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Abstract

In this paper, we investigate a system of coupled Kirchhoff-type equations with degenerate damp-
ing terms. We prove a nonexistence of global solutions with positive initial energy. Later, we give
some estimates for lower bound of the blow up time.
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1. Introduction
In this paper, we study the following initial-boundary value problem for the coupled nonlinear

Kirchhoff-type equations with degenerate damping and source terms

wee = M(IVul® + 1V0*) Au+ (Jul* + o] ) [ueP ™ we = fi (u,0),  (2,8) € 2 x (0,T),

o = MOITul? + 1961 A0+ (Jol” + ufe) [0 v = fo (wv),  (@.0) € 2% (0,7,

u(z,t) =v(x,t) =0, (z,t) € 9Q x (0,T), @)
u(z,0) =ug (), wt (z,0) = uy (x), x €,

v (z,0) = vg (), vt (2,0) = vy (), x €,

where (2 is a bounded domain with smooth boundary 92 in R" (n = 1,2,3); p,q > 1, k,1,0,0 >
0; fi(-,.) : R* — R are given functions to be specified later. M(s) is a locally Lipschitz
function.
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In the case of M (s) = 1, Rammaha and Sakuntasathien (2010) considered the following system
ugy — A+ (|ul” + ]v|l) lug|P " u = fi (u,0),

_ 2
v — Av+ (o]’ + |u|g> 0|7 oy = fo (u,v).

They studied the global well posedness of the solution of the problem (2). Benaissa et al. (2012)
and Zennir (2013) considered the same problem treated in Rammaha and Sakuntasathien (2010),
and he studied the blow up and growth properties. Also, some authors studied the system with
degenerate damping terms (see Pigkin (2015a), Zennir (2014) and Wu (2013)).

Ye (2016) considered the following system
{W¢—ANHVME+¢WNW?AU+¢UN’iw==ﬁ(wv%
v — M([[Vul]” + [[Vul) Av + |ve [ v = fa (u,0),
with initial-boundary conditions. He proved the global existence and the energy decay results.

Narasimha (1968) introduced the model (3) for studying the nonlinear vibrations of an elasting
string.

3)

Motivated by the above studies, in this paper we proved a blow up of solutions for (1). However,
when both Kirchhoff-type terms (M (s)) and degenerate damping terms are present, then the anal-
ysis of their interaction is not easy.

This paper is organized as follows. In Section 2, we give some lemmas, assumptions and the local
existence theorem. In Section 3, we state and prove a blow up of solutions. In Section 4, some
estimates for lower bound of the blow up time is given.

2. Preliminaries

In this section, we shall give some lemmas and assumptions which will be used throughout this
paper. Let ||.|| and [|. ||, denote the usual L? (Q2) norm and L (€2) norm, respectively.

To state and prove our main result, let’s assume that

(A1) M(s) is a nonnegative C'! function for s > 0 satisfying
M(s)=1+5s", v> 1

(A2) For the nonlinear term, we assume

p,qg =1, ifn=12,
1<pqg<5h, ifn=3.

The nonlinear source terms f; (u,v) and f; (u,v) satisfy
fi(u,v) =alu+of(
fo(u,v) =alu+v|

w+ o) +blul ulo[ ",

r+42

20D (4 4 0) + bl v u
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where a, b > 0 are constants and r satisfies

—1 ifn=1,2
S
One can easily verify that
ufy (u,v) +vfo (u,v) =2 (r +2) F (u,v), V(u,v) € R? Q)
where
F (u,v) = ﬁ [a 4 02 4 20w (6)

For the sake of simplicity, we take a = b = 1 throughout this paper. We define the energy function
as follows

1 1
E@)=§(WME+HWW)+§WVMF+HVﬂﬁ
1 2 2
+——(||Vu||” + || Vv er1—/F w,v) dz. (7)
S Il + 19l = [ P

Lemma 2.1. (Messaoudi and Houari (2010))

Let ¢y and c; positive constants. Then, we have following inequality

c <|u\2“+2) + |v12<r+2>) <2(r+2)F(u,0) < e (\u|2<7"+2> + |v|2(T+2)> . )

Lemma 2.2. (Sobolev-Poincare inequality) (Adams and Fournier (2003))

Let2 < ¢g < oo (n=1,2)or2 < g < 2n/(n—2) (n > 3). Then, there exists a constant
C, = C. (2, q) such that

[ull, < Cu|[Vul| foru € H; (Q).

Lemma 2.3. (Messaoudi (2001))

Assume that

n—1
<2
pP<2—s,

holds. Then, there exists a positive constant C' > 1 depending on €2 only such that

Jully < € (Il + lul?)

n >3,

forany,u € Hj (Q),2<s<p.

Lemma 2.4.

Let E (t) be a energy functional of problem (1). Then we have

d _ k l p+1 / 0 0 q+1
GE O == [ (bt 1ol) o= [ (jol” + ful?) " d ©
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Proof:

Multiplying the first equation in (1) by u; and the second one by v, integrating over €). Then, we

obtain
t
[ B == [ [+ 100) ™+ (1l + ) el
0

t
E(t)—E(O):—/O /Q<<|u|k+|v|l> |u7|p+1+<|v|9+|u|g> |UT|q+1) dwdr fort > 0. (10)

The local existence and uniqueness of solutions for the problem (1) which can be established by
combining arguments of Georgiev and Todorova (1994), Ono (1997), Piskin (2015b), Rammaha
and Sakuntasathien (2010).

Theorem 2.5. (Local existence)

Suppose that (A1), (A2) and (4) hold. Let ug,vo € H} () N L™ (Q) and uy,v; € L? () are
given. Then, problem (1) has a unique solution satisfying

u,v e C([0,T); Hy () N LT (Q)),
u € C ([0,7); L* () N LPT (2 x [0,7))) ,

ve € C([0,7); L () N L (@ x [0,T)))

for some T" > 0.

3. Blow up of solutions

In this section, we state and prove the blow up results. Firstly, we give the following two lemmas.

Lemma 3.1. (Houari (2010))

Assume that (4) holds. Then, there exists > 0 such that for any (u,v) € H} () x H] (Q) the
inequality

2(r+2) r r+2
-+ vl ss) + 2 uo s < (IVul® + Vo)), (11)
holds.
We introduce the following:
1 42 1 1
B=nm, gy =B, B =(=-———]ad? 12
77 + ) Oél + 9 1 (2 2<T+2)) al) ( )

where 7 is the optimal constant in (11).
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Lemma 3.2.

Suppose that assumptions (A1), (A2) and (4) hold. Let (u, v) be a solution of (1). Moreover, assume
that £ (0) < E; and

(IVuol” + [[Vuol?)* > au. (13)
Then there exists a constant cv; > v such that
2 2 1 2 2\y41 :
[Vul” + Vol + m(IIVUII + [[Vol[)” > ay, fort >0, (14)
(Il + 03 + 2wl 33) ™ = Bag, fort > 0, (15)

forallt € [0,7).

Proof:

Our techniques of proof follows carefully the steps in Vitillaro (1999), with necessary modifica-
tions imposed by the nature of our problem. We first note that by (7), (11) and the definition of B,
we have
B (1) > (vl + Vo) + 5
— 2 2(v+1)
1

2(y+1)

(IVull? + [ Vol — / F (u,v) dz

1
= S(IVull* + [[Vo*) + (IVul® + (V7?7

2(r+2) r+2
2(r + 2) (llw +vllyg19) + 2 [Juvll12)

1
S(IVull” +[[vo]*) +

1
2(r+2)

1
S(IVull +[[vo]*) +

1
2(y+1)

v

(IVul® + [[Vo*) 7!

([Vul® + Vo))

1
2(v+1)

v

(IVull* + [|Vo]*)7*!

B2(r+2)
C2(r+2)
1 ) BQ(T+2)

—2Y Tt

(IVal® + [ Vo]* + (IVul® + V7] ?)7+t)+2

(v+1)

2 = G(a), (16)

where

a=(|[Vul® +Vo|* + (IVall® + [[Vol*) )2,

1
(v+1)
It is not difficult to verify that G is increasing for 0 < o < «, decreasing for a > oy, G(a) — —o0
as o« — 0o, and

1 B2(r+2)
—O&% N a%(r-ﬁ-?)
2" T 2 + 2)
where o is given in (12). Since F(0) < E}, there exists ap > « such that G(ay) = E(0).

G(Oél) = = Fj, (17)
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Set ag = (|| Vuo||* + |Vool|” + =2 7+1 (HVuOH + Vo *)+1) /2. Then, by (16) we get G(ag) <
E(0) = G(a2), which implies that «y > .

Now, to established (14), we suppose by contradiction that

(IVulto)lI* + [IVo(to)I* + (IVu(to)lI* + [IVo(to) *) ) < as,

1
(v+1)

for some ?; > 0. By the continuity of

(IVuto)ll” + Vo to)|” + (IVuto)ll” + IV oto) 7)) 2,

1
(v+1)

we can obtain that,

(IValto)lI* + [IVo(to)I* + (IVu(to)lI* + [IVo(to)*) ) > an.

1
(v+1)
Again, the use of (16) leads to

E(to) > G([[Vulto)I” + [[Vu(to) |* + (IVuto)ll” + [Voto) 7))

> G(Oég)
= E(0).
This is imposible since F(t) < E(0) for all t € [0,7"). Hence, (14) is established.

1
(v+1)

To prove (15), we make use of (7) to get

1
SUIVull” + Vol + (IVul® + [ V7o*) 7+

2(v+1)
r+2)

2 r+2
>mu+mawm+2mwm;»

< E(0) + 2(r+2

Consequently, (14) yields

1 2(r+2)
(flu + 0|3

r42
2(r + 2) 2(r42) +2||“U|| )

r+2

(IVul® + Vo +7—(||VUI| + Vo)) — E(0)

_ o202 (18)

Therefore, (18) and (12) yield the desired result. This completes the proof. n

Theorem 3.3.
Suppose that (A1), (A2), (4) hold and
2(r+2)>max{2y+2, k+p+1,l+p+1,0+q+1, o+qg+1}.
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Assume further that
(IVuol® + Vool *)* > a1, E(0) < Ey.
Then, any the solution of (1) can not exist for all time.

Proof:

We set
H(t)=FE, —E(t).

By using (7) and (19), we have

1
0<HO)<H{E)=E~3 (HutH +loell®) = SUVull® + 1Vol)
1
+

2(vy+1)

From (18) and (8), we have

1
By =5 (Hutll +loel?) = 5 (IVull® + 1vo])
1

——(||Vu||” + VUQVH—%/Fu,v dx
s 9l + [l + [ PG

L, C1 2(r-+2) 2(r-+2)
< Ep - Sl 20r+2) (HUHQ(TH) + [[vll5¢42 )

1 2 C1 ( (r+2) 2(r+2)
IERRNIES Jullagizy + Wiz
(r+2) 2(r+2)
S oo 2(7~_|_2) (” ”2 r+2) + || ||2 r+2>

By combining (20) and (21), we have

2(r+42 2(r+2
0< H () < H 1) < 5o (BT + B

U(t)y=H"(t) +¢ (/Q upudx + /Qvtvdx) :

where ¢ small to be chosen later and

We then define

r+1 2r+3—(k+p) 2r+3—(l+p)
2(r+2) 2p(r+2) 7 2p(r+2)
2r+3—(0o+q) 2r+3—(0+4q)

2¢(r+2) 7 2q(r+2) }

O<a§min{

s (Il + o)+ / F (u,v) do.

19)

(20)

1)

(22)

(23)

(24)
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A direct differentiation of (23) gives

\I/’(t):(l—a)H_”(t)H'(t)+€(/Q|ut|2dx—|—/g|vt|2dx)
+e (/Q uttudas+/ﬂvttvdx>

=(1—o)H 7 () H' (t) + e(lJudll”* + [|ue]|")

—e(IVal® + [Voll*) = (IVull® + [ Vol*) ™+ + 2¢(r + 2) / F(u,v)dx
Q

—€ (/ u <]u|k + ]v|l> g |ug|P da + / v (\v\g + ]u|9> vy |71 d:c> . (25
Q Q

From the definition of H (¢), we obtain

—([Vul® + | Vol*)*!
=2y V) H () —2(v+ 1) By + (v + 1) (sl + [Je]?)

1) (Va4 [Vol?) — 2 (7 + 1)/§2F(u,v) dz. 26)

Inserting (26) into (25), we get

U (t)=(1—0)H @) H (t)+e(y+2) ([Jull” + [lve]*)
+ey (IVull? + IVo]?) + 28 (v + 1) H (t) — 2e (v + 1) B,

7+1 2(r+2) 42
el = Wl + vl 15 + 2 full} )

—€ (/ u (]u\k + ]v!l) g |ug|P d + / v (\v\g + ]u\9> vy || 7! dx> :
Q Q

Then, using (15), we have
V(1) > (1—0) H7 (t) H' (t) + £ (v +2) ([lwl* + [|ve]1*)
+ey (IIVall* + Vo)
+2(y + 1) eH (1) + & (Ju + vll30 5 + 2 [luv][13)

—c (/ U (\u!k + |v| ) Uy |ut\p71 dx + / v <]v]0 + \u!g) vy |vt]q71 d:zc) . (27
Q Q

where ¢ = 1 — 255 — 2 (v + 1) Ey(Bay) 202 > 0, since ap > B~ . In order to estimate the
last two terms in (27).

Thanks to the following Young’s inequality,

Skxk 5ty

XY <
St
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where X, Y > 0, 6 > 0, k,l € R" such that % + % = 1. Consequently, applying the above
inequality we find

p+1 —

1
7l +

p+17

1
/uut lue [P dx <
Q
and therefore,
p+1

_ )
/ <|u|k + |v|l> wug |ug” Vde < p1+ . / (]u|k + \v]l> |u|erl dx
Q Q

pt1
6 P
2 [ (b o) ! do
p+1 Jgo

In the same way, we conclude that

/vvt v | Ydx <
Q
q+1

L
Lo (1l + ful?) e o e < 2 /(\v[6—|—|u]g> 0] da
Q q+1Jq

g+1
5 q
L2 [ (ol Jul?) o da,
q+1 Jo

where §1, - are constants depending on the time ¢ and specified later. Therefore, (27) becomes
V()2 (1—o)H () H (t) +e (v +2) (luel® + lloel”)
ey (IVull + [V0]) + 22 (7 + 1) H (8) + e (Ilu+ 0l3053) + 2wl 33)

q+1
q+1
q+1°

7 lIv] R
a1 T

and therefore,

7+2
+1
5 ! ’

5 P
e AR L s N (N I

_atl

—&

5Q+1

2 6 0 q+1 q52q 0 0 g+1
€ v —l—u)v dr — ¢ /(v +u)v dx. 28
S [ (1ol 1) 1o o (el ) 28)

Therefore, by taking d; and d- so that

where kq, ko > 0 are specified later, we get
V() > (1= o) = Ke)H 7 (t) H' (1) + & (v +2) ([ful|* + Hvt||2)
ey (IVull® + [Voll?) + 22 (v + 1) H (1) + = (03 + Iol5013)

(r+2)

ki PHP (t

e = U/ (1l + o) [u** da
p+1 Q

ko TH9 (t
—e2 = Y *) / (]v\e + ]u\9> \v|qul dx, (29)
q+1 Q
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kag

where K = g

Thanks to Young’s inequality, we obtain

/<|u|k+\v|l> |u|p“dxg/\u|’f+p+1dx+/\vyl [l dx
Q Q Q

< / |u|k+p+1 dz*’ﬁdﬂw Hptl g,
lf—i__il_l . ltﬂl /‘ ’l+p+1 dz
AR e L I 8
e i (30
Similarly
[ (1 el o1 de < ol + 2 e
T el G

Inserting (31) and (30) into (29), we conclude that
V' (8) > (1 —0) = Ke)H ™7 () H' () + & (v +2) (||wl* + Hvt||2)
ey (IVull + [90]%) + 26 (3 + ) H (1) + e ([ul3052 + [013073)

_€k;pHJp (t) H Hk+P+1 + ! 6LH; H Hl+p+1
p+ 1 k+p+1 l+ 4 1 l+p+1
p+1 el I4+p+1
+m51 ol
ky TH (1) O+atl | 4 S, etatl
—5q+—1 v ||0+q+1 m% \|U||g+q+1
qg+1 — ot+q+l
+m 2 || Vl|5igin | - (32)
Since
2(r+2)>max{2(y+ 1),k +p+1LIl+p+1,0+q+1,0+q+1},
we have
o k 1 20p(r 2 +k+p+1 20p(r+2) k 1
O (1) [l < O (Rl + ol el ) (33)

0 1 2 +2)+60+q+1 20q(r+2) 0 1
H7 (@) o5 < © (Il ™+l lellfess ) (34)
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l I4pt1
o ' HP(1) IIUIIHP+1

l+p+1" Ak 35)
0T (I Tl ol
[+p+1 0y 2(r+2) r+2)  WVli4pt1 ) >
and
Q otg+1 g1
—5 e Ho'q U oTq
e DR AN 1 fatee »
0 5”2 (H H20q (r+2)+ota+l | o H2crq (r+2) H Hg+q+1>
T o+q+1” 2r+2) 2(r+2) ot+q+1
By using (24) and the following algebraic inequality
1
z”§z+1§<1~|——)(z+a), Ve>0,0<v<1,a>0, (37)
a

we have, forall ¢ > 0,

20p(r+2)+k+p+1 2(r+2
lull5g7 ™7 <d(u a2

)+ H(0))
)
)

<d (lll 33 + H ), (38)
ol ot < (ol30 ) + H (1) (39)
where d =1 + H(O) Similarly
ey 2 et < (Jlull3 ) + H (@) (40)
el < a (el ) + B (1) (41)

Also, since
(a+b)*<C(a*+b"), a,b>0,
by Young’s inequality and using (24) and (37), we have

2 2) k4p+1 2(rd2) - (kipil) 2 2) k4p+1
o307 Nl ot < 10155 (o370 Jullsins))
2(r+2)
2(r+2) = (ktpt1) biptl
= |Q| 2(r+2) (||UH2 7‘+2 ||u‘ Z(T-_F:Q)))
+2)— 20p(r42)+ktp+1 20p(r+2)+k+p+1
<O ( ollypdy Tl A
2(r+2) 2(r+2)
< (I + Il “2)
Similarly
2 +2) 6 1 2(r+2 2(r+2
37 el et < ¢ (lull3 s + 1ol (43)

20p(r+2) l 1 2(r+2 2(r+2)
lall3 ol < ¢ (s + 1ol30Ts ) (44)
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and
ol et < ¢ (ol + i) (45)
Inserting (33)-(36) and (38)-(45) into (32), we have
V() > (1—0) = Ke) H (t) H' (t) + £ (v +2) (lwell” + [ve]l*)
+ey (IVul® + || Vo)

_ l l+p+l P + 1 _ ltp+1
2 1) = Ck" ([ 14+ ——0, —, "
+E{(7+) ! ( Tp+1t e )

_ 0 eta+1 q + 1 _ ota+1
—Ck, 14+ ———0, © —, H(t
? <+9+q+12 W ETTSE )} )

_ l Lept1 p+1 e
Ok P (14— R N S
+€{C ! (+l+p+11 +l+p+11 )

5 —Q LZJA _q +1 _% 2(r+2 2(r+2
—Cky? (1+ Q+q+152 + Q+q+162 + )} (Hulbgwi + Hv||2§r+2§) (46)

At this point, and for large values of k; and ky, we can find positive constats /; and K5 such that
(46) becomes

V(1) 2 (1 —0) = Ke) H7 (&) H' (1) + & (v +2) (lual|* + [Jui]|*)

2(r+2) r+2)
ey (IVull* + [Voll) + K0 H (8) + 2K (lul305) + [013073)

2 2 2 2 r+2) r+2)
>5<Hut|\ +lloell® + H (&) + [Vull® + [IVoll* + [full30 ) + [lv |!2,iz> 47

where § = min {e (v + 2),ev,eK;,eK,} and we pick € small enough so that (1 — o) — Ke > 0.
Consequently we have

W (t) >V (0) >0, Vt > 0. (48)

We now estimate W (t)i Applying Holder inequality, we obtain

/utudx—i-/vtvdx ’
Q Q

_1 _1 1 1
< luell = ul = + lvel == [0l =

< (el = Nl 3oy + 0™ 013 ) - 49)

Young’s inequality gives

1

/utudx+/vtvdx -
Q Q

where % + 1 57 =1 Wetake = 2(1 —0)togett = 2(1 o) 7 by (24). Therefore, (50) becomes

Cllusl| ™ + Hqu Cey ol ™7+ ol r+2) (50)

/utud:p+/vtvdx ’
Q Q

O (|l +|IUI|§,12 + ol +||v||5,fiz) (51)




954 E. Pigkin and F. Ekinci

By using Lemma 2.3, we obtain

/utuder/vtvda: ’
Q Q

Thus,

Ue (t) = [Hl" (t)+¢ (/gzutudx—i-/gzvtvdm)}lid

2 2 2(r+2 2(r+42 2 2
< O (Il + Il + H () + ll3y 23 + I0l3 13 + 19l + 190l?) . (53)

2 2 2(r+2 2(r+2 2 2
< Clludl®+ el + lullyr ) + ol + I Vull® + Vo)1) (52)

Combining (47) and (53) we arrive at
W (t) > (0 (1), (54)

where £ is a positive constant.
A simple integration of (54) over (0, t) yields

E 1
Vi-e (1) > 5 :
()—\y*z(o)_ﬁ

1—0o

which implies that the solution blows up in a finite time 7™, with

e 179 .
o0 (0)

4. Lower bounds for the blow up time

In this section, we discuss the lower bounds for the blow up time. Firstly, we give the following
lemma (see Peyravi (2017) and Pigkin (2017)).

Lemma 4.1.

There exist two positive ¢; and ¢, such that
| 1w o) de < ci(IVal? + Vol e,
Q

/ | fa(u, 0) P dz < oo (| V|| + [|[Vo]*) 2, (55)
Q
are satisfied.

Theorem 4.2.

Suppose that (A1), (4) hold and (ug, u1), (ve, v1) € (H(Q2) N L™(Q)) x L3(£2). Assume further
that 1 < p,q < 2r 4 1. Then, the finite blow-up time 7™ satisfies the following estimate

o(t) dr
< T
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where ¢(0) = [, F'(u(0),v(0))dx and the positive constants ¢; and ¢, are specified in (55).

Proof:
Define

By differentiating ¢(¢) and using Young’s inequality, we get
(1) = / wFy 4+ v Fydx
Q

1 1
< —/(uf +v?)dw + = /(Ff + F?)dz. (56)
2 Ja 2 Ja

By the Lemma 4.1, we obtain

c1+ o

5Vl + Vo5, (57)

00 <5 [+ i+

Therefore, from (7) and Lemma 2.4, we have
/<u§ L o)de + ([l + | Vol?) < 2B() + 2 [ Flu,v)de
Q

<2E(0)+2 | F(u,v)dz. (58)

S—

Combining (57)-(58), we get

F(t) < B(t) + E(0) + 27 (e + ) [6(1) + EO)F
< B() + B(0) + 20D ey + ) [(0(6) + (E(0) ] (59)

Integrating (59) from 0 to ¢, we obtain

o(t) Ir
<T™.
/¢(0) (E(0) + 7) + 280D (¢ + ) ((E(0))2r+3 + 72r+3) =

Thus, we obtain the desired result. =

5. Conclusion

In this paper, we obtained a blow up and a lower bounds for the blow up time for a coupled
Kirchhoff-type equations with degenerate damping terms. This improves and extends many results
in the literature.
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