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Abstract

In this paper, we investigate a system of coupled Kirchhoff-type equations with degenerate damp-
ing terms. We prove a nonexistence of global solutions with positive initial energy. Later, we give
some estimates for lower bound of the blow up time.
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1. Introduction

In this paper, we study the following initial-boundary value problem for the coupled nonlinear
Kirchhoff-type equations with degenerate damping and source terms

utt −M(‖∇u‖2 + ‖∇v‖2)∆u +
(
|u|k + |v|l

)
|ut|p−1 ut = f1 (u, v) , (x, t) ∈ Ω× (0, T ) ,

vtt −M(‖∇u‖2 + ‖∇v‖2)∆v +
(
|v|θ + |u|%

)
|vt|q−1 vt = f2 (u, v) , (x, t) ∈ Ω× (0, T ) ,

u (x, t) = v (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,

(1)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn (n = 1, 2, 3) ; p, q ≥ 1, k, l, θ, % ≥
0; fi (. , .) : R2 −→ R are given functions to be specified later. M(s) is a locally Lipschitz
function.
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In the case of M (s) ≡ 1, Rammaha and Sakuntasathien (2010) considered the following systemutt −4u+
(
|u|k + |v|l

)
|ut|p−1 ut = f1 (u, v) ,

vtt −4v +
(
|v|θ + |u|%

)
|vt|q−1 vt = f2 (u, v) .

(2)

They studied the global well posedness of the solution of the problem (2). Benaissa et al. (2012)
and Zennir (2013) considered the same problem treated in Rammaha and Sakuntasathien (2010),
and he studied the blow up and growth properties. Also, some authors studied the system with
degenerate damping terms (see Pişkin (2015a), Zennir (2014) and Wu (2013)).

Ye (2016) considered the following system{
utt −M(‖∇u‖2 + ‖∇v‖2)∆u+ |ut|p−1 ut = f1 (u, v) ,

vtt −M(‖∇u‖2 + ‖∇v‖2)∆v + |vt|q−1 vt = f2 (u, v) ,
(3)

with initial-boundary conditions. He proved the global existence and the energy decay results.
Narasimha (1968) introduced the model (3) for studying the nonlinear vibrations of an elasting
string.

Motivated by the above studies, in this paper we proved a blow up of solutions for (1). However,
when both Kirchhoff-type terms (M(s)) and degenerate damping terms are present, then the anal-
ysis of their interaction is not easy.

This paper is organized as follows. In Section 2, we give some lemmas, assumptions and the local
existence theorem. In Section 3, we state and prove a blow up of solutions. In Section 4, some
estimates for lower bound of the blow up time is given.

2. Preliminaries

In this section, we shall give some lemmas and assumptions which will be used throughout this
paper. Let ‖.‖ and ‖.‖p denote the usual L2 (Ω) norm and Lp (Ω) norm, respectively.

To state and prove our main result, let’s assume that

(A1) M(s) is a nonnegative C1 function for s ≥ 0 satisfying

M (s) = 1 + sγ, γ > 1.

(A2) For the nonlinear term, we assume{
p, q ≥ 1, if n = 1, 2,

1 ≤ p, q ≤ 5, if n = 3.

The nonlinear source terms f1 (u, v) and f2 (u, v) satisfy

f1 (u, v) = a |u+ v|2(r+1) (u+ v) + b |u|r u |v|r+2 ,

f2 (u, v) = a |u+ v|2(r+1) (u+ v) + b |v|r v |u|r+2 ,
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where a, b > 0 are constants and r satisfies{
−1 < r, if n = 1, 2,

−1 < r ≤ 1, if n = 3.
(4)

One can easily verify that

uf1 (u, v) + vf2 (u, v) = 2 (r + 2)F (u, v) , ∀ (u, v) ∈ R2, (5)

where

F (u, v) =
1

2 (r + 2)

[
a |u+ v|2(r+2) + 2b |uv|r+2

]
. (6)

For the sake of simplicity, we take a = b = 1 throughout this paper. We define the energy function
as follows

E (t) =
1

2

(
‖ut‖2 + ‖vt‖2)+

1

2
(‖∇u‖2 + ‖∇v‖2)

+
1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1 −

∫
Ω

F (u, v) dx. (7)

Lemma 2.1. (Messaoudi and Houari (2010))

Let c0 and c1 positive constants. Then, we have following inequality

c0

(
|u|2(r+2) + |v|2(r+2)

)
≤ 2 (r + 2)F (u, v) ≤ c1

(
|u|2(r+2) + |v|2(r+2)

)
. (8)

Lemma 2.2. (Sobolev-Poincare inequality) (Adams and Fournier (2003))

Let 2 ≤ q < ∞ (n = 1, 2) or 2 ≤ q ≤ 2n/ (n− 2) (n ≥ 3). Then, there exists a constant
C∗ = C∗ (Ω, q) such that

‖u‖q ≤ C∗ ‖∇u‖ for u ∈ H1
0 (Ω) .

Lemma 2.3. (Messaoudi (2001))

Assume that

p ≤ 2
n− 1

n− 2
, n ≥ 3,

holds. Then, there exists a positive constant C > 1 depending on Ω only such that

‖u‖sp ≤ C
(
‖∇u‖2 + ‖u‖pp

)
,

for any, u ∈ H1
0 (Ω) , 2 ≤ s ≤ p.

Lemma 2.4.

Let E (t) be a energy functional of problem (1). Then we have

d

dt
E (t) = −

∫
Ω

(
|u|k + |v|l

)
|ut|p+1 dx−

∫
Ω

(
|v|θ + |u|%

)
|vt|q+1 dx. (9)
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Proof:

Multiplying the first equation in (1) by ut and the second one by vt, integrating over Ω. Then, we
obtain ∫ t

0

E ′(τ)dτ = −
∫ t

0

∫
Ω

(
(
|u|k + |v|l

)
|uτ |p+1 +

(
|v|θ + |u|%

)
|vτ |q+1)dxdτ,

E (t)− E (0) = −
∫ t

0

∫
Ω

((
|u|k + |v|l

)
|uτ |p+1 +

(
|v|θ + |u|%

)
|vτ |q+1

)
dxdτ for t ≥ 0. (10)

�

The local existence and uniqueness of solutions for the problem (1) which can be established by
combining arguments of Georgiev and Todorova (1994), Ono (1997), Pişkin (2015b), Rammaha
and Sakuntasathien (2010).

Theorem 2.5. (Local existence)

Suppose that (A1), (A2) and (4) hold. Let u0, v0 ∈ H1
0 (Ω) ∩ Lr+1 (Ω) and u1, v1 ∈ L2 (Ω) are

given. Then, problem (1) has a unique solution satisfying

u, v ∈ C
(
[0, T ) ;H1

0 (Ω) ∩ Lr+1 (Ω)
)
,

ut ∈ C
(
[0, T ) ;L2 (Ω) ∩ Lp+1 (Ω× [0, T ))

)
,

vt ∈ C
(
[0, T ) ;L2 (Ω) ∩ Lq+1 (Ω× [0, T ))

)
,

for some T > 0.

3. Blow up of solutions

In this section, we state and prove the blow up results. Firstly, we give the following two lemmas.

Lemma 3.1. (Houari (2010))

Assume that (4) holds. Then, there exists η > 0 such that for any (u, v) ∈ H1
0 (Ω) × H1

0 (Ω) the
inequality

‖u+ v‖2(r+2)
2(r+2) + 2 ‖uv‖r+2

r+2 ≤ η
(
‖∇u‖2 + ‖∇v‖2)r+2

, (11)

holds.

We introduce the following:

B = η
1

2(r+2) , α1 = B−
r+2

r+1 , E1 =

(
1

2
− 1

2 (r + 2)

)
α2

1, (12)

where η is the optimal constant in (11).



946 E. Pişkin and F. Ekinci

Lemma 3.2.

Suppose that assumptions (A1), (A2) and (4) hold. Let (u, v) be a solution of (1). Moreover, assume
that E (0) < E1 and (

‖∇u0‖2 + ‖∇v0‖2) 1

2 > α1. (13)

Then there exists a constant α2 > α1 such that(
‖∇u‖2 + ‖∇v‖2 +

1

γ + 1
(‖∇u‖2 + ‖∇v‖2)γ+1

) 1

2

> α2, for t > 0, (14)

(
‖u+ v‖2(r+2)

2(r+2) + 2 ‖uv‖r+2
r+2

) 1

2(r+2) ≥ Bα2, for t > 0, (15)

for all t ∈ [0, T ).

Proof:

Our techniques of proof follows carefully the steps in Vitillaro (1999), with necessary modifica-
tions imposed by the nature of our problem. We first note that by (7), (11) and the definition of B,
we have

E (t) ≥ 1

2
(‖∇u‖2 + ‖∇v‖2) +

1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1 −

∫
Ω

F (u, v) dx

=
1

2
(‖∇u‖2 + ‖∇v‖2) +

1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1

− 1

2(r + 2)
(‖u+ v‖2(r+2)

2(r+2) + 2 ‖uv‖r+2
r+2)

≥ 1

2
(‖∇u‖2 + ‖∇v‖2) +

1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1

− 1

2(r + 2)
η(‖∇u‖2 + ‖∇v‖2)r+2

≥ 1

2
(‖∇u‖2 + ‖∇v‖2) +

1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1

− B2(r+2)

2(r + 2)
(‖∇u‖2 + ‖∇v‖2 +

1

(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1)r+2

=
1

2
α2 − B2(r+2)

2(r + 2)
α2(r+2) = G(α), (16)

where

α = (‖∇u‖2 + ‖∇v‖2 +
1

(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1)1/2.

It is not difficult to verify thatG is increasing for 0 < α < α1, decreasing for α > α1, G(α)→ −∞
as α→∞ , and

G(α1) =
1

2
α2

1 −
B2(r+2)

2(r + 2)
α

2(r+2)
1 = E1, (17)

where α1 is given in (12). Since E(0) < E1, there exists α2 > α1 such that G(α2) = E(0).
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Set α0 = (‖∇u0‖2 + ‖∇v0‖2 + 1
(γ+1)

(‖∇u0‖2 + ‖∇v0‖2)γ+1)1/2. Then, by (16) we get G(α0) ≤
E(0) = G(α2), which implies that α0 ≥ α2.

Now, to established (14), we suppose by contradiction that

(‖∇u(t0)‖2 + ‖∇v(t0)‖2 +
1

(γ + 1)
(‖∇u(t0)‖2 + ‖∇v(t0)‖2)γ+1)1/2 < α2,

for some t0 > 0. By the continuity of

(‖∇u(t0)‖2 + ‖∇v(t0)‖2 +
1

(γ + 1)
(‖∇u(t0)‖2 + ‖∇v(t0)‖2)γ+1)1/2,

we can obtain that,

(‖∇u(t0)‖2 + ‖∇v(t0)‖2 +
1

(γ + 1)
(‖∇u(t0)‖2 + ‖∇v(t0)‖2)γ+1)1/2 > α1.

Again, the use of (16) leads to

E(t0) ≥ G(‖∇u(t0)‖2 + ‖∇v(t0)‖2 +
1

(γ + 1)
(‖∇u(t0)‖2 + ‖∇v(t0)‖2)γ+1)

> G(α2)

= E(0).

This is imposible since E(t) ≤ E(0) for all t ∈ [0, T ). Hence, (14) is established.

To prove (15), we make use of (7) to get
1

2
(‖∇u‖2 + ‖∇v‖2) +

1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1

≤ E(0) +
1

2(r + 2)
(‖u+ v‖2(r+2)

2(r+2) + 2 ‖uv‖r+2
r+2).

Consequently, (14) yields
1

2(r + 2)
(‖u+ v‖2(r+2)

2(r+2) + 2 ‖uv‖r+2
r+2)

≥ 1

2
(‖∇u‖2 + ‖∇v‖2 +

1

γ + 1
(‖∇u‖2 + ‖∇v‖2)γ+1)− E(0)

≥ 1

2
α2

2 − E(0)

≥ 1

2
α2

2 −G(α2)

=
B2(r+2)

2(r + 2)
α

2(r+2)
2 . (18)

Therefore, (18) and (12) yield the desired result. This completes the proof. �

Theorem 3.3.

Suppose that (A1), (A2), (4) hold and

2 (r + 2) > max {2γ + 2, k + p+ 1, l + p+ 1, θ + q + 1, %+ q + 1} .



948 E. Pişkin and F. Ekinci

Assume further that (
‖∇u0‖2 + ‖∇v0‖2) 1

2 > α1, E (0) < E1.

Then, any the solution of (1) can not exist for all time.

Proof:

We set

H (t) = E1 − E (t) . (19)

By using (7) and (19), we have

0 < H (0) ≤ H (t) = E1 −
1

2

(
‖ut‖2 + ‖vt‖2)− 1

2
(‖∇u‖2 + ‖∇v‖2)

− 1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1 +

∫
Ω

F (u, v) dx. (20)

From (18) and (8), we have

E1 −
1

2

(
‖ut‖2 + ‖vt‖2)− 1

2
(‖∇u‖2 + ‖∇v‖2)

− 1

2(γ + 1)
(‖∇u‖2 + ‖∇v‖2)γ+1 +

∫
Ω

F (u, v) dx

≤ E1 −
1

2
α2

1 +
c1

2 (r + 2)

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
≤ − 1

2 (r + 2)
α2

1 +
c1

2 (r + 2)

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
≤ c1

2 (r + 2)

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
. (21)

By combining (20) and (21), we have

0 < H (0) ≤ H (t) ≤ c1

2 (r + 2)

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
. (22)

We then define

Ψ (t) = H1−σ (t) + ε

(∫
Ω

utudx+

∫
Ω

vtvdx

)
, (23)

where ε small to be chosen later and

0 < σ ≤ min

{
r + 1

2 (r + 2)
,
2r + 3− (k + p)

2p (r + 2)
,
2r + 3− (l + p)

2p (r + 2)
,

2r + 3− (%+ q)

2q (r + 2)
,
2r + 3− (θ + q)

2q (r + 2)

}
. (24)
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A direct differentiation of (23) gives

Ψ′ (t) = (1− σ)H−σ (t)H ′ (t) + ε

(∫
Ω

|ut|2 dx+

∫
Ω

|vt|2 dx
)

+ε

(∫
Ω

uttudx+

∫
Ω

vttvdx

)
= (1− σ)H−σ (t)H ′ (t) + ε(‖ut‖2 + ‖vt‖2)

−ε(‖∇u‖2 + ‖∇v‖2)− ε(‖∇u‖2 + ‖∇v‖2)γ+1 + 2ε(r + 2)

∫
Ω

F (u, v)dx

−ε
(∫

Ω

u
(
|u|k + |v|l

)
ut |ut|p−1 dx+

∫
Ω

v
(
|v|θ + |u|%

)
vt |vt|q−1 dx

)
. (25)

From the definition of H (t), we obtain

−(‖∇u‖2 + ‖∇v‖2)γ+1

= 2 (γ + 1)H (t)− 2 (γ + 1)E1 + (γ + 1)
(
‖ut‖2 + ‖vt‖2)

+ (γ + 1)
(
‖∇u‖2 + ‖∇v‖2)− 2 (γ + 1)

∫
Ω

F (u, v) dx. (26)

Inserting (26) into (25), we get

Ψ′ (t) = (1− σ)H−σ (t)H ′ (t) + ε (γ + 2)
(
‖ut‖2 + ‖vt‖2)

+εγ
(
‖∇u‖2 + ‖∇v‖2)+ 2ε (γ + 1)H (t)− 2ε (γ + 1)E1

+ε(1− γ + 1

r + 2
)(‖u+ v‖2(r+2)

2(r+2) + 2 ‖uv‖r+2
r+2)

−ε
(∫

Ω

u
(
|u|k + |v|l

)
ut |ut|p−1 dx+

∫
Ω

v
(
|v|θ + |u|%

)
vt |vt|q−1 dx

)
.

Then, using (15), we have

Ψ′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + ε (γ + 2)
(
‖ut‖2 + ‖vt‖2)

+εγ
(
‖∇u‖2 + ‖∇v‖2)

+2 (γ + 1) εH (t) + εc′(‖u+ v‖2(r+2)
2(r+2) + 2 ‖uv‖r+2

r+2)

−ε
(∫

Ω

u
(
|u|k + |v|l

)
ut |ut|p−1 dx+

∫
Ω

v
(
|v|θ + |u|%

)
vt |vt|q−1 dx

)
, (27)

where c′ = 1 − γ+1
r+2
− 2 (γ + 1)E1(Bα2)−2(r+2) > 0, since α2 > B−

r+2

r+1 . In order to estimate the
last two terms in (27).

Thanks to the following Young’s inequality,

XY ≤ δkXk

k
+
δ−lY l

l
,
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where X, Y ≥ 0, δ > 0, k, l ∈ R+ such that 1
k

+ 1
l

= 1. Consequently, applying the above
inequality we find ∫

Ω

uut |ut|p−1 dx ≤ δp+1
1

p+ 1
‖u‖p+1

p+1 +
pδ
− p+1

p

1

p+ 1
‖ut‖p+1

p+1 ,

and therefore,∫
Ω

(
|u|k + |v|l

)
uut |ut|p−1 dx ≤ δp+1

1

p+ 1

∫
Ω

(
|u|k + |v|l

)
|u|p+1 dx

+
pδ
− p+1

p

1

p+ 1

∫
Ω

(
|u|k + |v|l

)
|ut|p+1 dx.

In the same way, we conclude that∫
Ω

vvt |vt|q−1 dx ≤ δq+1
2

q + 1
‖v‖q+1

q+1 +
qδ
− q+1

q

2

q + 1
‖vt‖q+1

q+1 ,

and therefore,∫
Ω

v
(
|v|θ + |u|%

)
vt |vt|q−1 dx ≤ δq+1

2

q + 1

∫
Ω

(
|v|θ + |u|%

)
|v|q+1 dx

+
qδ
− q+1

q

2

q + 1

∫
Ω

(
|v|θ + |u|%

)
|vt|q+1 dx,

where δ1, δ2 are constants depending on the time t and specified later. Therefore, (27) becomes

Ψ′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + ε (γ + 2)
(
‖ut‖2 + ‖vt‖2)

+εγ
(
‖∇u‖2 + ‖∇v‖2)+ 2ε (γ + 1)H (t) + εc′

(
‖u+ v‖2(r+2)

2(r+2) + 2 ‖uv‖r+2
r+2

)
−ε δ

p+1
1

p+ 1

∫
Ω

(
|u|k + |v|l

)
|u|p+1 dx− εpδ

− p+1

p

1

p+ 1

∫
Ω

(
|u|k + |v|l

)
|ut|p+1 dx

−ε δ
q+1
2

q + 1

∫
Ω

(
|v|θ + |u|%

)
|v|q+1 dx− εqδ

− q+1

q

2

q + 1

∫
Ω

(
|v|θ + |u|%

)
|vt|q+1 dx. (28)

Therefore, by taking δ1 and δ2 so that

δ
− p+1

p

1 = k1H
−σ (t) ,

δ
− q+1

q

2 = k2H
−σ (t) ,

where k1, k2 > 0 are specified later, we get

Ψ′ (t) ≥ ((1− σ)−Kε)H−σ (t)H ′ (t) + ε (γ + 2)
(
‖ut‖2 + ‖vt‖2)

+εγ
(
‖∇u‖2 + ‖∇v‖2)+ 2ε (γ + 1)H (t) + εc′

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
−εk

−p
1 Hσp (t)

p+ 1

∫
Ω

(
|u|k + |v|l

)
|u|p+1 dx

−εk
−q
2 Hσq (t)

q + 1

∫
Ω

(
|v|θ + |u|%

)
|v|q+1 dx, (29)
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where K = k1p
p+1

+ k2q
q+1

.

Thanks to Young’s inequality, we obtain∫
Ω

(
|u|k + |v|l

)
|u|p+1 dx ≤

∫
Ω

|u|k+p+1 dx+

∫
Ω

|v|l |u|p+1 dx

≤
∫

Ω

|u|k+p+1 dx+
l

l + p+ 1
δ
l+p+1

l

1

∫
Ω

|v|l+p+1 dx

+
p+ 1

l + p+ 1
δ
− l+p+1

p+1

1

∫
Ω

|u|l+p+1 dx

= ‖u‖k+p+1
k+p+1 +

l

l + p+ 1
δ
l+p+1

l

1 ‖v‖l+p+1
l+p+1

+
p+ 1

l + p+ 1
δ
− l+p+1

p+1

1 ‖u‖l+p+1
l+p+1 . (30)

Similarly ∫
Ω

(
|v|θ + |u|%

)
|v|q+1 dx ≤ ‖v‖θ+q+1

θ+q+1 +
%

%+ q + 1
δ
%+q+1

%

2 ‖u‖%+q+1
%+q+1

+
q + 1

%+ q + 1
δ
− %+q+1

q+1

2 ‖v‖%+q+1
%+q+1 . (31)

Inserting (31) and (30) into (29), we conclude that

Ψ′ (t) ≥ ((1− σ)−Kε)H−σ (t)H ′ (t) + ε (γ + 2)
(
‖ut‖2 + ‖vt‖2)

+εγ
(
‖∇u‖2 + ‖∇v‖2)+ 2ε (γ + 1)H (t) + εc′

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
−εk

−p
1 Hσp (t)

p+ 1

(
‖u‖k+p+1

k+p+1 +
l

l + p+ 1
δ
l+p+1

l

1 ‖v‖l+p+1
l+p+1

+
p+ 1

l + p+ 1
δ
− l+p+1

p+1

1 ‖u‖l+p+1
l+p+1

)
−εk

−q
2 Hσq (t)

q + 1

(
‖v‖θ+q+1

θ+q+1 +
%

%+ q + 1
δ
%+q+1

%

2 ‖u‖%+q+1
%+q+1

+
q + 1

%+ q + 1
δ
− %+q+1

q+1

2 ‖v‖%+q+1
%+q+1

)
. (32)

Since

2 (r + 2) > max {2(γ + 1), k + p+ 1, l + p+ 1, θ + q + 1, %+ q + 1} ,

we have

Hσp (t) ‖u‖k+p+1
k+p+1 ≤ C

(
‖u‖2σp(r+2)+k+p+1

2(r+2) + ‖v‖2σp(r+2)
2(r+2) ‖u‖

k+p+1
k+p+1

)
, (33)

Hσq (t) ‖v‖θ+q+1
θ+q+1 ≤ C

(
‖v‖2σq(r+2)+θ+q+1

2(r+2) + ‖u‖2σq(r+2)
2(r+2) ‖v‖

θ+q+1
θ+q+1

)
, (34)
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l

l + p+ 1
δ
l+p+1

l

1 Hσp (t) ‖v‖l+p+1
l+p+1

≤ C
l

l + p+ 1
δ
l+p+1

l

1

(
‖v‖2σp(r+2)+l+p+1

2(r+2) + ‖u‖2σp(r+2)
2(r+2) ‖v‖

l+p+1
l+p+1

)
,

(35)

and
%

%+ q + 1
δ
%+q+1

%

2 Hσq (t) ‖u‖%+q+1
%+q+1

≤ C
%

%+ q + 1
δ
%+q+1

%

2

(
‖u‖2σq(r+2)+%+q+1

2(r+2) + ‖v‖2σq(r+2)
2(r+2) ‖u‖

%+q+1
%+q+1

)
.

(36)

By using (24) and the following algebraic inequality

zυ ≤ z + 1 ≤
(

1 +
1

a

)
(z + a) , ∀z ≥ 0, 0 < υ ≤ 1, a ≥ 0, (37)

we have, for all t ≥ 0,

‖u‖2σp(r+2)+k+p+1
2(r+2) ≤ d

(
‖u‖2(r+2)

2(r+2) +H (0)
)

≤ d
(
‖u‖2(r+2)

2(r+2) +H (t)
)
, (38)

‖v‖2σq(r+2)+θ+q+1
2(r+2) ≤ d

(
‖v‖2(r+2)

2(r+2) +H (t)
)
, (39)

where d = 1 + 1
H(0)

. Similarly

‖u‖2σq(r+2)+%+q+1
2(r+2) ≤ d

(
‖u‖2(r+2)

2(r+2) +H (t)
)
, (40)

‖v‖2σp(r+2)+l+p+1
2(r+2) ≤ d

(
‖v‖2(r+2)

2(r+2) +H (t)
)
. (41)

Also, since

(a+ b)λ ≤ C
(
aλ + bλ

)
, a, b > 0,

by Young’s inequality and using (24) and (37), we have

‖v‖2σp(r+2)
2(r+2) ‖u‖

k+p+1
k+p+1 ≤ |Ω|

2(r+2)−(k+p+1)

2(r+2) (‖v‖2σp(r+2)
2(r+2) ‖u‖

k+p+1
2(r+2))

= |Ω|
2(r+2)−(k+p+1)

2(r+2)

(
‖v‖σp2(r+2) ‖u‖

k+p+1

2(r+2)

2(r+2)

)2(r+2)

≤ |Ω|
2(r+2)−(k+p+1)

2(r+2) (c′ ‖v‖
2σp(r+2)+k+p+1

2(r+2)

2(r+2) + c′′ ‖u‖
2σp(r+2)+k+p+1

2(r+2)

2(r+2) )2(r+2)

≤ C
(
‖v‖2(r+2)

2(r+2) + ‖u‖2(r+2)
2(r+2)

)
. (42)

Similarly

‖u‖2σq(r+2)
2(r+2) ‖v‖

θ+q+1
θ+q+1 ≤ C

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
, (43)

‖u‖2σp(r+2)
2(r+2) ‖v‖

l+p+1
l+p+1 ≤ C

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
, (44)
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and

‖v‖2σq(r+2)
2(r+2) ‖u‖

%+q+1
%+q+1 ≤ C

(
‖v‖2(r+2)

2(r+2) + ‖u‖2(r+2)
2(r+2)

)
. (45)

Inserting (33)-(36) and (38)-(45) into (32), we have

Ψ′ (t) ≥ ((1− σ)−Kε)H−σ (t)H ′ (t) + ε (γ + 2)
(
‖ut‖2 + ‖vt‖2)

+εγ
(
‖∇u‖2 + ‖∇v‖2)

+ε

[
2 (γ + 1)− Ck−p1

(
1 +

l

l + p+ 1
δ
l+p+1

l

1 +
p+ 1

l + p+ 1
δ
− l+p+1

p+1

1

)
−Ck−q2

(
1 +

%

%+ q + 1
δ
%+q+1

%

2 +
q + 1

%+ q + 1
δ
− %+q+1

q+1

2

)]
H (t)

+ε

[
c′ − Ck−p1

(
1 +

l

l + p+ 1
δ
l+p+1

l

1 +
p+ 1

l + p+ 1
δ
− l+p+1

p+1

1

)
−Ck−q2

(
1 +

%

%+ q + 1
δ
%+q+1

%

2 +
q + 1

%+ q + 1
δ
− %+q+1

q+1

2

)](
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
.(46)

At this point, and for large values of k1 and k2, we can find positive constats K1 and K2 such that
(46) becomes

Ψ′ (t) ≥ ((1− σ)−Kε)H−σ (t)H ′ (t) + ε (γ + 2)
(
‖ut‖2 + ‖vt‖2)

+εγ
(
‖∇u‖2 + ‖∇v‖2)+ εK1H (t) + εK2

(
‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
≥ β

(
‖ut‖2 + ‖vt‖2 +H (t) + ‖∇u‖2 + ‖∇v‖2 + ‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2)

)
, (47)

where β = min {ε (γ + 2) , εγ, εK1, εK2} and we pick ε small enough so that (1− σ)−Kε ≥ 0.
Consequently we have

Ψ (t) ≥ Ψ (0) > 0, ∀t ≥ 0. (48)

We now estimate Ψ (t)
1

1−σ . Applying Hölder inequality, we obtain∣∣∣∣∫
Ω

utudx+

∫
Ω

vtvdx

∣∣∣∣ 1

1−σ

≤ ‖ut‖
1

1−σ ‖u‖
1

1−σ + ‖vt‖
1

1−σ ‖v‖
1

1−σ

≤ C
(
‖ut‖

1

1−σ ‖u‖
1

1−σ

2(r+2) + ‖vt‖
1

1−σ ‖v‖
1

1−σ

2(r+2)

)
. (49)

Young’s inequality gives∣∣∣∣∫
Ω

utudx+

∫
Ω

vtvdx

∣∣∣∣ 1

1−σ

≤ C(‖ut‖
µ

1−σ + ‖u‖
θ

1−σ

2(r+2) + ‖vt‖
µ

1−σ + ‖v‖
θ

1−σ

2(r+2)), (50)

where 1
µ

+ 1
θ

= 1. We take µ = 2(1− σ) to get θ = 2(1−σ)
1−2σ

by (24). Therefore, (50) becomes∣∣∣∣∫
Ω

utudx+

∫
Ω

vtvdx

∣∣∣∣ 1

1−σ

≤ C(‖ut‖2 + ‖u‖
2

1−2σ

2(r+2) + ‖vt‖2 + ‖v‖
2

1−2σ

2(r+2)). (51)
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By using Lemma 2.3, we obtain∣∣∣∣∫
Ω

utudx+

∫
Ω

vtvdx

∣∣∣∣ 1

1−σ

≤ C(‖ut‖2 + ‖vt‖2 + ‖u‖2(r+2)
2(r+2) + ‖v‖2(r+2)

2(r+2) + ‖∇u‖2 + ‖∇v‖2). (52)

Thus,

Ψ
1

1−σ (t) =

[
H1−σ (t) + ε

(∫
Ω

utudx+

∫
Ω

vtvdx

)] 1

1−σ

≤ C
(
‖ut‖2 + ‖vt‖2 +H (t) + ‖u‖2(r+2)

2(r+2) + ‖v‖2(r+2)
2(r+2) + ‖∇u‖2 + ‖∇v‖2

)
. (53)

Combining (47) and (53) we arrive at

Ψ′ (t) ≥ ξΨ
1

1−σ (t) , (54)

where ξ is a positive constant.

A simple integration of (54) over (0, t) yields

Ψ
σ

1−σ (t) ≥ 1

Ψ−
σ

1−σ (0)− ξσt
1−σ

,

which implies that the solution blows up in a finite time T ∗, with

T ∗ ≤ 1− σ
ξσΨ

σ

1−σ (0)
. �

4. Lower bounds for the blow up time

In this section, we discuss the lower bounds for the blow up time. Firstly, we give the following
lemma (see Peyravi (2017) and Pişkin (2017)).

Lemma 4.1.

There exist two positive c1 and c2 such that∫
Ω

|f1(u, v)|2 dx ≤ c1(‖∇u‖2 + ‖∇v‖2)2r+3,∫
Ω

|f2(u, v)|2 dx ≤ c2(‖∇u‖2 + ‖∇v‖2)2r+3, (55)

are satisfied.

Theorem 4.2.

Suppose that (A1), (4) hold and (u0, u1), (v0, v1) ∈ (H1
0 (Ω) ∩ Lr+1(Ω))× L2(Ω). Assume further

that 1 < p, q < 2r + 1. Then, the finite blow-up time T ∗ satisfies the following estimate∫ φ(t)

φ(0)

dτ

(E(0) + τ) + 24(r+1)(c1 + c2)((E(0))2r+3 + τ 2r+3)
≤ T ∗,
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where φ(0) =
∫

Ω
F (u(0), v(0))dx and the positive constants c1 and c2 are specified in (55).

Proof:

Define

φ(t) =

∫
Ω

F (u, v)dx.

By differentiating φ(t) and using Young’s inequality, we get

φ′(t) =

∫
Ω

utFu + vtFvdx

≤ 1

2

∫
Ω

(u2
t + v2

t )dx+
1

2

∫
Ω

(F 2
u + F 2

v )dx. (56)

By the Lemma 4.1, we obtain

φ′(t) ≤ 1

2

∫
Ω

(u2
t + v2

t )dx+ (
c1 + c2

2
)(‖∇u‖2 + ‖∇v‖2)2r+3. (57)

Therefore, from (7) and Lemma 2.4, we have∫
Ω

(u2
t + v2

t )dx+ (‖∇u‖2 + ‖∇v‖2) ≤ 2E(t) + 2

∫
Ω

F (u, v)dx

≤ 2E(0) + 2

∫
Ω

F (u, v)dx. (58)

Combining (57)-(58), we get

φ′(t) ≤ φ(t) + E(0) + 22r+2(c1 + c2) [φ(t) + E(0)]2r+3

≤ φ(t) + E(0) + 24(r+1)(c1 + c2)
[
(φ(t))2r+3 + (E(0))2r+3

]
. (59)

Integrating (59) from 0 to t, we obtain∫ φ(t)

φ(0)

dτ

(E(0) + τ) + 24(r+1)(c1 + c2)((E(0))2r+3 + τ 2r+3)
≤ T ∗.

Thus, we obtain the desired result. �

5. Conclusion

In this paper, we obtained a blow up and a lower bounds for the blow up time for a coupled
Kirchhoff-type equations with degenerate damping terms. This improves and extends many results
in the literature.
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