
Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 14, Issue 2 (December 2019), pp. 762 – 776

Numerical Solution of the Lane-Emden Equations
with Moving Least Squares Method

1Sasan Asadpour, Hassan Hosseinzadeh and 2∗AllahBakhsh Yazdani

Department of Mathematics
University of Mazandaran

Babolsar, Iran
1S.Asadpour@stu.umz.ac.ir; 2Yazdani@umz.ac.ir

∗Corresponding Author

Received: October 7, 2018; Accepted: May 31, 2019

Abstract

In the present paper, we have used moving least squares (MLS) method to solve the integral form of
the Lane-Emden equations with initial conditions. The Volterra integral form of the Lane-Emden
equations overcomes their singular behavior at x = 0, and the MLS method leads to a satisfactory
solution for the equation. The convergence of the method is investigated and finally its applicability
is displayed through numerical examples.
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1. Introduction

The Lane-Emden equations were first developed by the two astrophysicists Jonathan Homer Lane
and Robert Emden while they were engaged in the analysis of the behavior of a spherical cloud of
gas acting under the mutual attraction of its molecules based on thermodynamic rules (Richardson
(1921)). These equations are generally defined in the following form:

u
′′
(x) +

k

x
u
′
(x) + f(u(x)) = 0, x 6= 0, (1)
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where f(u) is some given function of u. Equation (1) constantly has an analytic solution in the
neighborhood of the singular point x = 0 with the following initial conditions (Davis (1962)):

u(0) = α, u
′
(0) = 0. (2)

Equation (1) with various f(u)s can be observed in different phenomena within mathematical
physics including the theory of stellar structure, the thermal behavior of a spherical cloud of gas,
isothermal gas spheres and the theory of thermionic currents (Wazwaz (2011)). The most known
form of f(u) is introduced as the following:

f(u) = uξ, (3)

where ξ is a constant parameter. Beside this, other forms of f(u) such as exponential functions are
as the following:

f(u) = eu(x), f(u) = e−u(x).

A complete explanation of the formation of these models and the physical structure of their solu-
tions can be found in the references (Wazwaz (2002); Wazwaz (2005); Yildirim et al. (2009)). Also,
other different ways of solving these equations can be seen in the literature (Adomian et al. (1995);
Belyschko et al. (1994); Canuto et al. (2006); Davis (1962); Levin (1998); Ravi et al. (2010);
Shang (2009); Yildirim et al. (2009)), most of which use algorithms based on series solutions or
perturbation techniques. The purpose of the present paper is to use the MLS method to solve the
Lane-Emden equation. In so doing, we will first change the Lane-Emden equation into its Volterra
integral form to overcome its singular point in the neighborhood of x = 0, and then solve it with
MLS method.

2. The Volterra integral form of Lane-Emden equation

In this section, in order to overcome the singularity of the equation its Volterra integral form will
be presented. This form has been offered by Wazwaz et al. to solve the Lane-Emden equation in
their article (Wazwaz et al. (2013)).

According to Equation (1), if k 6= 1, in order to transform it to integral form we set:

u = α− 1

k − 1

∫ x

0

t

(
1− tk−1

xk−1

)
f(u(t))dt. (4)

By two times derivating Equation (4) and applying the Leibniz’s rule, we have:

u
′
(x) = −

∫ x

0

(
tk

xk

)
f(u(t))dt,

u
′′
(x) = −f(u(x)) +

∫ x

0

k

(
tk

xk+1

)
f(u(t))dt.

Multiplying u′(x) by k
x

and adding the result to u′′(x) gives the generalized Lane-Emden Equation
(1). This shows that the Volterra integral form (4) is the equivalent integral form for the generalized
Lane-Emden equation. If k = 1, the integral form will be:

u = α +

∫ x

0

t ln

(
t

x

)
f(u(t))dt, (5)
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which can be obtained in the limit as k → 1 in Equation (4) by L’Hopital’s rule. Therefore, the
integral form of Lane-Emden equation is as the following:

u(x) =


α +

∫ x
0
t ln( t

x
)f(u(t))dt, k = 1,

α− 1
k−1

∫ x
0
t(1− tk−1

xk−1 )f(u(t))dt, k > 0, k 6= 1.

(6)

3. A summary of MLS method

The MLS, as an approximation method, has been introduced by Shepard (Shepard (1968)) in
the lowest order case and have been generalized to a higher degree by Lancaster and Salka-
uskas (Lancaster et al. (1986)). The use of MLS in solving PDEs was pioneered by the works
of B. Nayroles, T. Belytschko and others (Belyschko et al. (1994); Nayroles et al. (1991);
Nayroles et al. (1992)).

Suppose that discrete values of a function u are given at certain data sitesX = {x1, x2, · · · , xN} ⊆
Ω ⊆ R. In MLS method, approximating function in each certain data site x ∈ Ω is written accord-
ing to the value of functions which are local data sites, and in order to determine the influence of
each data point, a weight function ω : Ω× Ω→ R is used which the further it goes from data site
x, the more the value tends towards zero and for data sites x, y ∈ Ω which |x− y| is greater than a
certain threshold, it is zero. Let Pq be the space of polynomials of maximum degree q, q � N and
q ≤ s, and suppose {p0, p1, · · · , pm} are basis for Pq, where m = q (Wendland (2005)). The MLS
approximation û(x) of u(x), ∀x ∈ Ω, can be defined as

û(x) = pT (x)a(x), ∀x ∈ Ω, (7)

where pT (x) = [p0(x), p1(x), · · · , pm(x)] and a(x) is a vector with components ai(x), i =
0, 1, · · · ,m. We can use different basis such as monomials, Chebyshev and Legendre polyno-
mials for this method, but the MLS approximation can be implemented in a more stable fashion, if
a shifted and scaled polynomial basis function is used as a basis for Pq. In this paper, we use the
basis

pη(x) =

{
(xi − x)η

hηX,Ω

}
, η = 0, 1, . . . ,m,

where the fill distance is

hX,Ω = sup
x∈Ω

min
1≤i≤n

|x− xi|.

Components of vector a(x) are achieved by functional minimizing as follows:

J (x) =
n∑
i=1

ωhi(x− xi)(pT (xi)a(x)− ui)2

= [p.a(x)− u]T .W .[p.a(x)− u], (8)

where ωhi(x − xi) is the weight function associated with the node i, n is the number of nodes in
Ω for which the weight function ωhi(x− xi) > 0 and ui are the fictitious nodal values, but not the
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nodal values of the unknown trial function û(x) i.e. û(xi) 6= ui. In this study, we use the Gaussian
weight functions:

ωhi(x− xi) =


exp(−(

di
β

)2)−exp(−(
hi
β

)2)

1−exp(−(
hi
β

)2)
, 0 ≤ di ≤ hi,

0, di > hi,

where di = |x − xi|, β is a constant controlling the shape of the weight function ωhi(x − xi) and
hi is the size of the support domain. The matrices P andW are defined:

P =


pT (x1)
pT (x2)

...
pT (xn)

 , W = diag(ωh1
(x− x1), ωh2

(x− x2), . . . , ωhn(x− xn)).

From the functional solution of J with regard to a(x), the linear relation between a(x) and u is
achieved as follows:

A(x)a(x) = B(x)u, (9)

where matrices A(x) and B(x) are defined as follows :

A(x) = P TWP = B(x)P =
n∑
i=1

ωhi(x− xi)p(xi)p
T (xi),

B(x) = P TW = [ωh1
(x− x1)p(x1), ωh2

(x− x2)p(x2), . . . , ωhn(x− xn)p(xn)].

The matrix A is often called the moment matrix and its size equals (m+ 1)× (m+ 1). If we select
the nodal points such that A(x) is non-singular, then Equation (9) has the unique solution

a(x) = A−1(x)B(x)u, (10)

by putting a(x) in Equation (7) we have

û(x) = pT (x)A−1(x)B(x)u =
n∑
i=1

ϕi(x)ui, x ∈ Ω, (11)

where

ϕi(x) :=
m∑
j=0

pj(x)[A−1(x)B(x)]ji,

are called the shape functions of the MLS approximation, corresponding to nodal point xi. If
ωhi(x − xi) ∈ Cr(Ω) and pj(x) ∈ Cs(Ω), i = 1, 2, . . . , n, j = 0, 1, . . . ,m, then ϕi(x) ∈
Cmin(r,s)(Ω).

4. The details of the suggested method

As already introduced in Section 1, and with regard to the information in section 3, the Volterra
integral form of Equation (1) for k > 0, k 6= 0 is written as follows:

u(x) = α− 1

k − 1

∫ x

0

t

(
1− tk−1

xk−1

)
f(u(t))dt, x ∈ [0, 1].
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Now, by changing the variable t −→ µx the above Volterra integral form is transformed to Fred-
holm integral form:

u(x) = α− x2

k − 1

∫ 1

0

µ(1− µk−1)f(u(µx))dµ, x ∈ [0, 1]. (12)

To apply the MLS method, at firstN evaluation points {xi} are selected on the interval [0, 1] where
0 ≤ x1 < x2 < . . . < xN ≤ 1. The distribution of nodes could be selected regularly or randomly.
Then we can replace u with û =

∑N
i=1 ϕi(x)ui. So Equation (12) becomes:

N∑
i=1

ϕi(x)ui = α− x2

k − 1

∫ 1

0

µ(1− µk−1)f

(
N∑
i=1

ϕi(µx)ui

)
dµ, x ∈ [0, 1]. (13)

Since for N − n nodes ϕi(x) = 0, n is replaced by N in Equation (13). Now, by replacing x with
the evaluation points of x1, x2, . . . , xN in Equation (13), the following system of equations will be
achieved:

n∑
i=1

ϕi(xj)ui +
x2
j

k − 1

∫ 1

0

µ(1− µk−1)f

(
n∑
i=1

ϕi(µxj)ui

)
g(µxj)dµ = α, (14)

using a n1-point quadrature formula with the coefficients {τ`} and weights {ω`} in the interval
[0, 1] for numerically solving the integration in Equation (14) yields

n∑
i=1

ϕi(xj)ûi +
x2
j

k − 1

n1∑
`=1

τ`(1− τ`k−1)f

(
n∑
i=1

ϕi(τ`xj)ûi

)
g(τ`xj)ω` = α.

Here, ûis are an estimate for the uis and by using the Levenberg-Marquardt algorithm, û is finally
achieved. Then the values of u(x) at any point of x ∈ [0, 1] can be approximated by Equation (11)
as

u(x) ≈ uN(x) =
N∑
i=1

ϕi(x)ûi, x ∈ [0, 1]. (15)

5. Convergence Analysis

This section covers the convergence analysis of the proposed method. At first, the error estimate
of MLS approximation is presented in terms of the parameter R which plays the role of the mesh-
size. In Levin (1998), Levin analyzed the MLS method for a particular weight function obtaining
error estimate in the uniform norm for the approximation of a regular function in N dimensions. In
(Armentano et al. (2001)) Armentano and Duran proved error estimates in L∞ for the function and
its derivatives in the one-dimensional case. In Armentano (2001), Armentano obtained the error
estimates in L∞ and L2 norms for one and higher dimensions. In Zuppa (2003), Zuppa proved
error estimates for approximation of the function and the first and second order derivatives in L∞

norm. The error estimate of the method, proposed in this work is based on those obtained in Mirzaei
et al. (2010) and Zuppa (2003) for the one-dimensional cases.
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Let Ω be an open bounded domain in R and QN denotes an arbitrarily chosen set of N points
xi ∈ Ω referred to as nodes:

QN = {x1, x2, . . . , xN}, xi ∈ Ω.

Let IN := {Υi}Ni=1 denotes a finite open covering of Ω consisting ofN clouds Υi such that xi ∈ Υi

and Υi is centered around xi in some way, and

Ω ⊂
N⋃
i=1

Υi.

Define the radius hi of Υi as maxx∈∂Υi
{|xi − x|}.

A function u is said of class Cq,1 in Ω if and only if u is of class Cq in Ω and the partial derivatives
Dsu of u of order q(|s| = q) are Lipschitz continuous in Ω. The semi-norm | . |q,1 is defined as
(Zuppa (2003)):

|u|q,1 = sup

{
|Dsu(x)−Dsu(y)|

|x− y|
: x, y ∈ Ω, x 6= y, |s| = q

}
.

In order to have the MLS approximation well defined we need that the minimization problem has
a unique solution at every point x ∈ Ω and this is equivalent to the non-singularity of matrix A(x).
In (Zuppa (2003)) the error estimate was obtained with the following assumption about the system
of nodes and weight functions{QN ,SN = {ωhi}Ni=1}:

Proposition 5.1. (Zuppa (2003))

For any x ∈ Ω, the matrix A(x) defined in (9) is non-singular.

Definition 5.2.

Given x ∈ Ω, the set ST (x) = {i : ωhi(xi − x) 6= 0} will be called the star of x.

Theorem 5.3. (Zuppa (2003))

A necessary condition for the Property (5.1) to be satisfied is that for any x ∈ Ω,

n = card(ST (x)) ≥ card(Pq) = m+ 1.

For a sample point c ∈ Ω, if ST (c) = {i1, . . . , is}, the mesh-size of the star ST (c) is defined
by the number h(ST (c)) := max{hi1 , . . . , his}. Consider the following global assumptions about
parameters. There exist

(1) An upper bound of the overlap of clouds:

E = sup
c∈Ω

{
card

(
ST (c)

)}
.

(2) Upper bounds of the condition number:

CBq = sup
c∈Ω

{
CNq

(
ST (c)

)}
, q = 1, 2,
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where the numbers CNq(ST (c)) are computable measures of the quality of the star ST (c)
which defined in Theorem 7 of Zuppa (2003).

(3) An upper bound of the mesh-size of stars:

R = sup
c∈Ω

{
h
(
ST (c)

)}
.

(4) A uniform bound of the derivatives of {ωhi}, that is the constant Gq > 0, q = 1, 2, such that

‖Dsωhi‖L∞ ≤
Gq

R|s|
, 1 ≤ |s| ≤ q.

(5) There exist the number γ ≥ 0 such that any two points x, y ∈ Ω can be jointed by a rectifiable
curve Γ in Ω with length |Γ| ≤ γ|x− y|.

Assuming all these conditions, Zuppa (Zuppa (2003)) proved:

Theorem 5.4.

There exist constants Cq, q = 1 or 2,

C1 = C1(γ, d, E,G1, CB1), C2 = C2(γ, d, E,G2, CB1, CB2),

such that for each u ∈ Cq,1(Ω).

‖Dsu−Dsû‖L∞(Ω) ≤ CqR
q+1−|s||u|q,1, 0 ≤ |s| ≤ q. (16)

As highlighted in Zuppa (2003), the number CN2(ST (c)) can be very high near the boundary
points. This drawback can degrade appreciatively the global error estimate when q = 2.

Now we write Equation (12) in abstract form as

(λ−F)u = g, (17)

where

Fu =

∫
Ω

k(x, µ)f(u(µx))dµ.

Similarly, Equation (13) can be written as

(λ−F)û = g. (18)

Assume that F is a compact operator (for more details about the compact integral operators see
Chapter 1 of Atkinson (1997)).

Lemma 5.5.

If (17) is uniquely solvable and ‖u− û‖ → 0 then (18) is uniquely solvable.

Proof:

See Mirzaei et al. (2010), Lemma 4.1. �
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Suppose that

FMu =
M∑
i=1

k(x, τi)u(xτi)ωi,

then

‖FM‖ = maxx∈Ω

M∑
i=1

|k(x, τi)ωi|.

At the first view, the error analysis of method depends on showing ‖F−FM‖ → 0 asM increases.
This cannot be done here; in fact, (Atkinson (1997)),

‖F − FM‖ ≥ ‖F‖.

We begin by looking at quantities which do converge to zero as M →∞.

Lemma 5.6.

Let Ω be a closed, bounded set in R, and let k(x, µ) be continuous for x, µ ∈ Ω. Let the quadrature
scheme ∫

Ω

f(y)dy =
M∑
i=1

f(yi)ωi,

be convergent for all continuous functions on Ω. Define

eM(x, µ) =

∫
Ω

k(x, ν)k(ν, µ)dν −
M∑
i=1

k(x, νi)k(νi, µ)ωi, x, µ ∈ Ω, M ≥ 1,

as the numerical integration error for the integrand k(x, .)k(., µ). Then for u ∈ C(Ω),

(F − FM)Fu(x) =

∫
Ω

eM(x, µ)u(µx)dµ,

(F − FM)FMu(x) =
M∑
i=1

eM(x, τi)u(xτi)ωi.

In addition,

‖(F − FM)F‖ = max
x∈Ω

∫
Ω

|eM(x, µ)|dµ,

‖(F − FM)FM‖ = max
x∈Ω

M∑
i=1

|eM(x, τi)ωi|.

Finally, the numerical integration error converges to zero uniformly on Ω,

lim
M→∞

max
x,µ∈Ω

|eM(x, µ)| = 0,

and thus

‖(F − FM)F‖, ‖(F − FM)FM‖ → 0 as M →∞. (19)
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Proof:

See Atkinson (1997), Chapter 4, Lemma 4.1.1. �

To carry out an error analysis, we need the following perturbation theorem.

Theorem 5.7.

Let X be a Banach space, let S, T be bounded operators on X to X , and let S be compact. For
given λ 6= 0, assume λ− T : X → X is one to one and onto, which implies (λ− T )−1 exists as a
bounded operator on X to X . Finally, assume

‖(T − S)S‖ < |λ|
‖(λ− T )−1‖

.

Then (λ− S)−1 exists and is bounded on X to X , with

‖(λ− S)−1‖ ≤ 1 + ‖(λ− T )−1‖‖S‖
|λ| − ‖(λ− T )−1‖‖(T − S)S‖

.

If (λ− T )ω = g and (λ− S)z = g, then

‖ω − z‖ ≤ ‖(λ− S)−1‖‖T ω − Sω‖.

Proof:

See Atkinson (1997), Chapter 4, Theorem 4.1.1. �

Finally, the following theorem completes the convergence analysis of the method in L∞ norm.
Before that, we note that the approximation scheme in one dimension could be written in compact
form as

(λ−FM)uN = g.

Theorem 5.8.

Let u ∈ Cq,1(Ω) (q = 1, 2) where Ω be a closed, bounded set in R; let k(x, µ) be continuous for
x, µ ∈ Ω. Assume the quadrature scheme is convergent for all continuous functions on Ω. Further,
assume that the integral equation (17) is uniquely solvable for given g ∈ C(Ω) with λ 6= 0.
Moreover take a suitable approximation û of u. Then, for all sufficiently large M , the approximate
inverses (λ−FM)−1 exist and are uniformly bounded,

‖(λ−FM)−1‖ ≤ 1 + ‖(λ−F)−1‖‖FM‖
|λ| − ‖(λ−F)−1‖‖(F − FM)FM‖

≤ Q,

with a suitable constant Q <∞. For the equations (λ−F)u = g and (λ−FM)uN = g, we have

‖u− uN‖L∞(Ω) ≤ CqR
q+1|u|q,1(1 +Q‖(F − FM)‖L∞(Ω)) + ‖(F − FM)‖L∞(Ω)‖u‖L∞(Ω).

where û, R and Cq are introduced in Theorem 5.4.
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Proof:

See Mirzaei et al. (2010), Theorem 4.4. �

6. Numerical examples

In this section, some examples are provided to show the strength of the proposed method in ap-
proximating the solution of Lane-Emden equations. For computational details and the numerical
implementation of the method we take hi = 2

N−1
, for the linear case, hi = 2.5

N−1
for the quadratic

case, hi = 3
N−1

for the degree 3 case and β = 0.6
N−1

for all of them to ensure the invertibility of the
matrixA in MLS method. Also in our computations we use the 5-point Gauss-Legendre quadrature
rule for numerical integration.

Consider the following Lane-Emden equation with the values of ξ = 0, 1, 5 for f(u(x)) = uξ and
k = 2, which is a basic equation in the theory of stellar structure (Wazwaz (2001)):

u
′′
(x) +

2

x
u
′
(x) + uξ = 0, u(0) = 1, u

′
(0) = 0. (20)

It was physically shown that interesting values of ξ lie in the interval [0, 5], moreover, the exact
answer has been available only for ξ = 0, 1, 5 and for the other values of ξ series solutions are
available (Canuto et al. (2006); Ravi et al. (2010)).

It is important to note that Equation (20) for ξ = 0, 1 is linear and for the other values of ξ it is
nonlinear. According to Section 2, the integral form of Equation (20) will be as follows:

u(x) = 1−
∫ x

0

t

(
1− t

x

)
uξdt.

After replacing ξ = 0 the above equation will transform to the following:

u(x) = 1−
∫ x

0

t

(
1− t

x

)
dt,

after solving that equation, we will come up with the exact solution of the u(x) = 1− x2

3!
.

For ξ = 1 we have:

u(x) = 1−
∫ x

0

t

(
1− t

x

)
u(t)dt,

which has been solved with the MLS method. The results of the process and the comparison of its
answer with the exact solution of u(x) = sin(x)

x
can be found in Table (1) and Figures (1), (2).

Also for ξ = 5 we have:

u(x) = 1−
∫ x

0

t

(
1− t

x

)
u5(t)dt,
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Table 1. Maximum error for different m (degree of basis), N (points number)

N m = 1 m = 2 m = 3

11 7.4× 10−3 3.08× 10−4 9.91× 10−5

21 2.3× 10−3 4.01× 10−5 7.50× 10−6

41 2.6× 10−4 9.47× 10−7 4.05× 10−7

201 8.0× 10−6 1.7× 10−8 1.27× 10−10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.85

0.9

0.95

1

y

Numerical

Exact

Figure 1. Numerical approximation of degree 2 with 41 points
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o
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×10
-10

Figure 2. The MLS approximation error of degree 3 with 201 points

the exact solution of this problem is u(x) = (1 + x2

3
)
−1

2 . We have achieved the following answers
using the MLS method through comparisons with the exact solution. Refer to Table (2) and Figure
(3) for details.
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Table 2. Maximum error for different m, N

N m = 1 m = 2 m = 3

5 1.04× 10−1 2.13× 10−2 2.13× 10−2

9 9.5× 10−3 2.00× 10−3 9.39× 10−4

21 2.5× 10−3 1.26× 10−4 1.23× 10−4

51 1.9× 10−3 4.27× 10−5 2.42× 10−5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5
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2

2.5

3
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E
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×10
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Figure 3. The MLS approximation error of degree 2 with 51 points

Now, consider the following Lane-Emden equation:

u
′′
(x) +

2

x
u
′
(x) + eu(x) = 0, u(0) = 0, u

′
(0) = 0. (21)

This equation models the distribution of mass in an isothermal sphere (Momoniat et al. (2006)). In
order to solve Equation (21), first its integral form is considered,

u(x) = −
∫ x

0

t(1− t

x
)eu(t)dt.

Now, by applying the MLS method, we will solve it and compare the results with the following
series answer achieved through the Adomian Decomposition Method (ADM) (Wazwaz (2001)).
See Table (3) and Figure (4).

u(x) = −x
2

3!
+
x4

5!
− 8x6

3.7!
+

122x8

9.9!
− 4087x10

45.11!
+ e(O12).

Similarly, acceptable results can be achieved for the following equation:

u
′′
(x) +

2

x
u
′
(x) + e−u(x) = 0, u(0) = 0, u

′
(0) = 0,

that is used in Richardson’s theory (Richardson (1921)) of thermionic currents which is related to
the emission of electricity from hot bodies.
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Table 3. Maximum error for different m, N

N m = 1 m = 2

5 3.15× 10−2 2.49× 10−2

9 1.14× 10−2 3.11× 10−4

11 2.5× 10−3 4.34× 10−5

41 2.94× 10−4 6.23× 10−6
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Figure 4. The MLS approximation error of degree 2 with 41 points compared to solution of ADM

7. Conclusion

In this paper, the moving least squares method was used to solve the integral form of the Lane-
Emden equations in various forms and at the end an acceptable level of accuracy in answering
the equation was achieved. The Lane-Emden equation has been investigated before in multiple
occasions and different approaches have been offered to solve it. This paper, however, was meant
to come up with a new approach to solve the equation with an emphasis on the efficiency of the
offered approach.
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