g —

Uas™v dy @ ay?’ )

y=0u=0v=0,T=T,. 4)
y=oo:u=Ux),T =T,. (5)

Here, wu,v are velocity components in the x,y directions respectively.
T - The fluid temperature, p - The fluid density, a - the thermal diffusivity, T, - Surface
temperature, T, - ambient temperature, U - free stream velocity.

We define stream function ¥ (x, y), to reduce one dependent variable which satisfies
equation (1).

_ L, __ (6)

u=—, v .
dy x

Equations (1) to (5) transform as follows:

oy 9% oo Yy L dU | 10

dy dydx  dx dy? u dx T p oy (Tyx)- (7)
oY aT Ay aT o%T

owor owor _ O°T 8)
dy 0x  9x Oy ay?

With boundary conditions:

0 0
y=0:5, =5 =0T =T, ©)
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y = oo %=U(x), T = To. (10)

Mathematically, Powell-Eyring model is written as

10u

H + (55 (11)

where u is dynamic viscosity,  and C are material constants of Powell-Eyring fluid.

10u, _10u 1 ,10u

1 lou
sinh™ (C 6y)

23 £ r|1au|

C 3y (C 3y 1. (12)

Substituting values from equations (11) and (12) in equation (7) we get,

o ooty _ AU 1 1Ny 1 9%\, 0%
0y dydx  9x 0y2 _de+p(’u+ﬁ(;) (ayz) ay3’ (13)

dy3  2ppcC3
3. Transformation of the Governing equation
Now, defining new variables ¢ and n (Akgul and Pakdemirli (2012)).

1-m VU T— Tc><>

f=x2 =22 fEn) ==, U=x"0(1) =

(14)

where variable 7 is chosen as a similarity variable if the boundary layer is similar which
depends on variable x and y. Variable ¢ depends only on a variable x.

Applying above transformations we had converted equations (7) to (13) in the following
form.

(L4 A)F" = ABE o (F72F" 4+ m(1— (f)2) + "2

—-m , 0%f i
=€l oo = 56 - (15)
0" TR0 = T g[8 T~ 2. (16)
With boundary conditions:
f(§,0)=0,f(§,0)=0,f'(§,0) =1,60(,0) =1,6(5,0) =0, (17)

where ‘des’ on the functions denotes the differentiation with respect to n and

]l

upc B = Zﬁcz'pr -
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4. Local Non-similarity method

Sparrow et al. (1970, 1971) introduced the so-called method of local non-similarity.
Differentiating the original governing equations with respect to a variable & and
considering the obtained equations as auxiliary equations combined with original equation.
Then considering the variable & in this partial differential equation to be a constant so, we
can reduce the system as a system of ordinary differential equation.

Take g(¢é,n) = af(fn) yh(é,n) = ae(i,") in equation (15) - (17) with boundary conditions.
Equations are transformed as follows.

2(3m-1)

(L+A)f" = ABE = (f")*f" +m(1— (f)?) + 7~ ff

= =¢lf'g' — fg). (18)
0" + T f0 =T E[0'g — fh]. (19)
With boundary conditions:
f(,0)=0,f'(50)=0,f(5,0) =1,0(¢0) =1,6(5,0) =0. (20)

Differentiating equations (18)-(19) with boundary conditions with respect to ¢ we get

2(3m 1) 2(3m-1)

§ 1

nr M 1IN2 111 -1 1IN\2 111
(1+A)g" —ABE 1-m (f")°g" — AB F*f

2(3m-1)

_ZABE 1-m fllflll n melgl

m+1 m+1 m

14 14 -1 1! 1
+——9f"+—-f9"+—f"9' - f"4gl

1

= T2 [f'g + f gl ()

= o’

Loy pmtdepr M g
prh+2fh+2g9 >

g-fM =" 65109~ f'R, ()
with
f(6,0)=0,f'(£,0) = 0,f'(,0) = 1,6(5,0) = 1,6(£,0) =0,

9(§,0) =0,9'(§,0) = 0,9'(§,0) = 0,h(§,0) = 0,h(§, ) = 0. (23)

Equations (21) - (23) are auxiliary equations to the governing equations (18) - (20) with
their boundary conditions in equation (23). Now, deleting the terms from the auxiliary
equations (21) - (22) containing the differentiation with respect to stream-wise co-ordinate
from the right- hand side of equations as discussed by Sparrow and Yu (1971). With the
above assumption, the momentum and energy boundary-layer equations (18)-(19) and its
auxiliary equations (21) - (22) could be brought together with their boundary conditions as
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2(3m-1)

L+ A)f" = ABE = (f")2f" +m(1— (f)2) + = ff"

~=¢lf'g' —f"gl=o. (24)

2(3m-1) 2(3m-1)

{_- T—m —1(fll)2flll _ melgl
m ncrr n 144 124 - ! !/ n
—24BE -m fUf"g" + T gf " + T fg" + T (f'g' — fg] = 0. (25)

2(3m-1)
(1+4)g" - ABE =m (f")?g"" — AB

1-m

1 ,, , m+l ; m-1 / 11—
(26)
1, m+1 ’ m+1 ’ m-—1 ’ ’ _
Eh +Tfh +Tg9 —T[Hg—fh]—O,
(27)

with

f(§,0)=0,f'(5,0) = 0,f'(§,0) = 1,6(£,0) = 1,6(5,0) = 0,
9(§,0) =0,9'(§,0) = 0,9'(§,0) = 0,h(,0) = 0,h(§,0) = 0. (28)

By considering & as a constant parameter, equations (24) to (27) may be treated as a
system of ordinary differential equations.

5. Result and Discussion

The system of ordinary differential equations (24) to (27) with boundary conditions (28)
are solved numerically using MATLAB bvp4c solver. Results are presented graphically
for different physical parameters of the flow model. Figure 1 shows the effect of different
Prandtl numbers on the temperature profile. Figure 1 indicates that the temperature profile
move towards the boundary when Prandtl number is increased. As Physical aspect of
Prandtl number this is attributed to the fact that a larger Prandtl number has a relatively
lower thermal diffusivity causing a reduction in the thermal boundary layer thickness.

Figure 2 indicates the effect of Powell-Eyring fluid parameter A on temperature profile for
m = 0 means on a flat plate. From observation of Figure 2 temperature 8 enhances when
Powell-Eyring fluid parameter A is increased. The thermal boundary layer thickness is
negligibly affected by varying fluid parameter B at a wedge of 90 degree depicted from
Figure 3. From the zoom area of Figure 3, we observed that as B increases the thermal
boundary layer thickness decreases.
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The effects of the stream-wise location on the temperature profile are also shown in Figure
4.

Temperature profile enhances with increase of &. Effect of the free stream velocity power-
law index m on temperature profile is shown in Figure 5. As an increasing value of m
thermal boundary layer thickness reduces.

Figures 6 and 7 show the effects of the Powell-Eyring fluid parameters A and B,
respectively, on the velocity profile. The velocity profiles decrease as A increases and

increases as B increases.

Figure 8 shows the velocity profile for different wedge angle. It is found that velocity
increase with the increase of free stream velocity power law index m.

The effects of the stream-wise location on the velocity profile are also shown in Figure 9.
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A=1, B=0.1, pr =0.7, m=0 profile A=5, B=1, pr =1, § =0.1
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6. Conclusions

In this paper, we examined the influence of different physical parameters on Powell-
Eyring fluid flow. We investigated the Powell-Eyring model by considering free-stream
velocity in power-law form and found the non-similarity solution using the local non-
similarity method at other than the 90-degree wedge. Transformed governing equations
are considered as ordinary differential equations and solved graphically using MATLAB
bvp4c solver. We had compared temperature and velocity profile for different values of
power-law index m that means at different body shape. We also observed the effect of
stream-wise co-ordinate on velocity and temperature profile.
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