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Abstract  
 

In this paper, a special case of finite difference method called non-standard finite difference 

(NSFD) method was studied to compute the numerical solutions of the nonlinear mathematical 

model of the interaction between tumor cells and oncolytic viruses. The global stability of the 

equilibrium points of the discrete model is investigated by using the Lyapunov stability theorem. 

Some conditions were gained for the local asymptotical stability of the equilibrium points of the 

system. Finally, numerical simulations are carried out to illustrate the main theoretical results. The 

discrete system is dynamically consistent with its continuous model, it preserves essential 

properties, such as positivity, boundedness of the solution, stability properties of the equilibrium 

points.  

 

Keywords: Asymptotic stability; Cancer; Equilibrium points; Non-standard finite difference; 

Oncolytic viruses; Positivity; Tumor cells 

MSC Classification: 65L05, 65L07, 65L12, 65L20 

 

Available at 

http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 14, Issue 2 (December  2019),  pp. 805 - 819 

Applications and Applied 

Mathematics: 

An International Journal 

(AAM) 

mailto:abyaghoobi@phd.guilan.ac.ir
mailto:hnajafi@guilan.ac.ir
http://pvamu.edu/aam


A. R. Yaghoubi and H. Saberi Najafi  806 

 

1. Introduction  
 

Many of the phenomena in the world around us are modeled with ordinary or partial differential 

equations. In general, finding the analytic solution of these equations is very complicated and it is 

difficult to find their exact solutions. Therefore, the use of numerical methods is very important 

for the approximation of these differential equations. The finite difference method is one of the 

most popular numerical methods. In many nonlinear problems, standard finite difference (SFD) 

schemes have numerical instability, Mickens (1994, 2000, 2005). In general, SFD schemes 

preserve the properties of differential equations if the length of step-size h is small enough. 

Therefore, in dynamical systems with large time intervals, the choice of small steps requires a lot 

of computational effort. Additionally, in some dynamical systems, SFD schemes cannot preserve 

the properties of the continuous system for each step-size. The proposed NSDF method by 

Mickens (2005), preserves the main properties of the corresponding differential equations, such as 

positivity, boundedness, stability, and so on. The discrete models with these properties are called 

dynamically consistent. A finite difference scheme is called non-standard if at least one of the 

following conditions is met, Mickens (2005): 

 

 A nonlocal approximation is used. For example,  

𝑦 = 2 𝑦 − 𝑦 → 2𝑦𝑘 − 𝑦𝑘+1, 

𝑦2 = 𝑦𝑦 →  𝑦𝑘𝑦𝑘+1. 

 The discretization of the first and second order derivatives is performed as follows: 

 
𝑑𝑦

𝑑𝑡
→

𝑦𝑘+1−𝜓(ℎ)𝑦𝑘

𝜙(ℎ)
, 

 
𝑑2𝑦

𝑑𝑡2 →
𝑦𝑘+1−2𝑦𝑘+𝑦𝑘−1

𝜑(ℎ)
, 

where the function 𝜓(ℎ) is called the numerator function and the functions 𝜙(ℎ) and 𝜑(ℎ) are 

called denominator functions and have the following properties: 

                            𝜓(ℎ) = 1 + 𝑂(ℎ), 𝜙(ℎ) = ℎ + 𝑂(ℎ2), 𝜑(ℎ) = ℎ2 + 𝑂(ℎ4),                       (1) 

where h = Δt,
 
𝑡 → 𝑡𝑘 = 𝑘ℎ and 𝑦(𝑡) → 𝑦𝑘. 

 

The initial foundation of NSFD schemes came from exact finite difference schemes. For 

constructing the NSFD schemes, we use the following rules, were given by Mickens (2005): 

Rule 1. 

The orders of the discrete derivative should be equal to the orders of the corresponding derivatives 

appearing in the differential equations.  
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Remark 1.  

If the orders of the discrete derivatives are larger than those occurring in the differential equations 

then, in general numerical instabilities will occur. 

Rule 2.  

Denominator functions for the discrete derivatives must, in general, be expressed in terms of more 

complicated functions of the step-sizes than those conventionally used. 

Rule 3.  

Nonlinear terms should, in general, be replaced by nonlocal discrete representations. 

Rule 4.  

Special conditions that correspond to either the differential equation and/or its solutions should 

also correspond to the difference equation and/or its solutions.  

Rule 5.  

The discrete schemes should not produce extraneous or spurious answers. 

Remark 2.  

Many finite difference schemes generate certain answers that are not corresponding to any solution 

of the original differential equation. 

 

In recent decades, the NSFD method has been considered by many researchers and significant 

results have been achieved, Mickens (1994, 2000, 2001, 2003, 2005, 2005, 2005, 2006, 2007), 

Namjoo (2018), Sweilam (2019). The stability of the equilibrium points of differential equations 

is one of these results because it plays a fundamental role in the study of the asymptotic behavior 

of differential equations. Constructing difference schemes that preserve the stability behavior of 

the equilibrium points is important in numerical simulation. In this paper, a mathematical model 

which described the interaction between two types of tumor cells has been studied. An NSFD 

scheme is designed to preserve the important features of the original model. 

 

The rest of this paper is organized as follows: In Section 2, the model is outlined. In Section 3, the 

NSFD scheme is constructed. Section 4 deals with the stability analysis of the equilibrium points. 

In Section 5, numerical results are presented. The conclusion appears in Section 6.  

 

2. Mathematical Model  

Cancer is one of the greatest killers in the world and the control of tumor growth is very important. 

Various efforts have been done over many years to achieve mathematical modeling of cancer 

development, Novozhilov et al. (2006), Tari (2012), Wodarz (2001, 2004), Wodarz and Komarova 

(2005), Sedaghat and Ordokhani (2012). In this work, Wodarz’s model (2004), was analyzed. 
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Wodarz presented a mathematical model which described the interaction between two types of 

tumor cells (the cells that are not infected but are susceptible to be infected so far as they have the 

cancer phenotype) with ratio dependent functional response between them. 

 

                                          {

𝑥′ = 𝑟𝑥 (1 −
𝑥+𝑦

𝑘
) − 𝑑𝑥 − 𝛽𝑥𝑦,

                                                  

𝑦′ = 𝛽𝑥𝑦 + 𝑠𝑦 (1 −
𝑥+𝑦

𝑘
) − 𝑎𝑦,

                                              (2) 

with the initial conditions 𝑥(0) = 𝑥0 > 0 and 𝑦(0) = 𝑦0 > 0, where 𝑥 and 𝑦 are two types of 

tumor cells, which respectively are the size of uninfected tumor cells and infected tumor cells by 

the virus, 𝑟 is the growth rate of tumor, 𝑘 is the maximum size that the tumor is allowed to occupy, 

𝑑 is death rate, 𝛽 is the spread rate of virus in tumor cells, 𝑎 is the death rate of infected tumor 

cells by virus and 𝑠 shows growth rate in a logistic fashion.  

 

The equilibrium points of the system (2) are as follows:  

𝐸0 = (0, 0), 

𝐸1 = (𝑘(𝑟 − 𝑑)/𝑟, 0), 

𝐸2 = (0, 𝑘(𝑠 − 𝑎)/𝑠), 

                            𝐸3 = (
𝛽𝑘(𝑎−𝑠)+𝑎𝑟−𝑠𝑑

𝛽(𝛽𝑘+𝑟−𝑠)
,

𝛽𝑘(𝑟−𝑑)+𝑠𝑑−𝑎𝑟

𝛽(𝛽𝑘+𝑟−𝑠)
 ) ≔ (𝑥∗,  𝑦∗).                                (3) 

The model (2) has the following properties, Ashyani et al. (2016): 

(𝑝1) All the solutions of (2) starting in the positive orthant (ℝ0
+)2 either approach, enter or remain 

in the subset of (ℝ0
+)2 defined by 

                                     Ω = {(𝑥, 𝑦) ∈ (ℝ0
+)2 ∶ 0 < x + y ≤ k},                                          (4) 

where (ℝ0
+)2 denotes the non-negative cone of ℝ2 including its lower dimensional faces. 

(𝑝2) The equilibrium point 𝐸0 is locally asymptotically stable if and only if  𝑟 < 𝑑 and 𝑠 < 𝑎. 

(𝑝3) The equilibrium point 𝐸1 is locally asymptotically stable if and only if 𝑑 < 𝑟 and 𝑎 >

(𝛽𝑘(𝑟 − 𝑑) + 𝑑𝑠)/𝑟. 

(𝑝4) The equilibrium point 𝐸2 is locally asymptotically stable if and only if  𝑎 < 𝑠 and 𝑎 < 𝑠(𝛽𝑘 +

𝑑)/(𝛽𝑘 + 𝑟). 

(𝑝5) The equilibrium point 𝐸3 is locally asymptotically stable if and only if  𝛽𝑘 + 𝑟 − 𝑠 > 0 and  

𝑑𝑠 − 𝑎𝑟 < 0. 

(𝑝6) The equilibrium point 𝐸0 is globally stable if 𝐸1, 𝐸2 and 𝐸3 do not exist. 
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3. Non-Standard Schemes 

In this section, we design the NSFD schemes that have all the properties (𝑝1)-(𝑝6). We construct 

the following NSFD schemes for approximating (2). 

 

                          {

𝑥𝑛+1−𝑥𝑛

𝜑(ℎ)
= 𝑟𝑥𝑛+1 (1 −

𝑥𝑛+𝑦𝑛

𝑘
) − 𝑑𝑥𝑛+1 − 𝛽𝑥𝑛+1𝑦𝑛,

                                                                                        
𝑦𝑛+1−𝑦𝑛

𝜑(ℎ)
= 𝛽𝑥𝑛+1𝑦𝑛 + 𝑠𝑦𝑛+1 (1 −

𝑥𝑛+𝑦𝑛

𝑘
) − 𝑎𝑦𝑛+1,

                               (5) 

where 𝜑(ℎ) = ℎ + 𝑂(ℎ2). For simplicity, we omit the argument h in the function 𝜑(ℎ). By solving 

(5) in 𝑥𝑛+1 and 𝑦𝑛+1 we get, 

                                   {

𝑥𝑛+1 =
𝑥𝑛

1−𝜑𝑟+𝜑𝑑+
𝜑𝑟

𝑘 ⁄ (𝑥𝑛+𝑦𝑛)+𝛽𝜑𝑦𝑛
,

                                                                   

𝑦𝑛+1 =
(1+𝜑𝛽𝑥𝑛+1)𝑦𝑛

1−𝜑𝑠+𝜑𝑎+
𝜑𝑠

𝑘⁄  (𝑥𝑛+𝑦𝑛)
.                

                                           (6) 

If we choose 𝜑 so that 𝜑 < 1
𝛿⁄ , where 𝛿 = max{𝑟, 𝑠}, then, for all positive initial data, we have 

𝑥𝑛+1, 𝑦𝑛+1 > 0, therefore, the NSFD schemes (5)- (6) preserve the positivity property of the 

continuous  system (2).   

 

Theorem 1.  

 

Assume that 𝛿 = max {𝑟, 𝑠}, if 𝜑 < 1
𝛿⁄ , then, by starting from any initial condition in Ω, where 

Ω is defined by (4), the NSFD schemes (5)- (6) generate a unique sequence of positive vectors and 

the set Ω is invariant.  

 

 Proof:  
 

From (6) the positivity and uniqueness of the solution is obvious. By mathematical induction we  

prove that the sequence (𝑥𝑘, 𝑦𝑘), given by (6), is in Ω. Assume that (𝑥0, 𝑦0) ∈ Ω and (𝑥𝑛, 𝑦𝑛) ∈ Ω, 

has been constructed (Induction assumption). It is suffice to show that (𝑥𝑛+1, 𝑦𝑛+1) ∈ Ω. Adding 

the equations in the system (5) gives,  

 
(𝑥𝑛+1+ 𝑦𝑛+1)−(𝑥𝑛+ 𝑦𝑛)

𝜑
= (𝑟𝑥𝑛+1 +  𝑠𝑦𝑛+1) (1 −

(𝑥𝑛+ 𝑦𝑛)

𝑘
) − (𝑑𝑥𝑛+1 +  𝑎𝑦𝑛+1),  

≤ 𝛿(𝑥𝑛+1 +  𝑦𝑛+1) (1 −
(𝑥𝑛+ 𝑦𝑛)

𝑘
).  

 

Therefore,  

                                        𝑥𝑛+1 +  𝑦𝑛+1 ≤
𝑥𝑛+ 𝑦𝑛

1−𝛿𝜑+(
𝛿𝜑

𝑘⁄ )(𝑥𝑛+𝑦𝑛)
.                                            (7) 
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We set 𝑧 = 𝑥𝑛 +  𝑦𝑛. By induction assumption 0 < 𝑧 ≤ 𝑘, therefore, the right-hand side of (7) is 

equal to 𝑓(𝑧) =
𝑧

1−𝛿𝜑+(
𝛿𝜑

𝑘⁄ )𝑧
. Since 𝜑 <

1

𝛿
, we have 𝑓′(𝑧) =

1−𝛿𝜑

(1−𝛿𝜑+(
𝛿𝜑

𝑘⁄ )𝑧)
2 > 0, so the 

maximum of 𝑓(𝑧) in the interval (0, 𝑘] is obtained for 𝑧 = 𝑘. Therefore, 𝑓(𝑧) =
𝑧

1−𝛿𝜑+(
𝛿𝜑

𝑘⁄ )𝑧
≤

𝑘

1−𝛿𝜑+(
𝛿𝜑

𝑘⁄ )𝑘
= 𝑘. Hence, 0 < 𝑥𝑛+1 +  𝑦𝑛+1 ≤ 𝑘. So, (𝑥𝑛+1, 𝑦𝑛+1) ∈ Ω. (i.e., the NSFD scheme 

(6) captures the invariance property of the continuous model (2), as guaranteed by the property 
(𝑝1) ).                                                                                                                                               ∎ 

      

Now assume  that lim
𝑘→∞

𝑥𝑘 = 𝑚 and lim
𝑘→∞

𝑦𝑘 = 𝑛, from (6) we have,  

                                            {

𝑚 =
𝑚

1−𝜑𝑟+𝜑𝑑+
𝜑𝑟

𝑘 ⁄ (𝑚+𝑛)+𝛽𝜑𝑛
,

                                                       

𝑛 =
(1+𝜑𝛽𝑚)𝑛

1−𝜑𝑠+𝜑𝑎+
𝜑𝑠

𝑘⁄  (𝑛+𝑚)
.           

                                             (8) 

By solving (8) in 𝑚 and 𝑛 we obtain, 

𝑒0(𝑚, 𝑛) = 𝐸0 = (0, 0), 

𝑒1(𝑚, 𝑛) = 𝐸1 = (𝑘(𝑟 − 𝑑)/𝑟, 0), 

𝑒2(𝑚, 𝑛) = 𝐸2 = (0, 𝑘(𝑠 − 𝑎)/𝑠), 

𝑒3(𝑚, 𝑛) = 𝐸3 = (
𝛽𝑘(𝑎−𝑠)+𝑎𝑟−𝑠𝑑

𝛽(𝛽𝑘+𝑟−𝑠)
,

𝛽𝑘(𝑟−𝑑)+𝑠𝑑−𝑎𝑟

𝛽(𝛽𝑘+𝑟−𝑠)
 ). 

It is observed that for any value of the step-size, the fixed points of the discrete models (5)- (6) are 

exactly the equilibrium points of the continuous model (2). 

 

4. Stability Analysis of the Fixed Points of the discrete model  

The stability property of the equilibrium points of differential equations is very important because 

it plays a fundamental role in the study of the asymptotic stability behavior of the solutions. In this 

section, we gain some conditions for the stability of the fixed points of the models (5)- (6). 

According to the right-hand side of the NSFD scheme (6), we define functions 𝐹 and 𝐺 as follows: 

 

𝐹(𝑥, 𝑦) =
𝑥

1−𝜑𝑟+𝜑𝑑+(
𝜑𝑟

𝑘⁄ )(𝑥+𝑦)+𝛽𝜑𝑦
,   𝐺(𝑥, 𝑦) =

(1+𝜑𝛽𝑥)𝑦

1−𝜑𝑠+𝜑𝑎+(
𝜑𝑠

𝑘⁄ )(𝑥+𝑦)
. 

The Jacobian matrix is as follows:  

𝐽 = [
𝜕𝐹/𝜕𝑥 𝜕𝐹/𝜕𝑦
𝜕𝐺/𝜕𝑥 𝜕𝐺/𝜕𝑦

]. 
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The fixed-point 𝐸𝑖 is locally asymptotically stable if and only if the spectral radius of 𝐽(𝐸𝑖) is less 

than unity. 

 

 

4.1. Local Stability Analysis of 𝑬𝟎  

 

The matrix 𝐽(𝐸0) is as follows:  

 

𝐽(𝐸0) = [

1

1+𝜑(𝑑−𝑟)
0

0
1

1+𝜑(𝑎−𝑠)

].  

 

Therefore, 𝐸0 is locally asymptotically stable if 𝑟 < 𝑑 and 𝑠 < 𝑎. Hence, 𝐸0 is a stable equilibrium 

point if and only if 𝐸1 and 𝐸2 do not exist. Biologically, stability of 𝐸0 means that both infected 

and uninfected cells are destroyed and therapy is successful. 

 

4.2. Local Stability Analysis of 𝑬𝟏  

 

To study the stability behavior of 𝐸1, we compute the matrix 𝐽(𝐸1) as follows: 

 

𝐽(𝐸1) = [
1 + 𝜑(𝑑 − 𝑟) 𝜑(𝑑 − 𝑟)(1 +

𝛽𝑘
𝑟⁄ )

0
1+𝜑𝛽𝑘(1−𝑑

𝑟⁄ )

1+𝜑(𝑎−𝑑𝑠
𝑟⁄ )

].  

 

The eigenvalues of 𝐽(𝐸1) are 𝜆1 = 1 + 𝜑(𝑑 − 𝑟) and 𝜆2 =
1+𝜑𝛽𝑘(1−𝑑

𝑟⁄ )

1+𝜑(𝑎−𝑑𝑠
𝑟⁄ )

. 𝜆1 < 1 if and only if 𝑑 <

𝑟. Also 𝜆2 < 1, if and only if (𝛽𝑘(𝑟 − 𝑑) + 𝑑𝑠)/𝑟 < 𝑎.Therefore, 𝐸1 is locally asymptotically 

stable if 𝑑 < 𝑟 and (𝛽𝑘(𝑟 − 𝑑) + 𝑑𝑠)/𝑟 < 𝑎. Furthermore, 𝐸1is a saddle point if (𝛽𝑘(𝑟 − 𝑑) +
𝑑𝑠)/𝑟 > 𝑎. Biologically, stability of 𝐸1 means that the uninfected cells exist and are not destroyed 

which means after virus injection, all viruses are destroyed but tumor still exists. Hence, the 

stability of this point is not useful for cancer therapy. 

 

4.3. Local Stability Analysis of 𝑬𝟐  

By computing 𝐽(𝐸2) we obtain,  

𝐽(𝐸2) = [

1

1+𝜑[𝑑−𝑟+(𝛽𝑘+𝑟)(1−𝑎
𝑠⁄ )]

0

𝜑[𝛽𝑘(1 − 𝑎
𝑠⁄ ) + 𝑎 − 𝑠] 1 + 𝜑(𝑎 − 𝑠)

]. 

All the eigenvalues of 𝐽(𝐸2) are less than unity, if and only if 𝑎 < 𝑠(𝛽𝑘 + 𝑑)/(𝛽𝑘 + 𝑟) and 𝑎 <
𝑠. Therefore, the equilibrium point 𝐸2 is locally asymptotically stable if 𝑎 < 𝑠(𝛽𝑘 + 𝑑)/(𝛽𝑘 + 𝑟) 

and 𝑎 < 𝑠. If 𝑎 > 𝑠(𝛽𝑘 + 𝑑)/(𝛽𝑘 + 𝑟) then, 𝐸2 is a saddle point. Biologically, stability of 𝐸2 

means that the infected cells exist and are not destroyed which means after virus injection, all 

tumor cells are infected but did not disappear. Hence, the stability of this point is not useful for 

cancer therapy.  
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4.4. Local Stability Analysis of 𝑬𝟑  

 

The matrix 𝐽(𝐸3) is as follows: 

 

𝐽(𝐸3) = [
𝐴∗ 𝐵∗

𝐶∗ 𝐷∗],  

 

where  

 

𝐴∗ =
1−𝜑𝑟+𝜑𝑑+

𝜑𝑟
𝑘⁄ ( 𝑥∗+𝑦∗)+𝜑𝛽𝑦∗−

𝜑𝑟
𝑘⁄  𝑥∗

(1−𝜑𝑟+𝜑𝑑+
𝜑𝑟

𝑘⁄ ( 𝑥∗+𝑦∗)+𝛽𝜑𝑦∗)
2 ,   𝐵∗ = −

𝜑(𝑟
𝑘⁄ +𝛽) 𝑥∗

(1−𝜑𝑟+𝜑𝑑+
𝜑𝑟

𝑘⁄ ( 𝑥∗+𝑦∗)+𝛽𝜑𝑦∗)
2, 

𝐶∗ =
𝜑𝛽𝑦∗(1−𝜑𝑠+𝜑𝑎+

𝜑𝑠
𝑘⁄ 𝑦∗)−

𝜑𝑠
𝑘⁄ 𝑦∗

(1−𝜑𝑠+𝜑𝑎+
𝜑𝑠

𝑘⁄ ( 𝑥∗+𝑦∗))
2 ,   𝐷∗ =

(1−𝜑𝑠+𝜑𝑎+
𝜑𝑠

𝑘⁄  𝑥∗)(1+ 𝜑𝛽𝑥∗)

(1−𝜑𝑠+𝜑𝑎+
𝜑𝑠

𝑘⁄ ( 𝑥∗+𝑦∗))
2 , 

 

where 𝑥∗ and 𝑦∗ are defined by (3) and are the positive solutions of the following system, 

 

                                              {

𝑟 (1 −
𝑥+𝑦

𝑘
) − 𝑑 − 𝛽𝑦 = 0,

                                           

𝛽𝑥 + 𝑠 (1 −
𝑥+𝑦

𝑘
) − 𝑎 = 0.

                                                 (9)  

 

From (9) we get, 

                                  −𝜑𝑟 + 𝜑𝑑 +
𝜑𝑟

𝑘⁄ ( 𝑥∗ + 𝑦∗) + 𝜑𝛽𝑦∗ = 0,                                   (10) 

                                     −𝜑𝑠 + 𝜑𝑎 +
𝜑𝑠

𝑘⁄ ( 𝑥∗ + 𝑦∗) =  𝜑𝛽𝑥∗.                                      (11) 

 

Using (10) and (11), after some manipulation we obtain,  

 

𝐴∗ = 1 −
𝜑𝑟

𝑘⁄ 𝑥∗,   𝐵∗ = −𝜑(𝑟
𝑘⁄ + 𝛽)𝑥∗,   𝐶∗ =

𝜑(𝛽−𝑠/𝑘)𝑦∗

1+ 𝜑𝛽𝑥∗ ,   𝐷∗ = 1 −
𝜑𝑠

𝑘⁄ 𝑦∗

1+ 𝜑𝛽𝑥∗. 

 

The characteristic polynomial of 𝐽(𝐸3) is as follows: 

 

𝜆2 − (𝐴∗ + 𝐷∗)𝜆 + (𝐴∗𝐷∗ − 𝐵∗𝐶∗) = 0. 

The eigenvalues of 𝐽(𝐸3) are 

𝜆1,2 =
1

2
(𝐴∗ + 𝐷∗) ±

1

2
√(𝐴∗ + 𝐷∗)2 − 4(𝐴∗𝐷∗ − 𝐵∗𝐶∗), 

              =
1

2
(𝐴∗ + 𝐷∗) ±

1

2
√(𝐴∗ − 𝐷∗)2 + 4𝐵∗𝐶∗, 

              = 1 −
𝜑

2𝑘
(𝑟𝑥∗ +

𝑠𝑦∗

1+ 𝜑𝛽𝑥∗) ±
𝜑

2𝑘
√(

𝑠𝑦∗

1+ 𝜑𝛽𝑥∗ − 𝑟𝑥∗)
2

− 4
(𝛽𝑘+𝑟)(𝛽𝑘−𝑠) 𝑥∗𝑦∗

1+ 𝜑𝛽𝑥∗ , 
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              = 1 −
𝜑

2𝑘
[(𝑟𝑥∗ +

𝑠𝑦∗

1+ 𝜑𝛽𝑥∗) ± √(𝑟𝑥∗ +
𝑠𝑦∗

1+ 𝜑𝛽𝑥∗)
2

− 4
𝛽𝑘(𝛽𝑘+𝑟−𝑠) 𝑥∗𝑦∗

1+ 𝜑𝛽𝑥∗ ]. 

 

Clearly, if (𝛽𝑘 + 𝑟 − 𝑠) > 0, then, |𝜆1,2| < 1. Hence, the equilibrium point 𝐸3 is locally 

asymptotically stable if  𝛽𝑘 + 𝑟 − 𝑠 > 0.   

 

4.5. Global Stability Analysis of 𝑬𝟎  

Theorem 2.  

The equilibrium point 𝐸0 of the model (5) is globally stable if 𝐸1, 𝐸2, and 𝐸3 do not exist. 

 

Proof:  
 

Notice that the global stability of (5) and (6) are equivalent. Therefore, we prove that 𝐸0 is a 

globally stable equilibrium point of the model (6). Consider the Lyapunov function   

 

𝑉(𝑥, 𝑦) = 𝑥 +  𝑦. 

 

Clearly, in the invariant set Ω, where Ω is defined by (4), the function 𝑉 is positive definite. 

Moreover, for a discrete dynamical system 𝑋(𝑘 + 1) = 𝑓(𝑋(𝑘)), we have ∆𝑉(𝑋) = 𝑉(𝑓(𝑋)) −

𝑉(𝑋). Therefore, according to (6) we obtain,  

 

∆𝑉(𝑥𝑘, 𝑦𝑘 ) = (𝑥𝑘+1 + 𝑦𝑘+1) − (𝑥𝑘 +  𝑦𝑘), 

                 = (
𝑥𝑘

1+𝜑(𝑑−𝑟)+(
𝜑𝑟

𝑘⁄ )(𝑥𝑘+𝑦𝑘)+𝛽𝜑𝑦𝑘

+
(1+𝜑𝛽𝑥𝑘+1)𝑦𝑘

1+𝜑(𝑎−𝑠)+(
𝜑𝑠

𝑘⁄ )(𝑥𝑘+𝑦𝑘)
) − (𝑥𝑘 +  𝑦𝑘). 

 

Since 𝐸1 and 𝐸2 do not exist, 𝑑 − 𝑟 > 0 and 𝑎 − 𝑠 > 0. Since 𝐸3 does not exist, ∆𝑉(𝑥𝑘, 𝑦𝑘 ) ≠ 0. 

Hence, for (𝑥𝑘, 𝑦𝑘 ) ∈ Ω, we have ∆𝑉(𝑥𝑘, 𝑦𝑘 ) < 0. Therefore, by the Lyapunov stability theorem, 

Khalil (2002), the global stability of 𝐸0 is ensured.                                                                        ∎ 
  

Consequently, we proved that the NSFD schemes (5)- (6) captures all the properties (𝑝1) − (𝑝6) of 

the continuous model (2).    

 

5.  Numerical Simulation 
 

In this section, in order to confirm the validity of obtained results and to demonstrate the efficiency 

of the designed NSFD scheme, we present some numerical results of the NSFD scheme obtained 

in the previous sections. Assume that 𝜑(ℎ) =
1−𝑒−𝛿ℎ

𝛿
, Mickens (2005). Note that 𝜑(ℎ) < 1

𝛿⁄  and 

𝜑(ℎ) = ℎ + 𝑂(ℎ2). We set the parameter as follows, Ashyani et al. (2016): 

 

                              𝑎 = 3,   𝑑 = 1,   𝑘 = 5,   𝑟 = 0.1,   𝑠 = 2,   𝛽 = 5.                               (12) 
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In this case, the equilibrium points 𝐸1, 𝐸2, and 𝐸3 do not exist. Hence, according to the theorem 2, 

𝐸0 is globally stable. Moreover, the eigenvalues of 𝐽(𝐸0) are 𝜆1 ≈ 0.8597 and 𝜆2 ≈ 0.8465. In 

Figures 1 and 2, with 𝑥0 = 𝑦0 = 0.5 and parameters given in (12), 𝑥(𝑡) and 𝑦(𝑡) are attracted to 

the components of 𝐸0 = (0, 0). In Table 1, the numerical solutions are given at a few points. It is 

seen that the numerical solutions tend to 𝐸0 = (0, 0). 
 

Now we set the parameters as follows: 

                                 𝑎 = 2,   𝑑 = 0.01,   𝑘 = 70,   𝑟 = 0.2,   𝑠 = 1,   𝛽 = 0.1.                         (13) 

In this case, (𝛽𝑘 + 𝑟 − 𝑠) = 6.2 > 0 and 𝑑𝑠 − 𝑎𝑟 = −0.39. Hence, the equilibrium point 𝐸3 =
(11.9194, 1.5161), is locally asymptotically stable. The eigenvalues of 𝐽(𝐸3) are 𝜆1,2 ≈

0.9975 ±  0.0360 𝑖. Therefore, |𝜆1,2| = 0.9981. In Figures 3 and 4, with 𝑥0 = 𝑦0 = 0.5 and the 

parameters given in (13), 𝑥(𝑡) and 𝑦(𝑡) are attracted to the components of 𝐸3. 
 

In Table 2, the numerical solutions of the NSFD scheme (6) with parameters (13) are given at a 

few points. It is seen that the numerical solutions tend to the equilibrium point 𝐸3 =
(11.9194, 1.5161). 
 

We set the parameters as follows: 

                              𝑎 = 1,   𝑑 = 0.1,   𝑘 = 29,   𝑟 = 0.2,   𝑠 = 1.001,   𝛽 = 0.1.                       (14) 

In this case, (𝛽𝑘 + 𝑟 − 𝑠) = 2.099 > 0 and 𝑑𝑠 − 𝑎𝑟 = −0.0999. Hence, the equilibrium point 

𝐸3 = (0.4621, 0.9057), is locally asymptotically stable. The eigenvalues of 𝐽(𝐸3) are 𝜆1,2 ≈

0.9984 ± 0.0050 𝑖. Therefore, |𝜆1,2| = 0.9984. In Figures 5 and 6, with 𝑥0 = 𝑦0 = 0.5 and the 

parameters given in (14), 𝑥(𝑡) and 𝑦(𝑡) are attracted to the components of 𝐸3. 
 

In Table 3, the numerical solutions of the NSFD scheme (6) with parameters (14) are given at a 

few points. It is seen that the numerical solutions tend to the equilibrium point 𝐸3 =
(0.4621, 0.9057). 

 

 

Figure 1.  Convergence of the NSFD scheme (6) to the components of 𝐸0 = (0, 0), for parameters given in (12) 

with  𝑥0 = 𝑦0 = 0.5, ℎ = 0.1 
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Figure 2. Stable limit cycles for parameters given in (12) and initial conditions 𝑥0 = 𝑦0 = 0.5, ℎ = 0.1  

 

Table 1. The numerical solutions of the NSFD scheme (6) with parameters given in (12) 
 

𝒕𝒏  𝒙𝒏  𝒚𝒏  

0 0.5000 0.5000 

2 0.0017 0.1349 

4 8.6110e-04 0.0233 

6 1.6294e-04 0.0041 

8 3.3383e-05 7.2021e-04 

10 6.9362e-06 1.2701e-04 

12 1.4447e-06 2.2399e-05 

14 3.0106e-07 3.9505e-06 

16 6.2739e-08 6.9673e-07 

18 1.3075e-08 1.2288e-07 

20 2.7248e-09 2.1672e-08 

 

 

Figure 3. Convergence of the NSFD scheme (6) to the components of 𝐸3 = (11.9194, 1.51613), for parameters 

given in (13) with  𝑥0 = 𝑦0 = 0.5, ℎ = 0.1 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x(t)

y
(t

)

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45

t

x

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

t

y



A. R. Yaghoubi and H. Saberi Najafi  816 

 

 

Figure 4. Stable limit cycles for parameters given in (13) and initial conditions 𝑥0 = 𝑦0 = 0.5, ℎ = 0.1  

 
 

Table 2. The numerical solutions of the NSFD scheme (6) with parameters given in (13) 
 

𝒕𝒏  𝒙𝒏  𝒚𝒏  

0 0.5000  0.5000 

100 9.8451  1.0089 

200 11.8447  1.5761 

300 11.9333   1.5173 

400 11.9195   1.5158 

500 11.9193   1.5161 

600 11.9194   1.5161 

700 11.9194   1.5161 

800 11.9194   1.5161 

900 11.9194   1.5161 

1000 11.9194   1.5161 

 

  

Figure 5. Convergence of the NSFD scheme (6) to the components of 𝐸3 = (0.4621, 0.9057), for parameters 

given in (14) with 𝑥0 = 𝑦0 = 0.5, ℎ = 0.1 
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Table 3. The numerical solutions of the NSFD scheme (6) with parameters given in (14) 
 

𝒕𝒏  𝒙𝒏  𝒚𝒏 

0 0.5000 0.5000 

100 0.3939 0.8363 

200 0.4497 0.9140 

300 0.4608 0.9092 

400 0.4620 0.9057 

500 0.4622 0.9055 

600 0.4621 0.9057 

700 0.4621 0.9057 

800 0.4621 0.9057 

900 0.4621 0.9057 

1000 0.4621 0.9057 
 

 

Figure 6. Stable limit cycles for parameters given in (14) and initial conditions 𝑥0 = 𝑦0 = 0.5 with ℎ = 0.1  

 

6.  Conclusion  

In this paper, we have constructed the non-standard finite difference scheme for investigating the 

stability of the equilibrium points of the mathematical model of virus therapy for cancer which is 

a nonlinear system of ordinary differential equations. The constructed scheme captures many of 

the essential dynamical features of the continuous-time model (2) such as positivity, boundedness, 

invariance of a solution, and convergence to the equilibrium point. Therefore, in the numerical 

simulations, the non-standard finite difference method always gave numerical results that are 

dynamically consistent with those of the continuous-time model. The use of non-standard finite 

difference method and its approximations play an important role for the formation of stable 

numerical methods. The main advantage of the schemes is that the algorithm is very simple and 

very easy to implement. Thus, this method may be applied as a simple and accurate solver for 

ODEs and PDEs and it can also be utilized as an accurate algorithm to solve linear and nonlinear 

equations arising in physics and other fields of applied mathematics. The graphical results in 

figures show that the presented scheme has good accuracy.  
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The main contribution of this paper is that we have established analysis of the stability of the 

equilibrium points of a mathematical model which described the interaction between two types of 

tumor cells which presented by Wodarz. The stability of the equilibrium points of differential 

equations plays a fundamental role in the study of the asymptotic behavior of differential 

equations. Constructing difference schemes that preserve the stability behavior of the equilibrium 

points is important in numerical simulation. The global stability of the disease-free equilibria 𝐸0 

is done by applying the techniques of Lyapunov function. Stability of the equilibrium point 𝐸0 

means that both infected and uninfected cells are destroyed and therapy is successful. Stability of 

𝐸1 means that the uninfected cells exist and are not destroyed which means after virus injection, 

all viruses are destroyed but tumor still exists. Therefore, the stability of this point is not useful for 

cancer therapy. Stability of 𝐸2 means that the infected cells exist and are not destroyed which 

means after virus injection, all tumor cells are infected but did not disappear. Hence, the stability 

of this point is not useful for cancer therapy. The equilibrium point 𝐸3 is important in biology. 

Existence of this point means that both of the uninfected and infected tumor cells exist and its 

stability means that the tumor growth is controlled in a way that it cannot reach to the carrying 

capacity 𝑘. Hence, the tumor exists and does not completely destroy but we could control the size 

of tumor. therefore, if we provide conditions for parameters in subsection 4.4 it means that with 

this therapy we could control the size of tumor and therapy is effective. 

 

We didn’t prove the global stability of endemic equilibrium point 𝐸3, because the calculations are 

tedious, we plan to pursue it on a separate paper. 
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