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Abstract

Statistical summability has recently enhanced researchers’ substantial awareness since it is more
broad than the traditional (ordinary) convergence. The basic concept of statistical weighted A-
summability was introduced by Mohiuddine (2016). In this investigation, we introduce the (pre-
sumably new) concept of statistical deferred weighted A-summability and deferred weighted A-
statistical convergence with respect to the difference sequence of order r involving (p, q)-integers
and establish an inclusion relation between them. Furthermore, based upon the proposed methods,
we intend to approximate the rate of convergence and to demonstrate a Korovkin type approxi-
mation theorem for functions of two variables defined on a Banach space CB(D). Finally, several
illustrative examples are presented in light of our definitions and outcomes established in this paper.

Keywords: Statistical convergence; Statistical deferred weighted A-summability; Deferred
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1. Introduction, Preliminaries and Motivation

Let ω be the set of all real valued sequences and suppose any subspace of ω be the sequence space.
Let (xk) be a sequence with real and complex terms. Suppose `∞ be the class of all bounded linear
spaces. Let c and c0 be the respective classes for convergent and null sequences with real and
complex terms. We have

‖x‖∞ = supk|xk| (k ∈ N),

and we recall here that under this norm, all the above mentioned spaces are Banach spaces.

Kızmaz demonstrated the initial idea for spaces of difference sequences (Kızmaz) and subsequently
he also extended it to the difference sequence of order (natural) r (r ∈ N0 := N∪{0}) by defining

λ(∆r) = {x = (xk) : ∆r(x) ∈ λ, λ ∈ (`∞, c0, c)} ,

∆0x = (xk); ∆rx = (∆r−1xk −∆r−1xk+1),

and

∆rxk =
r∑
i=0

(−1)i
(
r

i

)
xk+i.

Also, these are all Banach spaces under the norm defined by

‖x‖∆r =
r∑
i=1

|xi|+ supk|∆mxk|.

For more interest in this direction, see the current works by Altay et al. (2006), Bektaş et al. (2012),
and Kadak and Baliarsingh (2015).

In the interpretation of sequence spaces, the well-established traditional convergence has got in-
numerable applications, where the convergence of a sequence demands that almost all elements
are to assure the convergence condition; that is, every element of the sequence is required to be in
some neighborhood of the limit. Nevertheless, such limitation is there in statistical convergence,
where set having a few elements those are not in the neighborhood of the limit are discarded.
Fast and Steinhaus presented and considered the preliminary idea of statistical convergence (see
Fast (1951) and Steinhaus (1951)). In the past few decades, statistical convergence has been an
energetic area of research due essentially to the aspect that it is more broad than customary (or-
dinary) convergence and such hypothesis is talked about in the investigation in the subjects of
Fourier Analysis, Functional Analysis, Number Theory, and Theory of Approximation. In fact,
see the current works (Das et al. (2018); Belen and Mohiuddine (2013); Braha et al. (2014);
Dutta et al. (2019); Jena et al. (2018); Kadak (2017); Kadak (2016); Paikray et al. (2019);
Paikray and Dutta (2019); Pradhan et al. (2018); Srivastava et al. (2018a); Srivastava et al. (2018b);
Srivastava et al. (2018c)).

Let the set of natural numbers be N and suppose that K ⊆ N. Also, let

Kn = {k : k 5 n and k ∈ K}.
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The asymptotic density of K is given by

d(K) = lim
n→∞

|Kn|
n

= lim
n→∞

1

n
|{k : k 5 n and k ∈ K}|,

presuming (that) the limit exists, where |Kn| is the cardinality of Kn.

A given sequence (xn) is statistically convergent (or stat-convergent) to a number L if, for every
ε > 0,

Kε = {k : k 5 n and |xk − L| = ε},

has asymptotic density zero (see Fast (1951) and Steinhaus (1951)). That is, for every ε > 0,

d(Kε) = lim
n→∞

|Kε|
n

= lim
n→∞

1

n
|{k : k 5 n and |xk − L| = ε}| = 0.

Here, we write

stat lim
n→∞

xn = L.

We present below an example to illustrate that every convergent sequence is statistically conver-
gent; however, the converse is not necessarily true.

Example 1.1.

Let x = (xn) be a sequence defined by

xn =


1
2
, (n = m2, m ∈ N),

n2

n2+1
, (otherwise).

Here, the sequence (xn) is statistically convergent to 1 even if it is not classically convergent.

In 2009, Karakaya and Chishti introduced the fundamental concept of weighted statistical conver-
gence (see Karakaya and Chishti (2009)) and later the definition was modified by Mursaleen et al.
(see Mursaleen et al. (2012)).

Suppose that (xn) be a sequence of nonnegative numbers with sequence of partial sum (sn) and let

Sn =
n∑
k=0

sk (s0 > 0; n→∞).

Then, upon setting

σn =
1

Sn

n∑
k=0

skxk (n ∈ N0 := N ∪ {0}),

we say (xn) is weighted statistically convergent (or statN̄ -convergent) to a number L if, for every
ε > 0,

{k : k 5 Sn and sk|xk − L| = ε},
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has weighted density zero (Mursaleen et al. (2012)). That is, for every ε > 0,

lim
n→∞

1

Sn
|{k : k 5 Sn and sk|xk − L| = ε}| = 0.

Here, we write

statN̄ limxn = L.

In 2013, Belen and Mohiuddine established a new technique for weighted statistical convergence in
terms of the de la Vallée Poussin mean (Belen and Mohiuddine (2013)) and it was subsequently in-
vestigated further by Braha et al. (2014) as the Λn-weighted statistical convergence. Very recently,
a certain class of weighted statistical convergence and associated Korovkin-type approximation
theorems involving trigonometric functions have been introduced by Srivastava et al. (see, for de-
tails, Srivastava et al. (2018a)).

Suppose X and Y are two sequence spaces and let A = (an,k) be a non-negative matrix (regular).
If for every xk ∈ X the series,

Anx =
∞∑
k=1

an,kxk,

converges for all n ∈ N and the sequence (Anx) belongs to Y , then the matrix A maps X into Y .
Here, the symbol (X, Y ) denote the set of matrices that map X into Y .

Next, as regards to regularity condition, a matrix A is said to be regular, if

lim
n→∞

Anx = L whenever lim
k→∞

xk = L.

We recall here, the well-known Silverman-Toeplitz theorem (see Boos (2000) for details), A =
(an,k) is regular if and only if

(a) sup
n→∞

∞∑
k=1

|an,k| <∞;

(b) lim
n→∞

an,k = 0 for each k;

(c) lim
n→∞

∞∑
k=1

an,k = 1.

The definition of statistical convergence was extended by Freedman and Sember (1981) just by
considering the non-negative regular matrix A = (an,k), and he termed it as A-statistical conver-
gence. Let for any non-negative regular matrix A, we say that a sequence (xn) is A-statistically
convergent (or statA-convergent) to a number L if, for each ε > 0, we have

dA(Kε) = 0,
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where

Kε = {k : k ∈ N and |xk − L| = ε}.

That is, for every ε > 0,

lim
n→∞

∑
k:|xk−L|=ε

an,k = 0.

Here, we write

statA limxn = L.

Furthermore, let (an,k) be a nonnegative regular matrix and let (xn) be a sequence. Then we say
that the sequence (xn) is statistical A-summable to a number L if, for each ε > 0, we have

d(Fε) = 0,

where

Fε = {k : k ∈ N and |Anx− L| = ε}.

Here, we write

stat lim
n→∞

Anx = L.

Subsequently, with the development of q-calculus, various researchers worked on certain new gen-
eralizations of positive linear operators based on q-integers (Agrawal et al. (2014); Aral and Gupta
(2012); Jena et al. (2017); Mursaleen et al. (2013); Srivastava et al. (2017)). Recently, Mursaleen et
al. (2015) developed the (p, q)-analogue of Bernstein operators in connection with (p, q)-integers
and later on, some results towards the estimation for Baskakov operators and Bernstein-Schurer
operators are studied for (p, q)-integers by Acar et al. (2016) and Mursaleen et al. (2015), respec-
tively.

We now recall some definitions and basic notations on (p, q)-integers for our present study.

For any n ∈ N, the (p, q)-integer [n]p,q is defined by,

[n]p,q =


pn−qn
p−q , (n ≥ 1),

0, (n = 0),

where 0 < q, p ≤ 1.

The (p, q)-factorial is defined by,

[n]!p,q =


[1]p,q[2]p,q...[n]p,q, (n ≥ 1),

1, (n = 0).
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The (p, q)-binomial coefficient is defined by,[
n

k

]
p,q

=
[n]!p,q

[k]!p,q [n− k]!p,q
for all n, k ∈ N and n ≥ k.

We also recall that, suppose 0 < q < p ≤ 1 and let r be a non-negative integer. Then, the operator

∆[r]
p,q : ω → ω,

is defined by

∆[r]
p,q(xn) =

r∑
i=0

(−1)i
[
r

i

]
p,q

xn−i.

That is,

∆[r]
p,q(xn) =

[
r

0

]
p,q

xn −
[
r

1

]
p,q

xn−1 +

[
r

2

]
p,q

xn−2 −
[
r

3

]
p,q

xn−3 + ...+ (−1)r
[
r

r

]
p,q

xn−r

= xn − [r]p,qxn−1 +
[r]p,q[r − 1]p,q

[2]p,q!
xn−2 −

[r]p,q[r − 1]p,q[r − 2]p,q
[3]!

xn−3 + ...+ (−1)rxn−r

= xn −
(
pr − qr

p− q

)
xn−1 +

(
(pr − qr)(pr−1 − qr−1)

(p− q)2(p+ q)

)
xn−2

−
(

(pr − qr)(pr−1 − qr−1)(pr−2 − qr−2)

(p− q)3(p2 + pq + q2)(p+ q)

)
xn−3 + ...+ (−1)rxn−r.

Now we present an example to see that a sequence is not convergent; however, the associated
difference sequence is convergent.

Example 1.2.

Let us consider a sequence (xn) = n+ 1 (n ∈ N). In fact, it is trivial that the sequence (xn) is not
convergent in the ordinary sense.

Also, we see that

∆[3](xn) = xn − 3xn−1 + 3xn−2 − xn−3 (xn = n+ 1),

converges to 0 (n→∞).
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For r = 3, we obtain that

∆[3]
p,q(xn) = xn − [3]p,qxn−1 + [3]p,qxn−2 − xn−3 (xn = n+ 1)

= xn − (p2
n + pnqn + q2

n)xn−1 + (p2
n + pnqn + q2

n)xn−2 − xn−3

= n+ 1− (p2
n + pnqn + q2

n)n+ (p2
n + pnqn + q2

n)(n− 1)− (n− 2) (xn = n+ 1)

= 3− (β2 + αβ + α2).

Clearly, depending on the values of p and q, the difference sequence ∆
[3]
p,q(xn) of order 3 has

different limits. This case is mostly due to the definition of (p, q)-integers. However, in order to
obtain a convergence criterion for all values of p and q, belonging to the operator ∆

[r]
p,q, we must

have to overcome this difficulty. This type of difficulties can be avoided in the following two
ways. The first one is taking p = q = 1 and thus the operator reduces to the usual difference
sequence. Next, the second way is to replace p = pn and q = qn under the limits, limn qn = α
and limn pn = β (0 ≤ α, β ≤ 1) where 0 < qn < pn ≤ 1, for all (n ∈ N). Afterwards, the
difference sequence ∆

[3]
p,q(xn) of third order 3, converges to the value 3 − (β2 + αβ + α2). Thus,

if we take qn =
(

n+1
n+1+s

)
<
(

n+1
n+1+t

)
= pn such that 0 < qn < pn ≤ 1 (s > t > 0), then

limn qn = 1 = limn pn and hence ∆
[3]
p,q(xn)→ 0 (n→∞).

Remark 1.3.

If r = 1, limn qn = 1 and limn pn = 1, then the difference operator ∆
[r]
p,q reduces to the ∆[1] (Altay

and Başar (2004)). Also, if r = 0, limn qn = 1 and limn pn = 1, then the difference operator ∆
[r]
p,q

reduces to the general sequence (xn).

Kadak introduced to weighted statistical convergence involving (p, q)-integers to prove related ap-
proximation theorems for functions (two variables) (Kadak (2016)). Subsequently, it was extended
to the generalized difference sequences involving (p, q)-gamma function and accordingly associ-
ated approximation theorems were proved (Kadak (2017)). Furthermore, Mohiuddine introduced
the notion of weighted A-summability by using a weighted regular summability matrix (Mohiud-
dine (2016)). He also gave the definitions of statistically weighted A-summability and weighted
A-statistical convergence. In particular, he proved a Korovkin type approximation theorem under
the consideration of statistically weighted A-summable sequences of real or complex numbers.
Subsequently, Kadak et al. (2017) has investigated the statistical weighted B-summability by using
a weighted regular matrix to establish some approximation theorems. Very recently, Srivastava et
al. (2018b) introduced the deferred weighted (Nörlund) summability of a sequence and accordingly
proved Korvokin type approximation theorems on the basis of equi-statistical convergence.

Motivated essentially by the above-mentioned works, here we would like to introduce the (presum-
ably new) notion of deferred weighted A-statistical convergence and statistical deferred weighted
A-summability with respect to the generalized difference sequences of order r involving (p, q)-
integers, and to establish certain new approximation results on that basis.
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2. Definitions, Notations and Regular Methods

In this section, we introduce some definitions (presumably new) that are required for our proposed
study. Also, we present here certain inclusion relations with regard to regular methods.

Let (an) and (bn) be the sequences of non-negative integers fulfilling the conditions: (a) an <
bn (n ∈ N) and (b) lim

n→∞
bn = ∞. Note that, the conditions (a) and (b) are regularity conditions

for deferred weighted mean (Agnew (1932)).

Next, we suppose that (sn) be the sequence of non-negative numbers (real) such that

Sn =
bn∑

m=an+1

sm.

Now, for defining the deferred weighted mean D(N̄ , s) by the difference operator (∆r
p,q), we first

set

Φp,q
n (∆x) =

1

Sn

bn∑
m=an+1

sm(∆[r]
p,qxm) (0 < q < p ≤ 1) (r ∈ N0 := N ∪ {0}).

The given sequence (xn) is said to be deferred weighted summable (or cD(N̄)-summable) to L

involving the difference operator (∆
[r]
p,q) if,

lim
n→∞

Φp,q
n (∆x) = L.

In this case, we write

c
D(N̄)
∆ lim

n→∞
xn = L.

We denote here the set of all sequences that are deferred weighted summable under the difference
operator (∆

[r]
p,q) by cD(N̄)

∆ .

Definition 2.1.

Let A be a nonnegative regular matrix, 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β

(0 < α, β ≤ 1) and let r is a non-negative integer. Let (an) and (bn) be sequences of non-negative
integers. A sequence (xn) is said to be deferred weightedA-summable (or [D(N̄)A; sn]-summable)
to a number L with respect to the difference operator ∆

[r]
p,q if the A-transform of (xn) is deferred

weighted summable to the same number L under the difference operator ∆
[r]
p,q; that is,

lim
n→∞

Ψp,q
n (∆x) = lim

n→∞

1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k(∆
[r]
p,qxk) = L.

In this case, we write

[D(N̄)∆
A; sn] lim

n→∞
xn = L.

We denote the set of all sequences that are deferred weighted summable using the difference oper-
ator (∆

[r]
p,q) by [D(N̄)∆

A; sn].
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Remark 2.2.

If,

an = 0, bn = n, lim
n
qn = 1, lim

n
pn = 1 and r = 0,

then the Ψp,q
n (∆x) mean is identical with the AN̄n mean (Mohiuddine (2016)) and if

A = I (identity matrix), an + 1 = α(n), bn = β(n) and sn = 1,

then Ψp,q
n (∆x) mean is same as the Λn

p,q(xn) mean (Kadak (2016)).

Definition 2.3.

Let A = (an,k) be a matrix, 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤
1) and let r is a non-negative integer. Let (an) and (bn) be sequences of non-negative integers. The
matrix A = (an,k) is said to be a deferred weighted regular matrix (or deferred weighted regular
method) if,

Ax ∈ cD(N̄)
∆ (∀ xn ∈ c),

with

c
D(N̄)
∆ limAxn = A lim(xn),

and we denote it byA ∈
(
c : c

D(N̄)
∆

)
. This means that Ψp,q

n (∆x) exists for each n ∈ N, xn ∈ c and

lim
n→∞

Ψp,q
n (∆x)→ L whenever lim

n→∞
xn → L.

We here denote the class of all deferred weighted regular matrices (methods) byR+
D(w).

As a characterization of the deferred weighted regular methods, we present below a theorem as
follows.

Theorem 2.4.

Let A = (an,k) be a sequence of infinite matrices, 0 < qn < pn ≤ 1 such that limn qn = α and
limn pn = β (0 < α, β ≤ 1) and let r is a non-negative integer. Let (an) and (bn) be sequences of
non-negative integers. Then A ∈

(
c : c

D(N̄)
∆

)
if and only if

sup
n

∞∑
k=1

1

Sn

∣∣∣∣∣
an∑

m=an+1

smam,k

∣∣∣∣∣ <∞, (1)

lim
n→∞

1

Sn

bn∑
m=an+1

smam,k = 0 (for each k ∈ N), (2)

and

lim
n→∞

1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k = 1. (3)
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Proof:

Assume that (1)-(3) hold true and that (∆
[r]
p,qxk)→ L (n→∞). Then for each ε > 0 there exists

m0 ∈ N such that |(∆[r]
p,qxk)− L| 5 ε (m > m0). Thus, we have

∣∣A(an,bn)
n (∆[r]

p,qxk)− L
∣∣ =

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k(∆
[r]
p,qxk)− L

∣∣∣∣∣
=

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k(∆
[r]
p,qxk − L) + L

(
1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k − 1

)∣∣∣∣∣
5

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k(∆
[r]
p,qxk − L)

∣∣∣∣∣+ |L|

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k − 1

∣∣∣∣∣
5

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

bn−2∑
k=1

smam,k(∆
[r]
p,qxk − L)

∣∣∣∣∣
+

∣∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=bn−1

smam,k(∆
[r]
p,qxk − 1)

∣∣∣∣∣∣+ |L|

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k − 1

∣∣∣∣∣
5 sup

k
|∆[r]

p,qxk − L|
bn−2∑
k=1

1

Sn

bn∑
m=an+1

smam,k + ε
1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k

+ |L|

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k − 1

∣∣∣∣∣ .
Taking n→∞ and using (2) and (3), we get∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k(∆
[r]
p,qxk)− L

∣∣∣∣∣ 5 ε,

which implies that

lim
n→∞

1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k(∆
[r]
p,qxk) = L = lim(xn),

since ε > 0 is arbitrary.

Conversely, let A ∈
(
c : c

D(N̄)
∆

)
and xn ∈ c. Then, since Ax exists, we have the inclusion(

c : c
D(N̄)
∆

)
⊂ (c : L∞).

Clearly, there exists a constant M such that∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k

∣∣∣∣∣ 5M (∀m,n),
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and the corresponding series

1

Pn

bn∑
m=an+1

∞∑
k=1

smam,k,

absolutely converges for each n. Therefore, (1) is valid.

We now choose a sequence x(n) = (x
(n)
k ) ∈ c0 given as,

x
(n)
k =


1, (n = k),

0, (n 6= k),

for all n ∈ N and y = (yn) = (1, 1, 1, ...) ∈ c. Then, since Ax(n) and Ay are belong to cD(N̄)
∆ , thus

2 and 3 are fairly obvious. �

Next, for the statistical version, we present below the following definitions.

Definition 2.5.

Let A ∈ R+
D(w), 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤ 1) and

let r is a non-negative integer. Let (an) and (bn) be sequences of non-negative integers and also let
K = (ki) ⊂ N (ki ≤ ki+1) for all i. Then the deferred weighted A-density of K is defined by

dAD(N̄)(K) = lim
n→∞

1

Sn

bn∑
m=an+1

∑
k∈K

smam,k,

provided this limit exists. A sequence (xn) is said to be deferred weightedA-statistical convergence
to a number L under the difference operator ∆

[r]
p,q for each ε > 0, we have

dAD(N̄)(Kε) = 0,

where

Kε = {k : k ∈ N and |∆[r]
p,q(xk)− L| = ε}.

We write here

statp,qΨ∆
lim
n→∞

(xn) = L.

Definition 2.6.

Let A ∈ R+
D(w), 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤ 1)

and let r is a non-negative integer. Let (an) and (bn) be sequences of non-negative integers. Then
the sequence is said to be statistically deferred weighted A-summable to a number L under the
operator ∆

[r]
p,q if, for each ε > 0, we have

d(Eε) = 0,
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where

Eε = {k : k ∈ N and |Ψp,q
n (∆x)− L| = ε}.

We write here

statD(N̄)p,qΨ∆
lim
n→∞

(xn) = L.

We now prove a following theorem that determines a relation between the deferred weighted A
statistical convergence and the statistical deferred weighted A-summability.

Theorem 2.7.

Let A ∈ R+
D(w), (an) and (bn) be sequences of non-negative integers and let 0 < qn < pn ≤ 1

(∀ n ∈ N) such that limn qn = α and limn pn = β (0 < α, β ≤ 1). If (xn) is deferred weighted
A-statistical convergent to a number L, then it is statistical deferred weighted A-summable to the
same number L, but the converse is not true.

Proof:

Let (xn) be deferred weighted A-statistical convergent to L under the operator ∆
[r]
p,q. We have

dAD(N̄)(Kε) = 0,

where

Kε = {k : k ∈ N and |∆[r]
p,q(xk)− L| = ε}.

Thus we have,

|Ψp,q
n (∆x)− L| =

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k(∆
[r]
p,qxk − L)

∣∣∣∣∣
5

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k
(
∆[r]
p,qxk − L

)∣∣∣∣∣+ |L|

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k − 1

∣∣∣∣∣
5

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∑
k∈Kε

smam,k
(
∆[r]
p,qxk − L

)∣∣∣∣∣
+

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k 6∈Kε

smam,k
(
∆[r]
p,qxk − L

)∣∣∣∣∣+ |L|

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k − 1

∣∣∣∣∣
5 sup

k→∞

∣∣∆[r]
p,qxk − L

∣∣ 1

Sn

∑
k∈Kε

bn∑
m=an+1

smam,k + ε
1

Sn

bn∑
m=an+1

∑
k 6∈Kε

smam,k

+|L|

∣∣∣∣∣ 1

Sn

bn∑
m=an+1

∞∑
k=1

smam,k − 1

∣∣∣∣∣→ ε (n→∞),

which implies that Ψp,q
n (∆x) → L. That is, the sequence (xn) is deferred weighted A-summable

to the number L under the difference operator ∆
[r]
p,q and hence the sequence (xn) is statistically
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deferred weightedA-summable to the same number L with respect to the same difference operator
∆

[r]
p,q. �

In order to show that the converse is not true, we present an example (below).

Example 2.8.

Let us choose an infinite matrix A as a Cesàro matrix (C, 1) and is defined by

an,k =


1
n
, (1 ≤ k ≤ n),

0, (k > n).

For limn qn = 1, limn pn = 1, sn = 1, an = 2n and bn = 4n (∀ n ∈ N), consider a sequence
x = (xn),

xn =



1
m2 , (n = m2 −m,m2 −m+ 1, ...,m2 − 1),

− 1
m3 , (n = m2, m > 1),

0, (otherwise).

We have,
n∑
k=1

∆[r]
p,qxk =

n∑
k=0

r∑
i=0

(−1)i
[
r

i

]
p,q

xn−i

=
n∑
k=1

{
xn −

[
r

1

]
p,q

xn−1 +

[
r

2

]
p,q

xn−2 −
[
r

3

]
p,q

xn−3 + ...+ (−1)r
[
r

r

]
p,q

xn−r

}

=
n∑
k=1

{
xn − [r]p,qxn−1 +

[r]p,q[r − 1]p,q
[2]p,q!

xn−2 −
[r]p,q[r − 1]p,q[r − 2]p,q

[3]!
xn−3 + ...+ (−1)rxn−r

}

=

{
(n)xn + (1− [r]p,q)(n− 1)xn−1 +

(
1− [r]p,q +

[r]p,q[r − 1]p,q
[2]p,q!

(n− 2)xn−2

)

+...+

(
1− [r]p,q +

[r]p,q[r − 1]p,q
[2]p,q!

− [r]p,q[r − 1]p,q[m− 2]p,q
[3]p,q!

+ ...

)
(n− k)xn−k

}
.

Thus,

Ψp,q
n (∆x) =

1

Sn

bn∑
m=an+1

n∑
k=1

smam,k(∆
[r]
p,qxk) =

1

n

4n∑
m=2n+1

1

n

n∑
k=1

∆[r]
p,qxk → 0,

which implies that

statΨp,q
n (∆x)→ 0.
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Hence, (xn) is not deferred weighted A-statistical convergent, even if it is statistical deferred
weighted A-summable under the difference operator of order r based on (p, q)-integers. Further-
more, (xn) is not statistical weighted A-summable; however, it is statistical deferred weighted
A-summable with respect to the difference operator of order r based on (p, q)-integers.

3. A Korovkin Type Theorem via Statistical Deferred Weighted
A-summability

Recently, a few researchers worked on extending the Korovkin type approximation theorems in
various ways based on various aspects, involving (for instance) function spaces, abstract Banach
lattices, and so on. This theory is highly valuable in Analysis and many other fields. The main
concern of this paper is to introduce the notion of statistical deferred weighted A-summability
and deferred weighted A-statistical convergence with respect to the difference sequence of order
r involving (p, q)-integers, and then to establish some associated approximation type results in
relevance to our presumably defined new concept of statistical deferred weighted A-summability,
that will effectively extend and improve most (if not all) of the existing results depending on the
choice of deferred weighted A-mean. Furthermore, based upon the proposed methods, we wish to
approximate the order of convergence and to investigate a Korovkin type approximation result for
a function of two variables. In fact, we extend here the result of Mohiuddine (2016) by using the
notion of the statistical deferred weighted A-summability for the generalized difference sequence
of order r involving (p, q)-integers and prove the following theorem.

Let D be any compact subset over R2. Let, CB(D) be the space of all real valued continuous func-
tions on D under the norm:

‖f‖CB(D) = sup{|f(x, y)| : (x, y) ∈ D}, f ∈ CB(D).

Let T : CB(D)→ CB(D), we say that T is a positive linear operator, for

f = 0 implies T (f) = 0.

Also, we use the notation T (f ;x, y) for the values of T (f) at the point (x, y) ∈ D.

Theorem 3.1.

Let A ∈ R+
D(w), (an) and (bn) be a sequences of non-negative integers. Let r be a non-negative

integer, and let 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤ 1). Let
Tn (n ∈ N) be a sequence of positive linear operators from CB(D) into itself and let f ∈ CB(D).
Then,

stat D(N̄)p,qΨ∆
lim
n
‖Tn(f(s, t);x, y)− f(x, y)‖CB(D) = 0, (4)

if and only if

stat D(N̄)p,qΨ∆
lim
n
‖Tn(1;x, y)− 1‖CB(D) = 0, (5)
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stat D(N̄)p,qΨ∆
lim
n
‖Tn(s;x, y)− x‖CB(D) = 0, (6)

stat D(N̄)p,qΨ∆
lim
n
‖Tn(t;x, y)− y‖CB(D) = 0, (7)

stat D(N̄)p,qΨ∆
lim
n
‖Tn(s2 + t2;x, y)− (s2 + t2)‖CB(D) = 0. (8)

Proof:

Since each of the functions given by

f0(s, t) = 1, f1(s, t) = s, f2(s, t) = t, and f2(s, t) = s2 + t2,

are belong to CB(D), the following implication

(4) =⇒ (5)− (8),

is fairly obvious. Now, in order to complete the proof of Theorem 3.1, we first assume that (5)-(8)
hold true. Let f ∈ CB(D), ∀(x, y) ∈ D. Since f(x, y) is bounded on D, there exists a constant
M > 0, such that

|f(x, y)| 5M (∀ x, y ∈ D),

which implies that

|f(s, t)− f(x, y)| 5 2M (s, t, x, y ∈ D). (9)

Clearly, f is a continuous function on D. Thus, for a given ε > 0, there exists δ = δ(ε) > 0 such
that

|f(s, t)− f(x, y)| < ε whenever |s− x| < δ and |t− y| < δ, (10)

for all s, t, x, y ∈ D.

From equation (9) and (10), we get

|f(s, t)− f(x, y)| < ε+
2M

δ2

(
[ϕ(s, x)]2 + [ϕ(t, y)]2

)
, (11)

where

ϕ(s, x) = s− x and ϕ(t, y) = t− y.

Since the function f ∈ CB(D), the inequality (11) holds for s, t, x, y ∈ D.
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Now, the operator Tn(f ;x, y) being linear and monotone, so by using this in (11), we obtain

|Tn(f(s, t);x, y)− f(x, y)| = |Tn(f(s, t)− f(x, y);x, y) + f(x, y)[Tk(f0;x, y)− f0]|
5 |Tn(f(s, t)− f(x, y);x, y) +M [Tk(1;x, y)− 1]|

5

∣∣∣∣Tn(ε+
2M

δ2

[
ϕ(s, x)2 + ϕ(t, y)2

]
;x, y

)∣∣∣∣+M |Tn(1;x, y)− 1|

5 ε+ (ε+M)|Tn(f0;x, y)− f0(x, y)|+ 2M

δ2
|Tn(f3;x, y)− f3(x, y)|

− 4M

δ2
x|Tn(f1;x, y)− f1(x, y)| − 4M

δ2
y|Tn(f2;x, y)− f2(x, y)|

+
2M

δ2
(x2 + y2)|Tn(f0;x, y)− f0(x, y)|

5 ε+

(
ε+M +

4M

δ2

)
|Tn(1;x, y)− 1|

+
4M

δ2
|Tn(f1;x, y)− f1(x, y)|+ 4M

δ2
|Tn(f2;x, y)− f2(x, y)|

+
2M

δ2
|Tn(f3;x, y)− f3(x, y)|. (12)

Next, taking supx,y∈D, in both side of (12), we get

‖Tn(f(s, t);x, y)− f(x, y)‖CB(D) 5 ε+N
3∑
j=0

‖Tn(fj(s, t);x, y)− fj(x, y)‖CB(D), (13)

where

N =

{
ε+M +

4M

δ2

}
, (j = 0, 1, 2, 3).

We now replace Tn(s, t;x, y) by

Ln(f(s, t);x, y) =
1

Sn

bn∑
m=an+1

∞∑
k=0

smam,k∆
[r]
p,q(Tk(f ;x, y)) (∀m ∈ N),

in Equation (13).

We now choose ε′ > 0, such that 0 < ε′ < r. Then, by setting

An = |{n : n 5 N and |Ln(f(s, t);x, y)− f(x, y)| = r}|,

and

Aj,n =

∣∣∣∣{n : n 5 N and |Ln(fj(s, t);x, y)− fj(x, y)| = r − ε′

4N

}∣∣∣∣ (j = 0, 1, 2, 3),

we easily find from (13) that

An 5
3∑
j=0

Aj,n.
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Thus, we have

‖An‖CB(D)

n
5

3∑
j=0

‖Aj,n‖CB(D)

n
. (14)

Consequently, by Definition 2.6 and under the above assumption for the implication in (5)-(8), the
right-hand side of (14) tends to zero (n→∞). We, thus get

stat D(N̄)p,qΨ∆
− lim

n→∞
‖Tn(f(s, t);x, y)− f(x, y)‖CB(D) = 0.

Hence, the implication in (4) is true. This completes the proof of Theorem 3.1. �

Remark 3.2.

If we substitute,

A = I (identity matrix), sn = 1, lim
n
qn = 1, lim

n
pn = 1, r = 0, an = 0 and bn = n (∀ n),

our Theorem 3.1 gives the statistical version of Korovkin type approximation theorem (Fast
(1951)). Also, if we substitute

an = 0, bn = n, lim
n
qn = 1, lim

n
pn = 1, and r = 0 (∀ n),

in our Theorem 3.1, then we obtain statistical weighted A-summability version of Korovkin type
approximation theorem (Mohiuddine (2016)).

We now present below an illustrative example for Theorem 3.1 by using (p, q)-analogue of Bern-
stein operators (for more details, see Mursaleen et al. (2015) for functions of two variables.

Example 3.3.

Let I = [0, 1] and for a function f ∈ CB(D) on D = I × I , we have the operators

Bn,p,q(f ;x, y) =
n∑
u=0

m∑
v=0

f

(
[u]p,q

pu−n[n]p,q
,

[v]p,q
pv−m[m]p,q

)
Bu,n(x)Bv,m(y), (15)

where

Bu,n(x) =
1

p
n(n−1)

2

[
n

u

]
p,q

p
u(u−1)

2 xu
n−u−1∏
s=0

(ps − qsx),

and

Bv,m(y) =
1

p
m(m−1)

2

[
m

v

]
p,q

p
v(v−1)

2 yv
m−v−1∏
s=0

(ps − qsy).

Also, observe that

Bn,p,q(1;x, y) = 1, Bn,p,q(s;x, y) = x, Bn,p,q(t;x, y) = y,

and

Bn,p,q(s
2 + t2;x, y) =

pn−1

[n]p,q
x+

pm−1

[m]p,q
y +

q[n− 1]p,q
[n]p,q

x2 +
q[m− 1]p,q

[m]p,q
y2.
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Now, upon considering the linear operators,

Tn : CB(D)→ CB(D),

such that

Tn(f ;x, y) = (1 + xn)Bn,pn,qn(f ;x, y) (0 < qn < pn ≤ 1, ∀ n ∈ N), (16)

where (xn) be a sequence defined as in Example 2.8. Clearly, (Tn) satisfies the conditions (5)-(8)
of our Theorem 3.1, thus we obtain

stat D(N̄)p,qΨ∆
lim
n
‖Tn(1;x, y)− 1‖CB(D) = 0,

stat D(N̄)p,qΨ∆
lim
n
‖Tn(s;x, y)− x‖CB(D) = 0,

stat D(N̄)p,qΨ∆
lim
n
‖Tn(t;x, y)− y‖CB(D) = 0,

stat D(N̄)p,qΨ∆
lim
n
‖Tn(s2 + t2;x, y)− (s2 + t2)‖CB(D) = 0.

Therefore, from Theorem 3.1, we have

stat D(N̄)p,qΨ∆
lim
n
‖Tn(f(s, t);x, y)− f(x, y)‖CB(D) = 0, f ∈ CB(D).

However, since (xn) is not statistical weighted A-summable, so the result of Mohiuddine (Mohi-
uddine (2016), p. 8, Theorem 3.1) does not hold true for our operators defined by (16). Moreover,
since (xn) is statistical deferred weighted A-summable with respect to the difference operator of
order r based on (p, q)-integers, therefore we conclude that our Theorem 3.1 works for the same
operators.

4. Rate of the Deferred Weighted A-statistical Convergence

We intend here to investigate the order of deferred weighted A-statistical convergence of the se-
quence of positive linear operators for functions of two variables defined on CB(D) into itself
under the modulus of continuity.

Definition 4.1.

Let A ∈ R+
D(w), r be a non-negative integer and let (an) and (bn) be sequences of non-negative

integers. Suppose, 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤ 1).
Also let (un) be a positive non-decreasing sequence. Then the sequence (xn) is deferred weighted
A-statistical convergent to a number L with rate o(un) if, for each ε > 0,

lim
n→∞

1

unSn

bn∑
m=an+1

∑
k∈Kε

smam,k = 0,

where

Kε = {k : k ∈ N and |(∆[r]
p,qx)k − L| = ε}.

Here, we write

xn − L = statp,qΨ∆
− o(un).
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We now need to prove the following lemma.

Lemma 4.2.

Let (un) and (vn) be two positive non-decreasing sequences. Assume thatA ∈ R+
D(w) and suppose

(an) and (bn) be sequences of non-negative integers, and let x = (xn) and y = (yn) be two
sequences such that

xn − L1 = statp,qΨ∆
− o(un),

and

yn − L2 = statp,qΨ∆
= o(vn).

Then each of the following assertions hold true:

(i) (xn − L1)± (yn − L2) = statp,qΨ∆
− o(wn),

(ii) (xn − L1)(yn − L2) = statp,qΨ∆
− o(unvn),

(iii) γ(xn − L1) = statp,qΨ∆
− o(un) (for any scalar γ),

(iv)
√
|xn − L1| = statp,qΨ∆

− o(un),

where wn = max{un, vn}.

Proof:

For proving the assertion (i) of Lemma 4.2, we define here the following sets for ε > 0 and x ∈ D:

Nn =
∣∣{k : k ∈ N and |

(
∆[r]
p,qxk + ∆[r]

p,qyk
)
− (L1 + L2)| = ε

}∣∣ ,
N0;n =

∣∣∣{k : k ∈ N and |∆[r]
p,qxk − L1| =

ε

2

}∣∣∣ ,
and

N1,n =
∣∣∣{k : k ∈ N and |∆[r]

p,qyk − L2| =
ε

2

}∣∣∣ .
Clearly, we have

Nn ⊆ N0,n ∪N1,n,

which implies, for n ∈ N, that

lim
n→∞

1

Sn

bn∑
m=an+1

∑
k∈Nn

smam,k 5 lim
n→∞

1

Sn

bn∑
m=an+1

∑
k∈N0,n

smam,k

+ lim
n→∞

1

Sn

bn∑
m=an+1

∑
k∈∞,Nn

smam,k. (17)

Moreover, since

wn = max{un, vn}, (18)
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by (17), we get

lim
n→∞

1

wnSn

bn∑
m=an+1

∑
k∈Nn

smam,k 5 lim
n→∞

1

unSn

bn∑
m=an+1

∑
k∈N0,n

smam,k

+ lim
n→∞

1

vnSn

bn∑
m=an+1

∑
k∈N1,n

smam,k. (19)

Also, by applying Theorem 3.1, we obtain

lim
n→∞

1

wnSn

bn∑
m=an+1

∑
k∈Nn

smam,k = 0. (20)

Thus, assertion (i) of Lemma 4.2 is proved.

Next, as the assertions (ii) to (iv) of Lemma 4.2 are similar to (i), so these can be proved along
similar lines to complete the proof of Lemma 4.2. �

We now recall the modulus of continuity of a function of two variables f(x, y) ∈ CB(D) as,

ω(f ; δ) = sup
(s,t),(x,y)∈D

{
|f(s, t)− f(x, y)| :

√
(s− x)2 + (t− y)2 5 δ

}
(δ > 0), (21)

which implies

|f(s, t)− f(x, y)| 5 ω
[
f ;
√

(s− x)2 + (t− y)2
]
. (22)

We now introduce a theorem to obtain the rates of deferred weighted A-statistical convergence
under the support of modulus of continuity in (21) .

Theorem 4.3.

Let A ∈ R+
D(w), (an) and (bn) be sequences of non-negative integers, r be a non-negative integer,

and let 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤ 1). Let Tn :
CB(D) → CB(D) be the sequences of positive linear operators. Also let (un) and (vn) are the
positive non-decreasing sequences. Suppose that the following conditions are satisfied:

(i) ‖Tn(1;x, y)− 1‖CB(D) = statp,qΨ∆
− o(un),

(ii) ω(f, λn) = statp,qΨ∆
− o(vn) on D,

where

λn =
√
‖Tn(ϕ2(s, t), x, y)‖CB(D) and ϕ(s, t) = (s− x)2 + (t− y)2.

Then, for all f ∈ CB(D), the following assertion holds true:

‖Tn(f ;x, y)− f(x, y)‖CB(D) = statp,qΨ∆
− o(wn), (23)

where (wn) is given by (18).
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Proof:

Let f ∈ CB(D) and (x, y) ∈ D. Using (22), we have

|Tn(f ;x, y)− f(x, y)| 5 Tn(|f(s, t)− f(x, y)|;x, y) + |f(x, y)||Tn(1;x, y)− 1|

5 Tn

(√
(s− x)2 + (t− y)2

δ
+ 1;x, y

)
ω(f, δ) +N |Tn(1;x, y)− 1|

5

(
Tn(1;x, y) +

1

δ2
Tn(ϕ(s, t);x, y)

)
ω(f, δ) +N |Tn(1;x, y)− 1|,

where

ζ = ‖f‖CB(D).

Now, taking the supremum over both sides, we have

‖Tn(f ;x, y)− f(x, y)‖CB(D) 5 ω(f, δ)

{
1

δ2
‖Tn(ϕ(s, t);x, y)‖CB(D) + ‖Tn(1;x, y)− 1‖CB(D) + 1

}
+ζ‖Tn(1;x, y)− 1‖CB(D).

Now, putting δ = λn =
√
Tn(ϕ2;x, y), we get

‖Tn(f ;x, y)− f(x, y)‖CB(D) 5 ω(f, λn)
{
‖Tn(1;x, y)− 1‖CB(D) + 2

}
+N‖Tn(1;x, y)− 1‖CB(D)

5 ω(f, λn)‖Tn(1;x, y)− 1‖CB(D) + 2ω(f, λn) +N‖Tn(1;x, y)− 1‖CB(D).

So, we have
‖Tn(f ;x, y)− f(x, y)‖CB(D) 5 µ

{
ω(f, λn)‖Tn(1;x, y)− 1‖CB(D)

+ω(f, λn) + ‖Tn(1;x, y)− 1‖CB(D)

}
,

where

µ = max{2, N}.
For a given ε > 0, we choose the following sets:

Hn =
{
n : n ∈ N and ‖Tn(f ;x, y)− f(x, y)‖CB(D) = ε

}
, (24)

H0,n =

{
n : n ∈ N and ω(f, λn)‖Tn(f ;x, y)− f(x, y)‖CB(D) =

ε

3µ

}
, (25)

H1,n =

{
n : n ∈ N and ω(f, λn) =

ε

3µ

}
, (26)

and

H2,n =

{
n : n ∈ N and ‖Tn(1;x, y)− 1‖CB(D) =

ε

3µ

}
. (27)

Finally, for conditions (i) and (ii) of Theorem 4.3 along with Lemma 4.2, the last inequalities (24)-
(27) lead us to the assertion (23) of Theorem 4.3. The proof of Theorem 4.3 is thus completed. �
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5. Observations and Concluding Remarks

Here, in the last section of our study, we put forth some further concluding remarks and observa-
tions connecting to different outcomes which we have demonstrated here.

Remark 5.1.

Let (xn)n∈N be the sequence as considered in our Example 2.8. Then, since

stat D(N̄)p,qΨ∆
lim
n→∞

xn → 0 on CB(D),

we have

stat D(N̄)p,qΨ∆
lim
n→∞

‖Tn(fj;x, y)− fj(x, y)‖CB(D) = 0 (j = 0, 1, 2, 3). (28)

Therefore, by applying Theorem 3.1, we write

stat D(N̄)p,qΨ∆
lim
n→∞

‖Tn(f ;x, y)− f(x, y)‖CB(D) = 0, f ∈ CB(D), (29)

where

f0(s, t) = 1, f1(s, t) = s f2(s, t) = t and f3(s, t) = s2 + t2.

However, since (xn) is not ordinarily convergent and so also it does not converge uniformly in
the ordinary sense. Thus, the traditional (ordinary) Korovkin Theorem is not working here for
the operators defined under (16). Thus, clearly this outcome indicates that our Theorem 3.1 is a
generalization (non - trivial) of the traditional Korovkin-type theorem (Korovkin (1960)).

Remark 5.2.

Let (xn)n∈N be the real sequence as considered in Example 2.8, then, since

stat D(N̄)p,qΨ∆
lim
n→∞

xn → 0 on CB(D),

so (28) holds. Now by applying (28) and our Theorem 3.1, condition (29) holds. However, since
(xn) does not weighted A-statistically convergent, so we can say that the result of Mohiuddine
(2016, p. 8, Theorem 3.1) does not hold true for our operator defined in (16). Thus, our Theorem
3.1 is also an extension (non-trivial) of Mohiuddine (2016). Based upon the above results, it is
concluded here that our proposed method has successfully worked for the operators defined in
(16) and therefore it is stronger than the ordinary and the statistical version of the well established
Korovkin type approximation theorems (Korovkin (1960); Mohiuddine (2016); Mursaleen et al.
(2012)) established earlier.

Remark 5.3.

Suppose in Theorem 4.3, we substitute the conditions (i) and (ii) by the following condition:

|Tn(fj;x, y)− fj(x, y)|CB(D) = statp,qΨ∆
− o(unj) (j = 0, 1, 2, 3). (30)

Now, we can write

Tn(ϕ2;x, y) =M
3∑
j=0

‖Tn(fj(s, t);x, y)− fj(x, y)‖CB(D), (31)
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where

M =

{
ε+M +

2M

δ2

}
, (j = 0, 1, 2, 3).

It now follows from (30), (31) and Lemma 4.2 that

λn =
√
Tn(ϕ2) = statp,qΨ∆

− o(dn) on CB(D), (32)

where

o(dn) = max{un0
, un1

, un2
, un3
}.

Thus, clearly, we obtain

ω(f, δ) = statp,qΨ∆
− o(dn) on CB(D).

By applying (32) in Theorem 4.3, we instantly see that for all f ∈ CB(D),

Tn(f ;x, y)− f(x, y) = statp,qΨ∆
− o(dn) on CB(D). (33)

Therefore, instead of conditions (i) and (ii) in Theorem 4.3, if we use the condition (30), then we
certainly find the rates of the deferred weightedA-statistical convergence for the sequence (Tn) of
positive linear operators in Theorem 3.1.

Remark 5.4.

In our present investigation, we have considered a number of fascinating special cases and illustra-
tive examples in relevance to our definitions and also of the outcomes which have been established
here.
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