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Abstract

The main object of this paper is to introduce a new family of distributions, which is quite flexible
to fit both unimodal and bimodal shapes. This new family is entitled alpha-skew generalized
normal (ASGN), that skews the symmetric distributions, especially generalized normal
distribution through this paper. Here, some properties of this new distribution including cumulative
distribution function, survival function, hazard rate function and moments are derived. To estimate
the model parameters, the maximum likelihood estimators and the asymptotic distribution of the
estimators are discussed. The observed information matrix is derived. Finally, the flexibility of the
new distribution, as well as its effectiveness in comparison with other distributions, are shown via
an application.

Keywords: Alpha-skew distribution; Generalized normal distribution; Maximum likelihood
estimator; Skew-normal distribution
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1. Introduction

Recently, the skew-symmetric distributions have received considerable amount of attention, for
example, the alpha skew normal (ASN) distribution is studied by Elal-Olivero (2010). First, he
introduced a new symmetric bimodal-normal distribution with the pdf
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f(y) = y?a(y).

where ¢ is standard normal density function, and then defined alpha-skew-normal distribution as

f(y;a)=(l‘zf"+—y0){2+l¢(y), yei. aci,

where o is skew parameter. A random variable with ASN distribution is denoted by X ~ ASN ().

Also, Shams Harandi and Alamatsaz (2012) introduced the alpha-skew Laplace (ASL) distribution
with the pdf

1-ay)®+1 _
()= Reh yeq, ey,

and investigated some of its properties and denoted this random variable with X ~ ASL(«) .

In this paper, a more general case of these two mentioned distributions is presented, which is called
as alpha-skew generalized normal (ASGN) distribution which is obtained by adding a skew
parameter « to the generalized normal distribution (GND) proposed first by Lee et al. (2013) with
pdf

1 b
f(y, ) =—5——e yej, o>0.

20°T (1)
W

The motivations for considering this density are:

1. The alpha-skew generalized normal distribution with at most two modes is very flexible
and includes five classes of important distributions: Normal, Laplace, Alpha-Skew-
Normal, Alpha-Skew-Laplace and Bimodal-Generalized Normal as special cases.

2. It seems that the admissible intervals for the skewness and the kurtosis parameters are

(-0.685, 3.803) and (1.250, 3.325), respectively, which are wider than those of the

Azzalini’s the ASN distributions, (—0.811, 0.811) and (—1.300, 0.749), respectively.

3. In many applied studies, data may be skew and bimodal with thinner or thicker tails than
normal. We believe that the distribution ASGN can illustrate a better fit with respect to the
fitted models for some this kind of real data sets. It is obvious that the new introduced
models are not provided best fit in compared to all other models, but of course it is
necessary to provide best fit in compared to its sub-models.

The remainder of the paper is organized as follows: In Section 2, we define the ASGN distribution
and outline some special cases of the distribution. Also, some properties of the distribution are
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investigated in this section. cumulative distribution, survival and hazard rate functions are obtained
in Section 3. we provide a general expansion for the moments of the ASGN distribution in Section
4. Skewness and kurtosis indices are presented in Section 5. Stochastic representation for this
model is discussed in Section 6. We introduce the location-scale version of this distribution in
Section 7. In Section 8, we focus on maximum likelihood estimation (MLE) and calculate the
elements of the observed information matrix. A simulation study is performed in Section 9.
Application of the ASGN distribution using a set of real data is given in Section 10. Finally,
Section 11 concludes the paper.

2. Alpha-skew generalized normal distribution
Definition 2.1.
If a random variable Y has the following density function,

o-3 ||

2 2]

S

f(y; w)="2

where » > 0, then we say that Y follows the bimodal-generalized normal BGN distribution.
Definition 2.2.

If a random variable X has the following density function,

L
w ’”[(1—ax)2+1} HLe

e v, Xej, 1)
( o ( j (1D
a0 0]

f(X; a, w)=

where ae; and >0, then we say that X follows the alpha-skew generalized normal
distribution with parameters « and @, which is denoted by X ~ ASGN (o, @) .

If X ~ ASGN («, ®) , the following properties are concluded directly from the definition:
e If a=0and w=1,then X ~ Laplas(0,1).
e Ifa=0and w=2,then X ~N(0,1).
e If w=1,then X ~ASL(«x).
e If w=2,then X ~ASN(a).
e If @ > +tow,then X ~BGN(w).
—X ~ ASGN(-«a).
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Theorem 2.1.

The alpha-skew generalized normal density function has at most two modes.
Proof:

Differentiating (1), we have

-1 ‘ X ‘ ©

wee © (Za(ax ~1)—(a*x* —2ax+2)| X | x))
z(azmz’wr(3)+2r(ln
w w

Due to @, the above equation is not solved simply. So, it is sufficient to prove the especial cases.
Putting @ =1 in the above equation, we get

f'(x)=

e [a’X’ —2a(1-a)x-(22-2)|  ifx<0,
1

PO

(2
e * [—oczx2 +2a(1+a)x—(2a+ 2)] if x>0.

It is obvious that each expression in the above has at most two roots. The roots of second

l+a—a® -1 1+ a+a? -1

expression occur in X, =——  and X, = —— — and the roots of first expression
(24 o
- * 1_ - 2 _1 * 1_ + \/ 2 _1 - -
occur in X, —=TETNE T2 and X, —="%7NZ 72 Whilea? —1>0, we have the following
o o

cases

a) for a>1:itis easily observed that x, >0, x,x <0and x; >0;
b) for a< —1:itis observed that x, <0, x_,x >0and X, <0.

Therefore, there are only three acceptable roots in each case. Hence, f(x) can have at most two

modes. For —1<a <1, f'(x) has not real root, but it is positive for x <0 and is negative for
x > 0. In this case, f(x) is unimodal.

Putting =2, we obtain

f'(x)= ¢( ) [ a’x® +2ax? —(2 2a° )x—Za],
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where f '(x) has at most three roots and also in this case, f (x) has at most two modes. For o> 2,

the complicated mathematical computations are needed, but the claim can be proved by drawing
some plots of density function for different values of .

Plots of the alpha-skew generalized normal density function for selected parameter values are
given in Figure 1.
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Figure 1. Plots of the alpha skew generalized normal density function for different values of & and @

3. The cumulative distribution, survival and hazard rate functions

If X ~ ASGN(«, @), then cumulative distribution function of X is given as
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o r( (=%)" J+2awmr(2 (‘X)‘”}zr[l,(‘x)"’j
a) (4] (0] w .
if x<0,
oaorer(()r(y)
(4]
F(Xa,w)=
2a a)Z"‘T(sj aza)z'“’l"Ls,ijJrZa 1’“’1"(2 ij 21"[1 Xj 41"(1)
w w w w W w w w .
, if x>0,
2(a2w2’wr(3j+2r(ljj
w w

where the incomplete gamma is defined as
I'(a, X)= j:’ta‘l exp(~t)dt .

The survival and hazard rate functions of random variable X from the ASGN distribution is as
following, if x<0,

1 w
Zazwzmr(3j+aww+1r(a)+2j_2aw1/wr(zj_azwzlwr(?" (—=x) ]
(0] (4] [4] (4] (0]

S(x) =
Z(aza)z”’ r(3j +2I (1D
® ®
1/a;r( (=x)” j (,(_X)wj—a)r(]ﬁlj—r(l)
o o o ® ®
[aza)m’f‘(sj+2r(1j)
® ®
2a2a)2""1“(3j+aa)‘t+ll“(w+2j 20007 T 2] Za)Z""F[g,(_X)wJ
® ® ® ® o
H(x) =

B B R H o X e
[0 (0] (0] [0 [0 (0]
2aa)“wr[2 (=x)” ] 2r[1,(_x)mj+2wr(1+1j+zr 1)
[0 [0 [0 [0 (0]

e (Wﬂwr( (%) j (2’(_X)MD+2F[1’(_X)WJ
a) [0 w [0 [0 w

e

—+

and if x>0,
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2a2a)2’wr(3 —azwz’wr[3,x j+2aa)“wr[2,xJ—zr(l,xjwr(lj
(0] w @ (0] o @ [0
aaf’(aafmF[S X J—ZF(Z,X j +

a @ o @

4. Central moments and moment generating function

H(x) =

If X ~ASGN («,®) , then the rth central moments of X can be obtained as

)
(2l
0™ (D" +r (r;l)

2a2w2/wf(3j+4rﬂlj
w w

and the moment generating function of X can be written as

E(X") =

+

M, 0 -E) -3 EX)

n=0

[ (7))

o Nt 20° a)Z/"T(3)+4F(1j

0 ()

2w (((—1)r +1)r(r+1)j
w
20 0¥ r(g’j + 4r(1j
w w

By applying mathematical calculations and separating even and odd expressions, we get

+
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2n+2
o 4o wr(2n+1j (2n+3j( anilj
w
Mx(t)_z .

()
T & (2n)! 2o? wzmr( j (1j
[

5. The indices of skewness and kurtosis

Suppose X ~ ASGN (e, w) . Using first to fourth central moments, », and y, can be obtained
which are the indices of skewness and kurtosis of ASGN distribution, respectively.

Zaa)z""l“(gj
w
E(X):ﬂl:_ 3 1 '
a’ 0¥ F(j+ ZF()
w w
w w

E(X?*) =, = ’
a’ 0¥’ r(gj + zr(lj
w w
205(0‘””’1“(5)
E(X°) = =— AR
a2w2/wr(j+2r(]
(4] (4]

o (0{2 o F(7j+ 21”(5)]
E(X*) = p, = = 2
a’ a)Z"”F(gj+ZF(1j

@ a

Applying above equations, the indices of skewness and kurtosis are given respectively as
24 -3, + g
1 2\3/2
(ﬂz —H )

et G ) i A B 1)
oo (Z)eal2))
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(ﬂz_/ulz)

o (S oGl (E o) E)
B () ()
et ) )
(o r(E)r(E)-2otor () (D) oS
o r(a o) erEr ) E)

(S ({2 (22 B2

6. Stochastic representation
In this section, some theorems are expressed to obtain a stochastic representation for the BGN and
ASGN models.

V2

TN
S |w

Theorem 6.1.

Let T and V be independent random variables, where T ~Gamma(3/w,®) and

PV =1]=P[V =-1]= % If Y =TY“V ,then Y has the bimodal-generalized normal distribution.

Proof:

If h(y) is the density function of H =T ", then
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e
y’e ©

h(y)=—%5s—
F(gJ a)Slw—l

(0]

y>0,

on the other hand, if Y =HV , it is easy to show that the density function of Y is

, -t
yg  ify<o,
21’* ) a)3/(ufl , _LQJ
f =) +hel=) -
Ye " iyso zr(ij :
21“(3) ¥t
)

Hence, the proof is completed.
Remark 6.1.

As shown following, the density function (1) of ASGN («, @) model can be represented as sum of
two functions:

- ‘x‘m

a)lé [(1—05X)2 +1] e ©

f(x)= 3 1
2(0{2 @ r(j + 2r[D
(0] [0
1,1 2 9 7ﬂ 1_£ _L‘w
o W(2+a x)e o Lo *(-2ax)e | )

Z(aza)Z’("F(3)+2F(1D 2(0{2&)2’“’1“(3)+2F(1D

w @ (4 @

In equation (3), the right expression shows a symmetric density function which defined as
following.

Definition 6.3.

If random variable S has density function

1_l _‘X‘m

) ‘”(2+a2 xz)e ©

{worr(Sha()]

fs(x)z Xei, (4)
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where «a, e , then random variable S is the symmetric component of ASGN («,®)
distribution and denoted as S ~ SCASGN («, @) .

If S~ SCASGN («, ), then the following properties are satisfied:
e Ifa=w=0,then S~N(0,1).
e If o > +oo,then S~BGN.

Remark 6.2.

Note that the density function (4) is a mixture of two generalized normal density and bimodal-
generalized normal density, as following

1 _ I
a)l ’”(2+a2X2)e @
fs(x)= 2 3 1
2(0/0;!01‘(%21‘())
w 1)
2
zr(lj NG oo F(3j G
@ e ° 2 x‘e ©
~, 2 (3 N i1y, 2 3 1y, 21 (3Y
aza)wf(j+2f(j 2w° F(j atw® F(}LZF() 2w° F[)
w w w w w w

Lemma6.1.

Let f, (x) be the density function of X ~ ASGN(a,®) and f,(x) be the density function of
S ~ SCASGN (a, @) , then we have

sup fy (X) _ 2+\/§.
xei T (X) 2

6.1. Generate random sample from ASGN distribution

A random sample from the ASGN distribution can be generated by following steps.

1) Y is generated from bimodal-generalized normal distribution as below.
1
Generate V ~DU{-11} and T ~ Gamma(i,wj, putY =TV,
(0]

2) Generate Z from generalized normal distribution, independent of Y .
3) Generate S~ SCASGN (e, w) by using mixture distribution of generalized normal and

bimodal-generalized normal, with probabilities
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Zr(lj a2 a)ler(E)
w

@
: w, = .
ZaZwZ/WF(3J+4F(lj 2a2a)2/“’1“[3j+41“(1)

w w w 0]
4) Generate U ~U(0,1), independent of S .

5) Using the acceptance-rejection algorithm in order to generate random sample X from
ASGN distribution as:

W, =

If

1 £,(S)  2A-aS) +1]
<= = :
M f(S) (2+v2)(2+a?S?)

put X =S and otherwise repeat previous steps, where

C f(x) 2

7. Location-scale Family

The location-scale Family of ASGN («,w) distribution is obtained by adding location and scale
parameters. Suppose X ~ ASGN (a, @) , then the density of W = u+oX for pe; and o >0 is
given as

®
x—,u‘

(017% {(1_ a(X—,U)jZ +1Jei,)
o
ZU(aza)Z/‘” F(3j + 21“(1)} |
w w

where 0 = (u,0,a,®) and denoted by W ~ ASGN (0).

f(w;0)=

Xej,

8. Maximum likelihood estimation

In this section, the maximum likelihood estimators (MLES) of four parameters ASGN distribution
are discussed. Let X,,L , X, denote a random sample of size n from the ASGN(u,o,a,®)

distribution. So, the associated log-likelihood function is
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ool (1[N | el |
I(y,o-,a,a))izl:log[[l a( - D +1} ; - nlogo

- nlog{z(aza)z’”F(EJJFZF(E]ﬂ—n(l—ijlog o.
w a w
By differentiating the log-likelihood function with respect to x, o, a and @, respectively,

ol ol ol ol
ou’' oo’ éa’ Ow

components of score vector ( j are derived as

%C(ﬂ,oaa)) 1{22(1(1 «) Zn‘,l }

Z(1l-az,)’+1 o
n 2az,(1-az)

1 ' ! |2, |
a_g(ﬂ,aaa)) {'Zl: l-az)?+1 —n+§|zi| }

3
N B Znaf(j
—ail(u,a,a,w){zz‘(l 2 ©

2 + !
i=1 (1_az|) +l azl—*(sJ_i_za)Z/wr(Bj
w 0]
» » 2n1“(1j a)—1+loga)+wo(1)
0 s |Zi| _wlzil I0g|zi| [0 w
EPUGILALRDY o? B 3 1
i=1 wz(aza)Z/(or(j_i_zr()j
w 0]
2 2o 3 0 3
na®w F[j(3|09w+31// (]—3+a)j
0] w
wz(aza)Z/“’F(sj+ZF(1D
w W

X; —
where z//o(x):dlc;(x) I'(x) and z; :'—ﬂ. Generally, to obtain MLEs of x4, o, o and o,
X o

four above equations should be set equal to zero and solved simultaneously. Since there exists no
closed form for these results, we used existing numerical methods in software.

8.1. Asymptotic distribution of the MLEs

The elements of the Fisher information matrix for ASGN distribution are as
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2 —2a*A +4a’E. +(@-DE||Z|°?
Ill:_E{a |}: 0 ot ( ) D | :'

ou’ o’ ’

[ 82 —2a*A +4a’E,+2aB,+E[Z|Z|"]+(w-D)E[Z|Z]|°?]
l,=1,,=-E oudo = o2 ’

[ 821 | 2aA -4aE,-2B,
l;=1;=-E ouda = o '

0%l |_-E[Z]Z]"* log(IZ])]
l,=1,=-E = ,

Ouow o

—_— az|': 20°A, +4a’E,+4aB, 1+ (w+1)E[ Z|”]
22 802 UZ !

BGH 20A,-4aE,-2B,
Iy =15, =-E - ’

| doda o

0’1 | _-E[Z°|Z]|"” log(| Z])]
Iy =1,=-E - '

| 0o 0w o

2
ZQ(a,a))wZ’”F(3}—4052604/”1"(3]
@

I33:—E{azl}:—2A2+4E2+ @/,
oa’ Q% (a, @)
) 4awi_zf(1jf(3)[ 2log(w) +y° (1j 3(//(0)( ) j
I, =1 :—E{ o’ }: w; \@ @
uow 00w o? (a ) '
, 9a2a)j’_4f(3jl//(°’(3j +9¢a° a)“’ ( jl//m[:gj
| :_E[ﬁ I}: @ @ @
“ ow* Q(a, w)
aza)2/w(4log§a’) _ijr(sj_i_azwz/w(zz 2log(a’)j F(3j
N @ 1) ) ) @
Qa, )
_3azw;z(4<1—lozg(w» 2 jf( 3 j,/,«» ( 3 j
N 1) ) @ )
Qa,w)
zr(ljw“” [1J2 + 2r(1jv/“’ (1j T 4wr(1jl//(°’ (1j
N @ @ ) @ @ @
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2

2
1 1
ol
—30(20)w Zr(sjw(o) (3j+a2w2/w (22_ 2|ng(a))jr(3j_ [0} ()]
w

w w w w w
) O’ (a,0)
| 2AZ|" ~20[|"log(1Z))+@* [2]" I0g(1Z]) . w-3+2l0g(w)
603 603 '
where
Q(a, ) :aszI’“F(§j+2F(£j, A =E 2—2 : =012,
0] 0] 1+1l-aZ)
i i 2
B —E| ZU=@2) | oy, P L N R E )
1+(1-aZ) A+1-aZ)?)
and Z~N(0,1).

In 0 =(u,0,0,2), the Fisher information matrix is

L 0 2 o
(o} (o2
o 2 0 -036
ly = o
e I
(o}
0 -036 0 062

Note from this matrix that the first and third column corresponding to the parameters x4 and «
are linearly dependent, implying that it is a singular matrix. As observed, first row of matrix | is
equal to third row multiplying by —1/c and implying that for ¢ =0 and @ =2, ASGN (e, ®)
distribution does not satisfies the regularity conditions, in other words, the information matrix |
is a singular matrix that means it has not inverse. Thus, in this case the MLEs of x, o, a and @

distribution cannot be reached based on usual procedure. Considering singularity problem for
Fisher information matrix, the general result in Rotnitzky et al. (2000) can be applied in order to
establish asymptotic distribution of MLEs as follow.

At =0", we consider first order partial derivatives.
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VA
Sﬂ:;,
2_
S - Z 1’
(o)
S, =-Z,

ZZ
S, =~5-(2l0g|Z|-1)-0.067,

4]

where S, =—o x S, then we use reparametrization.

Z

o

. 2

o1(Y;0) _7-K, Z°-1 |
oa |y o
ZZ
—T(Zloglz |—1)—0.067
So,
K,=(-0,0,0),

and

A =(-5,0,0,0)" c.

By applying following reparametrization and substituting in condition C1 in Rotnitzky et al.
(2000), we have

u —oa
~_[o) [ O
0= o L
w 0
f=u+oa, 6, a, @) = (0, w),
§(1) =0 §(2) =0 §(3) =73

where § is neither zero nor a linear combination of §,, §_, §, and at s =3, we used Theorem 5
in Rotnitzky et al. (2000). Using Theorem 5, the following results are gotten for 0 = (¢, 0, o, ®) .

When @ = 0 *, MLE of 0 exists and is unique with probability tending to 1 and is consistent for
0;
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N2 (i- i’ " Q) ;
nl/2 (6-_0*) ] 2
U6 A | _t
n"—a 233
/ A *
N2 (60— ) z,

where (Zl, Z,,Z,, Z4) is a random vector of normal with mean zero and covariance matrix equal

to inverse of vector covariance matrix

2 3 2
5*, z - 1,2—, Z (@-2log|Z|)—0.067 |,
o o 6 4

where obtained as

= 0 = 0
o 20
o 2 o =03
O (02
.
20 12
o 9% o on
(o2

and

2{1,(8) = Ln(8)} —— x2.

9. Simulation

In this section, the aim is to evaluate the maximum likelihood estimation of x4, o, « and @ by
using numerical methods and to obtain some quantities such as bias and the mean square error
(MSE) to verify usefulness of these estimators. The acceptance-rejection algorithm is applied in
simulation. The simulation results are presented to verify the consistency properties of the MLEs.
All computations were implemented by using the Mathematica and R software. The simulation
results of MLEs, bias and MSE of the ASGN distribution parameters are reported for £ =0, o =1
and sample sizes n =100, 300, 500 with 10000 iterations in Table 1. As the sample size increases
the estimated values of parameters tend to their true values that means the bias and the mean
squared errors decrease.
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10. Data Analysis

In this section, to illustrate the applicability of normal, alpha skew normal and alpha skew
generalized normal models, a real data sets are analyzed. The data are the strengths of 1.5 cm glass
fibers, measured at the National Physical Laboratory, England. Unfortunately, the units of
measurement are not given in the paper. To study previous works on this data, one can see Barreto-
Souza et al. (2010) and Smith and Naylor (1987).

The models N(u«,0) and ASN(u,o,«) are fitted to the data set using the maximum likelihood
approach. Results are reported in Table 2. The standard errors of estimators being estimated by
using the observed information matrix. Table 2 reports the MLEs of the parameters, AIC, AlCc
and BIC for the N, the ASN and the ASGN distributions. Also, the corresponding Anderson-
Darling test statistic (AD), the Cramér-von Mises test statistic (CM), the Kolmogorov-Smirnov
test statistic (K-S) and P -Value are provided in this table.

Table 1. MLEs of the parameters, AIC, AlCc, BIC, AD, CM, K-Sand $ P $-
Value for the N, the ASN and the ASGN distributions

N ASN ASGN
7 1.5068 1.3200 1.4900
o} 0.3215 0.2560 0.0393
& -1.5775 -1.2276
@ 0.57931
—log L 17.9118 10.5191 8.7047
AIC 39.8236 27.0383 25.4095
AlCc 40.0236 27.4451 26.0992
BIC 40.4341 27.9540 26.6305
AD 1.8991 0.4349 0.5304
CM 0.4274 0.1644 0.1396
K-S 0.1810 0.1039 0.0721
P —Value 0.0321 0.5061 0.8984

Table 2. Bias and MSE of the MLE of 1, o,  and w for the ASGN distribution.

Estimates of 1 Estimates of o Estimates of « Estimates of @

a n Bias MSE Bias MSE Bias MSE Bias MSE

-1 0.5 100 0.0480 0.0421 0.4863 0.4497 0.6370 0.6365 —0.2498 0.0626
300 0.0394 0.0243 0.4731 0.3657 0.7646 0.6174 —0.2506 0.0629

500 0.0366 0.0207 0.4851 0.3828 0.7755 0.6338 —0.2501 0.0627

1 100 -0.0118 0.0628 0.0133 0.1102 -0.0139 0.0578 0.0252 0.0680
300 -0.0031 0.0135 0.0054 0.0240 -0.0017 0.0146 0.0047 0.0116

500 -0.0026 0.0066 0.0029 0.0134 -0.0016 0.0083 0.0031 0.0063
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1.5 100 0.1112 0.0788 -0.1484 0.0711 0.0976 0.1898 0.4209 0.5769
300 0.0431 0.0236 —0.1275 0.0364 0.0597 0.0632 0.3827 0.2449

500 0.0300 0.0084 -—0.1147 0.0236 0.0675 0.0288 0.3899  0.2000

2 100 0.0958 0.0629 -—0.2415 0.0970 0.1801 0.2574 0.1598 0.5235
300 0.0361 0.0150 -0.2282 0.0711 0.1323 0.0905 0.1323 0.1402

500 0.0194 0.0051 -0.2130 0.0556 0.1407 0.0527 0.1123 0.0842

1 05 100 0.0015 0.0047 -0.0007 0.0153 -0.0015 0.0026 0.0235 0.0076
300 -0.0009 0.0015 -—0.0037 0.0046 —0.0023 0.0005 0.0075 0.0019

500 -0.0006 0.0005 -0.0028 0.0027 -0.0004 0.0002 0.0040 0.0010

1 100 -0.0083 0.0400 -0.0230 0.0176 —0.0074 0.0267 0.0382  0.0505

300 -0.0001 0.0104 -0.0074 0.0055 -0.0001 0.0058 0.0110 0.0126

500 -0.0001 0.0050 -—0.0029 0.0033 0.0003 0.0025 0.0079 0.0073

1.5 100 -0.0116 0.1066 —0.0241 0.0193 -0.0171 0.0948 0.0879  0.2647
300 0.0033 0.0609 -0.0164 0.0052 0.0030 0.0545 0.0094 0.0398

500 0.0055 0.0461 -0.0110 0.0028 0.0061 0.0393 0.0091 0.2090
2 100 0.0147 0.1103 0.0027 0.0213 0.0176 0.1433 0.2279 0.6768
300 -0.0139 0.0819 0.0008 0.0059 -0.0128 0.0981 0.0731 0.1243
500 0.0033 0.0777 0.0022 0.0034 0.0019 0.0907 0.0462 0.0662

0 0.5 100 -0.0470 0.0483 0.4997 05202 —0.7693 0.6497 0.2499 0.0625
300 —0.0500 0.0262 0.4774 0.3632 -0.7851 0.6536 —0.2506 0.0629

500 —0.0387 0.0192 0.4425 0.2827 -0.7731 0.6298 -0.2502 0.0627

1 100 0.0006 0.0464 0.0209 0.0865 —0.0062 0.0487 0.0236  0.0490

300 -0.0001 0.0131 0.0031 0.0240 0.0028 0.0144 0.0055 0.0123
500 0.0065 0.0071 0.0056 0.0124 0.0058 0.0077 0.0050 0.0062
1.5 100 -0.1057 0.0723 -0.1446 0.0698 -—0.0826 0.1764 0.4317 0.5506

300 -0.0423 0.0169 -0.1165 0.0308 -0.0708 0.0480 0.4091 0.2582
500 -0.0284 0.0067 —0.1149 0.0220 -0.0714 0.0241 0.3898 0.1969
2 100 -0.0938 0.0624 -0.2503 0.0996 —0.1640 0.2532 0.1220  0.4060
300 -0.0381 0.0168 -0.2204 0.0658 —0.1495 0.0944 0.1102  0.1450
500 -0.0199 0.0056 -0.2143 0.0566 —0.1401 0.0549 0.1094 0.0860

From the values of AIC, AlICc, BIC, AD, CM and K-S statistics, the ASGN distribution displays
a better fit to this data than the N and the ASN distributions. P -Value corresponding to K-S
statistic implies that both the ASGN and the ASN distributions are the suitable the fit to the data,
but the N distribution is not a suitable the fit to the data with 95% confidence.

In the following to assure the results, the likelihood radio test (LRT) is performed for the
hypothesis
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H,: X ~ ASGN ©)

Hy: X ~N Hy:a=0,0=2
H:a#0,0#2

To verify test (5), it is sufficient to compare the likelihood radio test statistic with the 95% critical
value, y*(4) . Since the value of statistics are 18.42 and 9.41, respectively, so the null hypothesis
is rejected, concluding that ASGN gives a better fit to the data than the normal model.

11. Conclusion

In recent years, many new distributions are introduced by statistical researchers to fit the real data
sets in around us. The main object of this paper is to introduce a symmetric new distribution which
is quite flexible to fit the both unimodal and bimodal shapes. we introduce the alpha-skew
generalized normal distribution that skews the symmetric distributions, especially generalized
normal distribution. Some properties of the new distribution including cumulative distribution
function, survival function, hazard rate function and moments are derived. To estimate the model
parameters, the maximum likelihood estimators and the asymptotic distribution of the estimators
are discussed. The observed information matrix is derived which is singular. Finally, the flexibility
of the new distribution, as well as its effectiveness in comparison with other distributions, are
shown via an application.
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