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Abstract

Statistical summability has recently enhanced researchers’ substantial awareness since it is more
broad than the traditional (ordinary) convergence. The basic concept of statistical weighted .A-
summability was introduced by Mohiuddine (2016). In this investigation, we introduce the (pre-
sumably new) concept of statistical deferred weighted .A-summability and deferred weighted A-
statistical convergence with respect to the difference sequence of order r involving (p, ¢)-integers
and establish an inclusion relation between them. Furthermore, based upon the proposed methods,
we intend to approximate the rate of convergence and to demonstrate a Korovkin type approxi-
mation theorem for functions of two variables defined on a Banach space C'z(D). Finally, several
illustrative examples are presented in light of our definitions and outcomes established in this paper.
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1. Introduction, Preliminaries and Motivation

Let w be the set of all real valued sequences and suppose any subspace of w be the sequence space.
Let (xy) be a sequence with real and complex terms. Suppose /, be the class of all bounded linear
spaces. Let ¢ and ¢, be the respective classes for convergent and null sequences with real and
complex terms. We have

[ 2]l = supy|zx| (K €N),

and we recall here that under this norm, all the above mentioned spaces are Banach spaces.

Kizmaz demonstrated the initial idea for spaces of difference sequences (Kizmaz) and subsequently
he also extended it to the difference sequence of order (natural) r (r € Ny := NU{0}) by defining

MAY) ={z = (21) : A"(z) €N, XN € (loo,c0,0)},

A2 = (z3); A"r = (A" oy, — A" o),

and

r - 7 r
Also, these are all Banach spaces under the norm defined by
lllar =) || + supy | A™ax.
i=1
For more interest in this direction, see the current works by Altay et al. (2006), Bektas et al. (2012),
and Kadak and Baliarsingh (2015).

In the interpretation of sequence spaces, the well-established traditional convergence has got in-
numerable applications, where the convergence of a sequence demands that almost all elements
are to assure the convergence condition; that is, every element of the sequence is required to be in
some neighborhood of the limit. Nevertheless, such limitation is there in statistical convergence,
where set having a few elements those are not in the neighborhood of the limit are discarded.
Fast and Steinhaus presented and considered the preliminary idea of statistical convergence (see
Fast (1951) and Steinhaus (1951)). In the past few decades, statistical convergence has been an
energetic area of research due essentially to the aspect that it is more broad than customary (or-
dinary) convergence and such hypothesis is talked about in the investigation in the subjects of
Fourier Analysis, Functional Analysis, Number Theory, and Theory of Approximation. In fact,
see the current works (Das et al. (2018); Belen and Mohiuddine (2013); Braha et al. (2014);
Dutta et al. (2019); Jena et al. (2018); Kadak (2017); Kadak (2016); Paikray et al. (2019);
Paikray and Dutta (2019); Pradhan et al. (2018); Srivastava et al. (2018a); Srivastava et al. (2018b);
Srivastava et al. (2018c)).

Let the set of natural numbers be N and suppose that K C N. Also, let
K,={k:k<n and ke K}.



718 L.N. Mishra et al.

The asymptotic density of K is given by

d(K) = lim | Kol = lim l]{kk§n and k€ K},

n—oo N n—oo M

presuming (that) the limit exists, where | K, | is the cardinality of K.

A given sequence (x,,) is statistically convergent (or stat-convergent) to a number L if, for every
e >0,
K.={k:k<n and |z, —L|=¢},

has asymptotic density zero (see Fast (1951) and Steinhaus (1951)). That is, for every € > 0,

K. .1
d(Kﬁ):Jggo|n|:7}1—>r§oﬁHkk§n and |z — L| 2 €}| =0.

Here, we write

stat lim x,, = L.
n—oo

We present below an example to illustrate that every convergent sequence is statistically conver-
gent; however, the converse is not necessarily true.

Example 1.1.

Let x = (z,) be a sequence defined by

5 (n=m? meN),
T, =
n?—il ,  (otherwise).

Here, the sequence (z,,) is statistically convergent to 1 even if it is not classically convergent.

In 2009, Karakaya and Chishti introduced the fundamental concept of weighted statistical conver-
gence (see Karakaya and Chishti (2009)) and later the definition was modified by Mursaleen et al.
(see Mursaleen et al. (2012)).

Suppose that (z,,) be a sequence of nonnegative numbers with sequence of partial sum (s,,) and let
Sy :Zsk (so > 0; n— o0).
k=0
Then, upon setting
1 n
O = S—nZSkxk (n € Ny := NU{0}),
k=0

we say (x,,) is weighted statistically convergent (or staty-convergent) to a number L if, for every
e >0,

{k:k<S, and sp|og — L] 2 €},
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has weighted density zero (Mursaleen et al. (2012)). That is, for every € > 0,

1
lim S—|{kk§5n and Sk]mk—L] 26}’20

n—oo

Here, we write
staty lim x,, = L.

In 2013, Belen and Mohiuddine established a new technique for weighted statistical convergence in
terms of the de la Vallée Poussin mean (Belen and Mohiuddine (2013)) and it was subsequently in-
vestigated further by Braha et al. (2014) as the A, -weighted statistical convergence. Very recently,
a certain class of weighted statistical convergence and associated Korovkin-type approximation
theorems involving trigonometric functions have been introduced by Srivastava et al. (see, for de-
tails, Srivastava et al. (2018a)).

Suppose X and Y are two sequence spaces and let A = (a,, ) be a non-negative matrix (regular).
If for every x;, € X the series,

00
An:v: g Qo kL
k=1

converges for all n € N and the sequence (A, x) belongs to Y, then the matrix .A maps X into Y.
Here, the symbol (X, Y") denote the set of matrices that map X into Y.

Next, as regards to regularity condition, a matrix 4 is said to be regular, if

lim A,r = L whenever lim z, = L.
n—00 k—o0

We recall here, the well-known Silverman-Toeplitz theorem (see Boos (2000) for details), A =
(@) is regular if and only if

oo
(a) sup Z | k| < o0;
k=1

n—00 7 _

(b) lim a, = 0 for each k;
n—oo
(©) nlggo ;an,k =1

The definition of statistical convergence was extended by Freedman and Sember (1981) just by
considering the non-negative regular matrix A = (a, ), and he termed it as A-statistical conver-
gence. Let for any non-negative regular matrix .4, we say that a sequence (x,,) is A-statistically
convergent (or stat 4-convergent) to a number L if, for each € > 0, we have
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where
K.={k:keN and |zz—L|=¢€}.
That is, for every € > 0,
lim ani = 0.
"%Ok:x;—:me "
Here, we write
stat 4 lim z,, = L.

Furthermore, let (a, ) be a nonnegative regular matrix and let (x,,) be a sequence. Then we say
that the sequence (z,,) is statistical .A-summable to a number L if, for each € > 0, we have

d(Fe) =0,
where
F.={k:keN and |A,x—L|=¢€}.
Here, we write

stat lim A,z = L.

n—oo

Subsequently, with the development of g-calculus, various researchers worked on certain new gen-
eralizations of positive linear operators based on g-integers (Agrawal et al. (2014); Aral and Gupta
(2012); Jena et al. (2017); Mursaleen et al. (2013); Srivastava et al. (2017)). Recently, Mursaleen et
al. (2015) developed the (p, ¢)-analogue of Bernstein operators in connection with (p, ¢)-integers
and later on, some results towards the estimation for Baskakov operators and Bernstein-Schurer
operators are studied for (p, ¢)-integers by Acar et al. (2016) and Mursaleen et al. (2015), respec-
tively.

We now recall some definitions and basic notations on (p, ¢)-integers for our present study.

For any n € N, the (p, ¢)-integer [n], , is defined by,

where 0 <gq, p<1.

The (p, q)-factorial is defined by,
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The (p, ¢)-binomial coefficient is defined by,

n [n] lpg
— ’ forall n,k € N and n > k.
|:k:| p,q [k] !pvq [n - k} !pyq

)

We also recall that, suppose 0 < ¢ < p < 1 and let r be a non-negative integer. Then, the operator

Az[;:]q W w,
is defined by
T - 7 r
Al = 0[]
That is,
AL’ZL(%) = {T} Tn — [7} Tp—1+ [T} Tp—2 — {r} Tp_g+ ...+ (=1)" {r] Ty
015 Upa 2] b4 3 b "pq
Tlpglr — 1 Tlpglr — 1pglr — 2
-, — [T]pqun_l + M:ﬁn—Q . [ ]p,q[ ]p,'q{ ]p,qgjn_3 44 (_1)7‘xn_r
24! [3]!

o (p’" - q’“) — ((p’" —q)p - qr‘l)) .

pP—q (r—q)?*p+q)

B ((p’“ L A A Ak )
(r—q)PP*+pg+q¢*)(p+q)

) Tp-g+ .+ (=1) 2.

Now we present an example to see that a sequence is not convergent; however, the associated
difference sequence is convergent.

Example 1.2.

Let us consider a sequence (z,) = n + 1 (n € N). In fact, it is trivial that the sequence (z,,) is not
convergent in the ordinary sense.

Also, we see that
AB] (xn) =Ty — 3Tp_1 + 3Tp_o — Lp—3 (xn =n-+ 1)7

converges to 0 (n — 00).
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For r = 3, we obtain that

A[p?:]q(‘rn> = Tn — [BlpgTn-1 + [BlpgTn—2 — Tns (T, =n+1)
_ 2 2 2 2
= Tn — (pn + Prndn + qn)xn_1 + (pn +ann + qn>xn—2 — Tp-3

=3— (B +aB+a?).

Clearly, depending on the values of p and ¢, the difference sequence Agl](xn) of order 3 has
different limits. This case is mostly due to the definition of (p, ¢)-integers. However, in order to
obtain a convergence criterion for all values of p and ¢, belonging to the operator AI[: ]q, we must
have to overcome this difficulty. This type of difficulties can be avoided in the following two
ways. The first one is taking p = ¢ = 1 and thus the operator reduces to the usual difference
sequence. Next, the second way is to replace p = p,, and ¢ = ¢,, under the limits, lim,, ¢, = «
and lim, p, = f (0 < a,8 < 1) where 0 < ¢, < p, < 1, for all (n € N). Afterwards, the
difference sequence A,[f}q(a:n) of third order 3, converges to the value 3 — (3% + a8 + a?). Thus,

if we take g, = (;22=) < (£*5) = pnsuch that 0 < g, < p, < 1 (s >t > 0), then

lim,, ¢, = 1 = lim,, p,, and hence A][L,?:]q(xn) =0 (n— o0).

Remark 1.3.

Ifr =1, lim, ¢, = 1 and lim,, p,, = 1, then the difference operator A][ﬁq reduces to the Al (Altay

and Bagar (2004)). Also, if r = 0, lim,, ¢, = 1 and lim,, p,, = 1, then the difference operator A][;: ]q
reduces to the general sequence (x,,).

Kadak introduced to weighted statistical convergence involving (p, ¢)-integers to prove related ap-
proximation theorems for functions (two variables) (Kadak (2016)). Subsequently, it was extended
to the generalized difference sequences involving (p, ¢)-gamma function and accordingly associ-
ated approximation theorems were proved (Kadak (2017)). Furthermore, Mohiuddine introduced
the notion of weighted .A-summability by using a weighted regular summability matrix (Mohiud-
dine (2016)). He also gave the definitions of statistically weighted .A-summability and weighted
A-statistical convergence. In particular, he proved a Korovkin type approximation theorem under
the consideration of statistically weighted .A-summable sequences of real or complex numbers.
Subsequently, Kadak et al. (2017) has investigated the statistical weighted B-summability by using
a weighted regular matrix to establish some approximation theorems. Very recently, Srivastava et
al. (2018b) introduced the deferred weighted (Norlund) summability of a sequence and accordingly
proved Korvokin type approximation theorems on the basis of equi-statistical convergence.

Motivated essentially by the above-mentioned works, here we would like to introduce the (presum-
ably new) notion of deferred weighted A-statistical convergence and statistical deferred weighted
A-summability with respect to the generalized difference sequences of order r involving (p, q)-
integers, and to establish certain new approximation results on that basis.
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2. Definitions, Notations and Regular Methods

In this section, we introduce some definitions (presumably new) that are required for our proposed
study. Also, we present here certain inclusion relations with regard to regular methods.

Let (a,) and (b,) be the sequences of non-negative integers fulfilling the conditions: (a) a, <

b, (n € N)and (b) lim b, = co. Note that, the conditions (a) and (b) are regularity conditions
n—ro0

for deferred weighted mean (Agnew (1932)).

Next, we suppose that (s,) be the sequence of non-negative numbers (real) such that

bn
S, = Z Sm.-

m=a,+1

Now, for defining the deferred weighted mean D(N, s) by the difference operator (A7 ), we first
set

b
1 n
PpUAT) = D sm(Bhwm) (0<q<p<1) (re€No=NU{0}).
" m=a,+1

The given sequence (z,,) is said to be deferred weighted summable (or ¢P™)_summable) to L
involving the difference operator (A][;}q) if,

lim ®P9(Az) = L.

n—oo
In this case, we write

D(N) 1. B

CA nh_g)lo T, = L.

We denote here the set of all sequences that are deferred weighted summable under the difference

operator (Al}) by ci(m.

Definition 2.1.

Let A be a nonnegative regular matrix, 0 < ¢, < p, < 1 such that lim,, ¢, = a and lim,, p, = /3
(0 <, B < 1) and let r is a non-negative integer. Let (a,,) and (b,) be sequences of non-negative

integers. A sequence (z,,) is said to be deferred weighted .A-summable (or [D (V) 4; s,,]-summable)
to a number L with respect to the difference operator AK ]q if the A-transform of (z,,) is deferred
weighted summable to the same number L under the difference operator AK ]q; that is,

b 0o
. ) 1 n .
fo A = Jim 5 20 2 smts(An) = L
m=a,+1 k=1
In this case, we write
[D(N)%; 8n] lim x,, = L.
n—oo

We denote the set of all sequences that are deferred weighted summable using the difference oper-
ator (AL}) by [D(N)4; 5,.
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Remark 2.2.
If,

a, =0, b,=n, limg,=1, limp, =1 and r =0,

then the U”4(Az) mean is identical with the .AY mean (Mohiuddine (2016)) and if
A =1 (identity matrix), a, + 1= «a(n), b, = 5(n) and s, =1,
then WP(Ax) mean is same as the A7 (z,,) mean (Kadak (2016)).

Definition 2.3.

Let A = (a, ) be a matrix, 0 < ¢, < p, < 1 such that lim, ¢, = o and lim,, p, = § (0 < a, f <
1) and let r is a non-negative integer. Let (a,,) and (b,) be sequences of non-negative integers. The

matrix A = (a,y) is said to be a deferred weighted regular matrix (or deferred weighted regular
method) if,

Az € ci(m (Vz, €c),
with
cg(m lim Az,, = Alim(z,,),
and we denote it by A € (c ; cZ(N)>. This means that U?7(Ax) exists for eachn € N, z,, € c and

lim VP9(Ax) — L whenever lim z, — L.

n—oo n—oo

We here denote the class of all deferred weighted regular matrices (methods) by R}, (w)"

As a characterization of the deferred weighted regular methods, we present below a theorem as
follows.

Theorem 2.4.

Let A = (a, ) be a sequence of infinite matrices, 0 < ¢, < p, < 1 such that lim,, ¢, = « and
lim, p, = 5 (0 < a, f < 1) and let r is a non-negative integer. Let (a,) and (b,,) be sequences of

non-negative integers. Then A € (c : cg(m> if and only if

e’} 1 an,
sup S_ Z Smlm k| < 00, (D)
n k=1 " m=a,+1
1 bn
nlglgo 5 Z Smam = 0 (foreach k € N), 2)
m=a,+1
and
1 b, oo
71113010 S_n Z Zsmamyk =1. 3)

m=a,+1 k=1
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Proof:

Assume that (1)-(3) hold true and that (A,[f, ]qu) — L (n — o0). Then for each € > 0 there exists
mo € N such that |(Ag]qu) — L| = € (m > myg). Thus, we have

‘.A G b A[T] k) — Z Z Sk ( AK}qu) — L
m=a,+1 k=1
_|X i f:sa (Al gy — LY+ L L i f:sa -1
= Sn P - mUm,k\Sp gtk Sn < m&m,k
m=a,+1 k=1 m=a,+1 k=1
b, o) bn
< Sin Z Z smamyk(Ag:]qu — L)+ |L| 5 Z Z Smmp — 1
m=a,+1 k=1 m=a,+1 k=1
b,  bn_2
§ Si Z Zsmamk A[]xk_L)
" m=a,+1 k=1

b, 0o
Z Z Sy s ( A[ ]mk -1+ |L| Z Zsmamk

n ’Vl

m=a,+1 k=b, _; m=a,+1 k=1

1 b 00
< sup \A,[;}qflfk — L Z Z Sm Q. + N Z Z Sk

k nm an,+1 nm an,+1 k=1

NUIESD i yIT
n m=a,+1 k=1
Taking n — oo and using (2) and (3), we get
=€

1 b, o
— Z Z smamk(Ag}qu) — L
" m=a,+1 k=1

which implies that

b S)
R R . .
B g 30 S st Offn) = £ = I,

" m=a,+1 k=1

since € > () is arbitrary.
Conversely, let A € (c : cg(N)> and z,, € c. Then, since Ax exists, we have the inclusion

(c ci(N)> C (¢: Ly).

Clearly, there exists a constant M such that

oo
E Smm,k

m=a,+1 k=1

b7L
1

5 <M (Vm,n),
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and the corresponding series

b, o)
% Z Zsmam,ka

" m=a,+1 k=1

absolutely converges for each n. Therefore, (1) is valid.

We now choose a sequence 7™ = (x;”)) € ¢ given as,

foralln € Nandy = (y,) = (1,1,1,...) € c. Then, since .Az™ and Ay are belong to cg(m, thus
2 and 3 are fairly obvious. n

Next, for the statistical version, we present below the following definitions.

Definition 2.5.

Let A € Rj{,(w), 0 < ¢n < pn < 1such that lim, ¢, = « and lim,, p, = 5 (0 < a, < 1) and
let  is a non-negative integer. Let (a,,) and (b,,) be sequences of non-negative integers and also let
K = (k;) € N (k; < ki) for all i. Then the deferred weighted .A-density of K is defined by

bn

1
o (K) = Hm == 3 D smam

m=a,+1 keK
provided this limit exists. A sequence (z,,) is said to be deferred weighted .A-statistical convergence
to a number L under the difference operator AK ]q for each € > 0, we have
A
dD(N)(Ke) =0,
where
K.={k:keN and |All(2}) — L| 2 €}.
We write here

p,q 1 —
staty? nlggo(xn) =1L.

Definition 2.6.

Let A € RJE)(w)’ 0 < gn < pn < 1 such that lim, ¢, = « and lim,p, = 6 (0 < o, < 1)
and let r is a non-negative integer. Let (a,,) and (b,) be sequences of non-negative integers. Then
the sequence is said to be statistically deferred weighted .4-summable to a number L under the
operator Al') if, for each ¢ > 0, we have
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where
E.={k:keN and |V2I(Ax)— L| 2 €}.
‘We write here

statD(N)5? lim (z,) = L.

n—0o0

We now prove a following theorem that determines a relation between the deferred weighted A
statistical convergence and the statistical deferred weighted .4-summability.

Theorem 2.7.

Let A € Rg (w)> (@n) and (b,) be sequences of non-negative integers and let 0 < g, < p, < 1
(V n € N) such that lim,, ¢, = o and lim,, p, = 5 (0 < a, 8 < 1). If (x,,) is deferred weighted
A-statistical convergent to a number L, then it is statistical deferred weighted .4-summable to the
same number L, but the converse is not true.
Proof:
Let (x,) be deferred weighted .A-statistical convergent to L under the operator A,[;:]q. We have
dg(N)(Ke) =0,

where

K.={k:keN and |Al[ﬂq(xk) — L| = €}.

Thus we have,
b

D DD ILRINIEE

" m=a,+1 k=1

W29 (Ar) ~ L| =

b, [e'e)

o > st (A~ 1)

m=a,+1 k=1

A

+IL o

z": Zsmamk—l

”m an+1 k=1

bn

Si Z Z SmOm, & (A][;:]qu - L)

m:an“l‘l kEKe

A

b, 00

Si Z Z SmQm k (AKka —

" m=a,+1 k¢K.

+ + |L\

D DI S

m=a,+1 k=1

n

b,

<ksup |A Tp —L| Z Z smamk—l—esi Z Zsmamk

" keK, m=a,+1 " m=a,+1 ke¢K,

b [e%s)
1 n
+|L| S—nmgﬂgsmam,k—l — € (n— 00),

which implies that ¥24(Ax) — L. That is, the sequence (x,,) is deferred weighted .A-summable
to the number L under the difference operator A and hence the sequence (x,,) is statistically
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deferred weighted .4-summable to the same number L with respect to the same difference operator
Al n

In order to show that the converse is not true, we present an example (below).

Example 2.8.

Let us choose an infinite matrix A as a Cesaro matrix (C, 1) and is defined by

- (1<k<n),

Qp | =

0, (k>mn).

For lim,, ¢, = 1, lim, p, = 1, s, = 1, a, = 2n and b, = 4n (V n € N), consider a sequence

x = (z,),

( #, (n=m?—m,m*—m+1,...m%*—1),
Tnp =4 —, (n=m? m>1),
L 0, (otherwise).
We have,
n n T r
Z AK}qu = (=1) { } Tn—i
k=1 k=0 i=0 g

- {(nm 0= Bl = Do+ (1 + Ze2E = a0 ), o)
+

D,q°
[rlpalr — Upg  [Mlpglr — Upglm — 2],
”+Q—mm+ p% it Lo mml 24y ) (n = k) b
y2UN p,q-
Thus,
1 b, n 1 4n 1 n
UPa(Azx) = T smam,k(AL’:]qu) =— Z - Z Az[:]qu — 0,
" m=a,+1 k=1 n m=2n+1 n k=1

which implies that
statV?9(Ax) — 0.
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Hence, (z,) is not deferred weighted A-statistical convergent, even if it is statistical deferred
weighted .A-summable under the difference operator of order r based on (p, ¢)-integers. Further-
more, (z,) is not statistical weighted .A-summable; however, it is statistical deferred weighted
A-summable with respect to the difference operator of order r based on (p, g)-integers.

3. A Korovkin Type Theorem via Statistical Deferred Weighted
A-summability

Recently, a few researchers worked on extending the Korovkin type approximation theorems in
various ways based on various aspects, involving (for instance) function spaces, abstract Banach
lattices, and so on. This theory is highly valuable in Analysis and many other fields. The main
concern of this paper is to introduce the notion of statistical deferred weighted .4-summability
and deferred weighted .A-statistical convergence with respect to the difference sequence of order
r involving (p, q)-integers, and then to establish some associated approximation type results in
relevance to our presumably defined new concept of statistical deferred weighted .A-summability,
that will effectively extend and improve most (if not all) of the existing results depending on the
choice of deferred weighted A-mean. Furthermore, based upon the proposed methods, we wish to
approximate the order of convergence and to investigate a Korovkin type approximation result for
a function of two variables. In fact, we extend here the result of Mohiuddine (2016) by using the
notion of the statistical deferred weighted .A-summability for the generalized difference sequence
of order r involving (p, q)-integers and prove the following theorem.

Let D be any compact subset over R2. Let, Cg(D) be the space of all real valued continuous func-
tions on D under the norm:

I flles) = sup{lf(z,y)| - (z,y) € D}, f e Cp(D).

Let T : Cp(D) — Cg(D), we say that T is a positive linear operator, for
f =20 implies T(f) = 0.
Also, we use the notation 7'(f; x, y) for the values of T'(f) at the point (x,y) € D.

Theorem 3.1.

Let A € RJD“(w), (a,) and (b,) be a sequences of non-negative integers. Let r be a non-negative
integer, and let 0 < ¢, < p, < 1 such that lim,, ¢, = a and lim, p, = 5 (0 < o, < 1). Let
T, (n € N) be a sequence of positive linear operators from Cz(D) into itself and let f € C(D).
Then,

stat D(N)GY lim || T, (f (s, ) 2,9) = f (2, 9)lley ) = 0, )
if and only if

stat D(N)g? li7rln T (1;2,y) = 1|lcpmy = 0, 5)
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stat D(N)g? lim ||T5,(s; 2, ) — 2||cnp) = 0, (6)
stat D(N )y im || T,,(t 2, y) = yllos@) = 0, (7)
stat D(N)G? lim ||T,(s* + t*; 2,y) — (s° + £%)||cpip) = 0. (8)

Proof:

Since each of the functions given by
fo(s,t) =1, fi(s,t)=s, fals,t)=t, and fo(s,t) = s> + 1%
are belong to C'z(D), the following implication
(4) = (5) = (8),
is fairly obvious. Now, in order to complete the proof of Theorem 3.1, we first assume that (5)-(8)
hold true. Let f € Cg(D), V(z,y) € D. Since f(x,y) is bounded on D, there exists a constant
M > 0, such that
[f(zy)l =M (Va,yeD),
which implies that

|f(8,t>—f(l’,y)| §2M (S,t,]}7yED). (9)

Clearly, f is a continuous function on D. Thus, for a given e > 0, there exists § = d(¢) > 0 such
that

|f(s,t) — f(z,y)] <€ whenever |s—z|<d and |[t—y| <, (10)
for all s,t,z,y € D.

From equation (9) and (10), we get

[f(s:8) = flay)l < e+ 25—]\24 (lp(s,2))” + [p(t:9)) (11)

where
p(s,z) =s—x and p(t,y) =t —y.

Since the function f € Cg(D), the inequality (11) holds for s, ¢, z,y € D.
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Now, the operator T,,(f; z,y) being linear and monotone, so by using this in (11), we obtain

Ta(f(s,t);2,9) — flz,y)| = [Tu(f(s,t) — flz,y);2,y) + flo, )[T(fo; 7, y) — foll
S|Tu(f(s,t) — fz,y);2,y) + M[Ti(1;2,y) — 1]

<|r, (e + 25—]\24 [o(s,2)° + (1, 9)?] ;x,y) ‘ + MITa(L,y) = 1]

< o e+ AT fos) — o) + o (Tl .9) — Folan)
LT i) — B9 — ST s, ) — o)

1 25—]\24(952 + )T (fo; 2, y) — folz, )]

<e+ (e+M+45—A24) Ta(Ls2,y) =1

F S T m) = File )|+ o T 2,) = ol )

+ 220 ) — el (12)

Next, taking sup,, , p, in both side of (12), we get

3
||Tn(f(s7t);l‘7y) - f(xvy)HCB(D) é €+ NZ ||Tn(fj(87t);x7y) - fj(x’y)HcB(D)’ (13)

J=0

where

4aM .
N:{E—i—M—i—?}, (]IO,1,2,3)

We now replace T,,(s, t; z,y) by

b )
1 n
£n(f(8,t),$,y> - S_ Z Zsmam,kAK]q<Tk(f7m7y)) (vm S N),
" m=a,+1 k=0

in Equation (13).
We now choose ¢’ > 0, such that 0 < ¢’ < r. Then, by setting
Apn={n:n =N and [£,(f(s,1);z,y) — f(z,y)] 2},

and

r—¢€

{nnéN and |£n(fj(3,t);l’,y)_fj<5(7,y)| z AN }’ (j:07172a3>’

Aj,n =

we easily find from (13) that

3
A S Ajn

j=0
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Thus, we have

A_ 3
[4nllcam ”CB §Z J””CB . (14)

Consequently, by Definition 2.6 and under the above assumption for the implication in (5)-(8), the
right-hand side of (14) tends to zero (n — o). We, thus get

stat D(N)pq — hm T (f(s,t);2,y) — f(@,9)]|csm) = 0.

Hence, the implication in (4) is true. This completes the proof of Theorem 3.1. n

Remark 3.2.
If we substitute,
A = I (identity matrix), s, =1, limg,=1, limp,=1, r=0, a, =0 and b, =n (Vn),

our Theorem 3.1 gives the statistical version of Korovkin type approximation theorem (Fast
(1951)). Also, if we substitute

a, =0, b,=n, limg,=1, limp,=1, and r =0 (Vn),

in our Theorem 3.1, then we obtain statistical weighted .A-summability version of Korovkin type
approximation theorem (Mohiuddine (2016)).

We now present below an illustrative example for Theorem 3.1 by using (p, ¢)-analogue of Bern-
stein operators (for more details, see Mursaleen et al. (2015) for functions of two variables.

Example 3.3.

Let I = [0, 1] and for a function f € Cp(D) on D = I x I, we have the operators

B (f10,9) = ZZf( “”" g )%u,n<x>%v,m<y>, (15)

u=0 v=0 Pu— n pq pv*"Jnﬂpﬂ

where

n—u—1
1 n wu=1) g s s
%u,n(x):m{] p H (r° = ¢’),
p P,q

s=0
and

Also, observe that

Bpg(Liz,y) =1, Bu,g(simy) =2, Bu,try) =y,

and
n—1 m—1 1 1
%mp,q(sz + t2§ T,y) = P T+ P Y+ an ]pvqlﬂ qlm Jp.a y2‘
(Mg [M]p.q []p.q [m]p.q
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Now, upon considering the linear operators,
T, : Cg(D) — Cg(D),
such that
Tu(fi2,y) = (14 20)Bop, 0. (fiz,y) (0<go <p, <1, VneN), (16)

where (z,,) be a sequence defined as in Example 2.8. Clearly, (7},) satisfies the conditions (5)-(8)
of our Theorem 3.1, thus we obtain

stat D(N)g? hmHT Liz,y) — 1cym =0,

(
stat D(N)GZ lim || T,,(s; 2, y) — #lle, ) = 0,
stat D(N)? hm T (t; 2, y) — ylloym) =0,
stat D(N)g*? hm IT,(s* + %5 2,y) — (s> + t°)||cw () = 0.

Therefore, from Theorem 3.1, we have
stat D(N)GY lim || T, (f(s,1): 2,9) = f(2,9)llcsm) =0, f € Cp(D).

However, since (x,,) is not statistical weighted .4-summable, so the result of Mohiuddine (Mohi-
uddine (2016), p. 8, Theorem 3.1) does not hold true for our operators defined by (16). Moreover,
since (z,,) is statistical deferred weighted .4-summable with respect to the difference operator of
order r based on (p, q)-integers, therefore we conclude that our Theorem 3.1 works for the same
operators.

4. Rate of the Deferred Weighted .A-statistical Convergence

We intend here to investigate the order of deferred weighted .A-statistical convergence of the se-
quence of positive linear operators for functions of two variables defined on Cz(D) into itself
under the modulus of continuity.

Definition 4.1.

Let A € Rg(w), r be a non-negative integer and let (a,,) and (b,) be sequences of non-negative
integers. Suppose, 0 < ¢, < p, < 1 such that lim, ¢, = « and lim,p, = f (0 < o, < 1).
Also let (u,,) be a positive non-decreasing sequence. Then the sequence (x,,) is deferred weighted
A-statistical convergent to a number L with rate o(u,,) if, for each ¢ > 0,

> Y s -

m=a,+1 keK.

lim
n—00 unS

where
K.={k:keN and |(AZ[;]q$)k — L| 2 €}.
Here, we write

Ty — L = staty? — o(uy,).
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We now need to prove the following lemma.

Lemma 4.2.

Let (u,,) and (v,) be two positive non-decreasing sequences. Assume that A € Rg(w and suppose
(a,) and (b,) be sequences of non-negative integers, and let x = (x,) and y = (y,) be two
sequences such that

Ty, — Ly = statg? — o(u,),
and

Yn — Lo = staty? = o(vy,).
Then each of the following assertions hold true:
(1 (xn - Ll) + (yn - LQ) = Statﬁ/,qA - O<wn)’

(11) (l’n - Ll)(yn - L2) = Statﬁfi - O(unvn)’
(iii) y(x, — L1) = staty? — o(u,) (for any scalar ),

(V) /|zn — L] = staty? — o(uy,),

where w,, = max{u,, v, }.

Proof:

For proving the assertion (i) of Lemma 4.2, we define here the following sets for ¢ > 0 and x € D:

No=|{k:keNand | (Allz, + Ally) — (L1 + Lo)| = €}

Y

€
N()m = ‘{l{? k€N and |Ag;]qu —L1| Z 5}

Y

and
r €
Nig=|{k: ke N and ALy — 1o 2 £},
Clearly, we have

Nn g NO,TL UNl,’n?
which implies, for n € N, that

bn bn,
LS DD DERVE SIS DI DN

n

m=a,+1 keN,, m=an+1 kEN,
1 b’Vl
+ nh_{IolO S_ Z Z SmQm k- (17)

" m=a,+1 koo, N,

Moreover, since

wy, = max{uy,, v, }, (18)
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by (17), we get

lim
n—o0 wnS

E E Smm e < lim
n—s00 unS

m=a,+1 keN,,

> Y

m=an+1keNo »

Z Z Smm k- (19)

m=a,+1keN; .

+ lim

n—oo UnS

Also, by applying Theorem 3.1, we obtain

Z Z Sl = 0. (20)

m=a,+1keN,

lim
n—s00 wnS

Thus, assertion (i) of Lemma 4.2 is proved.

Next, as the assertions (ii) to (iv) of Lemma 4.2 are similar to (i), so these can be proved along
similar lines to complete the proof of Lemma 4.2. n

We now recall the modulus of continuity of a function of two variables f(z,y) € Cp(D) as,

w(fid)= s {If(s.0) = flay)l: V-2 +E—yP? 25} (6>0), @

(s,t),(x,y)€D

which implies

) = flayl Sw | fiV/ =2+ @ =y 22)

We now introduce a theorem to obtain the rates of deferred weighted .A-statistical convergence
under the support of modulus of continuity in (21) .

Theorem 4.3.

Let A € R, D(w)’ , (a,) and (b,,) be sequences of non-negative integers, r be a non-negative integer,
and let 0 < ¢, < p, < 1 such that lim,, ¢, = « and lim,p, = # (0 < a,8 < 1). Let T,,
Cg(D) — Cp(D) be the sequences of positive linear operators. Also let (u,,) and (v,) are the
positive non-decreasing sequences. Suppose that the following conditions are satisfied:

0 ([ Ta(L;2,y) = ey o) = statg} — o(un),
(i) w(f, \n) = statg? — o(vy,) on D,

where

do = I (@50, 2.9 leoy and - pls.t) = (s =)+ (1 9"
Then, for all f € Cg(D), the following assertion holds true:

1T (f52,y) = f(@,9)llcap) = statyy — o(wy), (23)
where (w,,) is given by (18).
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Proof:
Let f € Cp(D) and (z,y) € D. Using (22), we have
T (fs 2 y) = flay)l = Tullf (s, 8) = f,y)l2,y) + | f (@ )| Ta(L 2, y) — 1

<T, <\/<S — x)25+ E=yf 1z, y> w(f,0) + N|T,(1;2,y) — 1

[IA

1
(Tulti ) + 5Tttt ) (£, + NIT i) = 1],
where

¢ = [fllesm)-
Now, taking the supremum over both sides, we have

1
ITa(Fi2,9) — F@ay) oo < w(£.0) {ﬁnTn(w(s,w;x,y>||c5<p> T 2,9) = s + 1}

+CTn (152, y) = Ulesm)-
Now, putting 6 = A\, = \/T,,(¥?; x,y), we get
T (fs2,9) = (2 9)lleamy S w(f,20) {ITu(liz,y) = Ulewm) + 2} + NI Tu(Li2,y) = Llcww)

S w(fs M) Ta(L 2, y) = Ulewm) + 20(f, An) + NITa(15 2, 9) — Llcn o).
So, we have
1T (fi2,9) = f@,y)llesm) S p{w(f )Tl 2,y) = lesm)
+w(f M) + N Ta (L2, y) = Ulowm)

where
= max{2, N}.
For a given € > 0, we choose the following sets:
H, = {n :n €N and [|T,(f;2,y) — f(,9)|lcap) 2 e} , (24)
€
Moo = {n i € N and w(f MIT(Fia) ~ Solewm 2 5 b 29)
Hlmz{n:neN and w(f,An)ggi}, (26)
1
and
H27n = {n :n €N and ||Tn(1;1’,y) — 1||CB(D) Z i} . 27

Finally, for conditions (i) and (ii) of Theorem 4.3 along with Lemma 4.2, the last inequalities (24)-
(27) lead us to the assertion (23) of Theorem 4.3. The proof of Theorem 4.3 is thus completed. n
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5. Observations and Concluding Remarks

Here, in the last section of our study, we put forth some further concluding remarks and observa-
tions connecting to different outcomes which we have demonstrated here.

Remark 5.1.

Let (x,,)nen be the sequence as considered in our Example 2.8. Then, since

stat D(N)g? li_>m z, — 0 on Cp(D),

we have
stat (V) Tim [T, (fy:2,9) = fi(ew)llewmy =0 (7=0,1,2,3).  @8)
Therefore, by applying Theorem 3.1, we write
stat DN I | T(fi0,9) = @ p)llewmy =0, [€Ca(D),  (29)
where

fo(s,t) =1, fi(s,t) =5 fo(s,t) =t and f3(s,t) = s* + 1.
However, since (z,,) is not ordinarily convergent and so also it does not converge uniformly in
the ordinary sense. Thus, the traditional (ordinary) Korovkin Theorem is not working here for
the operators defined under (16). Thus, clearly this outcome indicates that our Theorem 3.1 is a
generalization (non - trivial) of the traditional Korovkin-type theorem (Korovkin (1960)).

Remark 5.2.

Let (x,,)nen be the real sequence as considered in Example 2.8, then, since

stat D(N)? 7}1—{1010 z, — 0 on Cp(D),

so (28) holds. Now by applying (28) and our Theorem 3.1, condition (29) holds. However, since
(x,) does not weighted A-statistically convergent, so we can say that the result of Mohiuddine
(2016, p. 8, Theorem 3.1) does not hold true for our operator defined in (16). Thus, our Theorem
3.1 is also an extension (non-trivial) of Mohiuddine (2016). Based upon the above results, it is
concluded here that our proposed method has successfully worked for the operators defined in
(16) and therefore it is stronger than the ordinary and the statistical version of the well established
Korovkin type approximation theorems (Korovkin (1960); Mohiuddine (2016); Mursaleen et al.
(2012)) established earlier.

Remark 5.3.

Suppose in Theorem 4.3, we substitute the conditions (i) and (ii) by the following condition:

|Tn(fj; x, y) - fj<I7y)|CB(D) - Stat@i - O<unj) (] - 07 17 27 3) (30)

Now, we can write

3
Tn(QDQ; x>y> =M Z ”Tn(fj(sa t); xz, y) - fj($7y)||CB(D)’ (31)

Jj=0
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where
2M .
M:{6+M+7}7 (.7:0717273>
It now follows from (30), (31) and Lemma 4.2 that
A = VT (?) = staty? — o(d,) on Cy(D), (32)
where

o(dy,) = max{t,,, Un, , Un,, Un, }-
Thus, clearly, we obtain
w(f,d) = staty? —o(d,) on Cp(D).
By applying (32) in Theorem 4.3, we instantly see that for all f € Cg(D),
Tu(f;,y) = f(x,y) = statg} — o(dn) on Cp(D). (33)

Therefore, instead of conditions (i) and (ii) in Theorem 4.3, if we use the condition (30), then we
certainly find the rates of the deferred weighted .A-statistical convergence for the sequence (7,) of
positive linear operators in Theorem 3.1.

Remark 5.4.

In our present investigation, we have considered a number of fascinating special cases and illustra-
tive examples in relevance to our definitions and also of the outcomes which have been established
here.
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