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Abstract

A mathematical model is presented to study the regulatory effects of growth factors in osteoblas-
togenesis. The model incorporates the interactions among mesenchymal stem cells, osteoblasts,
and growth factors. The resulting system of nonlinear ordinary differential equations is studied an-
alytically and numerically. Mathematical conditions for successful osteogenic differentiation and
optimal osteoblasts population are formulated, which can be used in practice to accelerate bone for-
mation. Numerical simulations are also presented to support the theoretical results and to explore
different medical interventions to enhance osteoblastogenesis.
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1. Introduction

The differentiation of mesenchymal stem cells (MSCs) into osteoblasts is a fundamental process
in bone formation as osteoblasts build up the bone tissue matrix through their released collagen
(Doblaré et al. (2004), Florencio-Silva et al. (2015)). This process is mediated by different extra-
cellular signals including mechanical loads and molecular factors (Dimitriou et al. (2005), Ghiasi et
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al. (2017)). Particularly, specific growth factors such as the bone morphogenetic proteins (BMPs)
and transforming growth factor-β (TGF-β) activate and direct the differentiation of MSCs into
osteoblasts (Garg et al. (2017), Wu et al. (2016), Fakhry et al. (2013)). Consequently, growth fac-
tors are promising therapeutic agents for the initiation and enhancement of bone fracture healing,
among other biological process (Devescovi et al. (2008), Fakhry et al. (2013)).

Several mathematical models have been recently developed to study the dynamics among the
MSCs, osteoblasts, and growth factors to predict bone development over time (Bailon-Plaza and
Van Der Meulen (2001), Carlier et al. (2015), Moreo et al. (2009), Trejo et al. (2019)). However,
none of them have analyzed theoretically the growth factors regulation of MSCs differentiation
toward osteoblasts (Ghiasi et al. (2017)). In this paper, the model developed in Bailon-Plaza and
Van Der Meulen (2001) is modified to closely examine the important dynamics among the MSCs,
osteoblasts, and TGF-β, which allows for a greater insight of the regulatory effects of the growth
factors directing the differentiation of the MSCs into osteoblasts. Based on the presented analysis
of the new model, a threshold value of the growth factor concentration, the existence of which
was only hypothesized in Bailon-Plaza and Van Der Meulen (2001), is explicitly determined to
guarantee a successful osteoblastogenesis.

The paper is organized as follows. In Section 2, the mathematical model is formulated. The sta-
bility analysis of the model is presented in Section 3. Bifurcations for the model are discussed in
Section 4. In Section 5, numerical simulations are performed to validate the theoretical findings. It
also demonstrates the functionality of the model by numerically simulating the progression of the
osteoblastogenesis process. The discussion and conclusion are presented in Section 6.

2. Mathematical Model

Figure 1 illustrates a flow diagram for the cellular and molecular dynamics during osteoblasto-
genesis, where the main assumption is that the osteogenic differentiation is conducted by the in-
teractions among the MSCs (Cm), osteoblasts (Cb), and the TGF-β (gb). The cells and cellular
dynamics are represented by the circular shapes and solid arrows. The gb concentration and its
production/decay are represented by the octagonal shape and dashed/solid arrows. The activation
of the osteogenic differentiation is represented by the solid compound arrow.

The osteogenic differentiation is modeled with a mass-action system of nonlinear ordinary differ-
ential equations, where all variables represent homogeneous quantities in a given volume. Follow-
ing the flow diagram given in Figure 1 yields the resulting system of equations:

dCm

dt
= kpmCm

(
1− Cm

Klm

)
− dmgbCm, (1)

dCb

dt
= kpbCb

(
1− Cb

Klb

)
+ dmgbCm − dbCb, (2)

dgb
dt

= kgbCb − dggb. (3)
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Figure 1. Flow diagram of the osteogenic differentiation process: MSCs (Cm) proliferate and differentiate into os-
teoblasts. Osteoblasts (Cb) proliferate and differentiate into osteocytes. Transforming growth factor-β (gb) is
synthesized by the osteoblasts, it activates the osteogenic differentiation, and decays

Equation (1) describes the rate of change with respect to time of Cm. It increases due to a constant
cellular division, at a rate kpm, up to a constant-maximal carrying capacity, Klm. It decreases by
differentiation, where the differentiation rate is regulated by gb. This regulation is modeled with
a linear function, i.e., F1(gb) = dmgb. Equation (2) describes the rate of change with respect to
time of Cb. It increases when MSCs differentiate into osteoblasts or when osteoblasts proliferate.
Osteoblasts proliferate at a constant rate, kpb, up to a constant-maximal carrying capacity, Klb.
The osteoblasts density decreases at a constant rate db when osteoblasts differentiate into osteo-
cytes. Equation (3) describes the rate of change with respect to time of gb, which increases due to
production by Cb, and decreases by degradation.

3. Model Analysis

The analysis of Model (1)-(3) is done by finding the equilibria, denoted by E(Cm, Cb, gb), and
their corresponding stability properties. Setting the right-hand sides of the equations (1)-(3)
equal to zero yields the following four equilibria: E0(0, 0, 0), E1(Klm, 0, 0), E2(0, C

∗
b2
, g∗b2), and

E3(C
∗
m3
, C∗

b3
, g∗b3). Note that E0 and E1 represent unsuccessful osteoblastogenesis due to the ab-

sence of osteoblasts, while E2 and E3 represent successful outcomes, since the osteoblasts remain
at positive constant densities. Table 1 summarizes the equilibria and their corresponding existence
and stability conditions.

Table 1. Existence and stability conditions for the equilibrium points

Equilibrium Points Existence Stability
E0(0, 0, 0) always always unstable

E1(Klm, 0, 0) always db > kpb + dmkgbKlm/dg
E2(0, C

∗
b2
, g∗b2) db < kpb db < kpb

(
1− dgkpm/dmkgbKlb

)
E3(C

∗
m3
, C∗

b3
, g∗b3) kpb

(
1− dgkpm/dmkgbKlb

)
< db < kpb + dmkgbKlm/dg b1b2 − b3 > 0

The existence conditions of each equilibrium point arise from the fact that all biologically mean-
ingful variables are non-negative, and the stability is analyzed using the Jacobian of the system
(1)-(3) at each equilibrium point and finding its corresponding eigenvalues (Wiggins (2003)) as
discussed in the following theorems:
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Theorem 3.1.

The equilibrium E0(0, 0, 0) exists for all parameter values of the model and it is unstable.

Proof:

The elements of E0 are non-negative for all parameter values of the model. Hence, E0 is a biolog-
ically feasible equilibrium. The Jacobian matrix J(E0) is given by the following lower-triangular
matrix:

J(E0) =

kpm 0 0
0 kpb − db 0
0 kgb −dg

 .

Since the eigenvalue λCm
= kpm > 0, then E0 is unstable. �

Theorem 3.2.

E1(Klm, 0, 0) exists for all parameter values and is locally stable if and only if db > kpb +
dmkgbKlm/dg.

Proof:

E1 is a biologically feasible equilibrium for all parameter values of the model since its elements
are always nonnegative. The Jacobian matrix J(E1) is as follows:

J(E1) =

−kpm 0 −dmKlm

0 kpb − db dmKlm

0 kgb −dg

 .

Hence, the characteristic polynomial of J(E1) is given by p(λ) = (λ+kpm)(λ2 +a1λ+a0), where
a1 = dg+(db−kpb) and a0 = dg(db−kpb)−dmkgbKlm. By hypothesis db−kpb > dmkgbKlm/dg > 0,
therefore, a0 > 0 and a1 > 0. By the Routh-Hurwitz criteria, n = 2, the roots of λ2 + a1λ+ a0 are
negative or have negative real parts, which implies that E1 is locally stable. �

Theorem 3.3.

E2(0, C
∗
b2
, g∗b2) exists if kpb > db and it is stable if and only if kpb > db + dgkpbkpm/dmkgbKlb,

where

C∗
b2 = Klb(1− db/kpb), and g∗b2 = kgbC

∗
b2/dg.

Proof:

By hypothesis kpb > db, hence, both C∗
b2

and g∗b2 are positive, and therefore, E2 is a biologically
feasible equilibrium. The Jacobian matrix J(E2) is given by the following lower-triangular matrix:

J(E2) =

kpm − dmg∗b2 0 0
dmg

∗
b2

−kpb + db 0
0 kgb −dg

 .
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Since kpm− dmg∗b2 = (dgkpbkpm − dmkgbKlb(kpb − db)) /dgkpb, then, by hypothesis, it implies that
kpm − dmg

∗
b2
< 0. Hence, all the eigenvalues of J(E2) are negative, and therefore, E2 is locally

stable. �

Theorem 3.4.

E3(C
∗
m3
, C∗

b3
, g∗b3) exists if

kpb (1− dgkpm/dmkgbKlb) < db < kpb + dmkgbKlm/dg,

where

C∗
m3

=
kpm
∆

(
kpb
Klb

+
dmkgb(db − kpb)

dgkpm

)
, C∗

b3 =
kpm
∆

(
dmkgb
dg

+
kpb − db
Klm

)
,

g∗b3 =
kgbkpm
dg ∆

(
dmkgb
dg

+
kpb − db
Klm

)
, with ∆ =

(
dmkgb
dg

)2

+
kpmkpb
KlmKlb

.

Furthermore, E3 is locally stable if b1b2 − b3 > 0, is unstable if b1b2 − b3 < 0, and is a non-
hyperbolic equilibrium point if b1b2 − b3 = 0, where b1, b2, b3 are defined as follows:

b1 =
kpmC

∗
m3

Klm

+
kpbC

∗
b3

Klb

+
dmkgbC

∗
m3

dg
+ dg,

b2 =
kpmC

∗
m3

Klm

(
kpbC

∗
b3

Klb

+
dmkgbC

∗
m3

dg
+ dg

)
+ dg

kpbC
∗
b3

Klb

, (4)

b3 = dg∆C
∗
m3
C∗

b3 .

Proof:

For the first statement of the theorem, notice that the C∗
m3

and C∗
b3

are monotonic functions with
respect to the parameter db. Furthermore, C∗

m3
and C∗

b3
are defined at kpb(1 − dgkpm/dmkgbKlb)

and kpb + dmkgbKlm/dg, where they are zero, respectively. Therefore, C∗
m3

> 0, and C∗
b3
> 0 for

all db in the interval I = (kpb(1− dgkpm/dmkgbKlb), kpb + dmkgbKlm/dg). This also implies that
g∗b3 > 0 in I . Hence, E3 is a biologically feasible equilibrium and E3 6= Ei, i = 0, 1, 2.

The Jacobian matrix J(E3) is given by the following matrix:

J(E3) =

−kpmC∗
m3
/Klm 0 −dmC∗

m3

dgdmkgbC
∗
b3
−(kpbC

∗
b3
/Klb + dmkgbC

∗
m3
/dg) dmC

∗
m3

0 kgb −dg

 .

Hence, the characteristic polynomial of J(E3) is given by p(λ) = λ3 + b1λ
2 + b2λ+ b3, where b1,

b2, and b3 are defined in Equation (3.4). From C∗
m3
> 0 and C∗

b3
> 0, it can be concluded that each

bi > 0, i = 0, 1, 2.

When b1b2 − b3 > 0 by Routh-Hurwitz criteria, n = 3, the roots of p(λ) are negative or have neg-
ative real part, and therefore, E3 is locally stable. Next, suppose that b1b2 − b3 < 0. By Descartes’
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Rule of Signs, the polynomial p(λ) does not have positive roots, since bi > 0, i = 0, 1, 2. There-
fore, all the roots of p(λ) are negative or complex. If all of them are negative, then E3 is stable,
and then, by Routh-Hurwitz criteria b1b2 − b3 > 0, which contradicts the hypothesis. Therefore,
p(λ) has a negative root, −ν, and two complex conjugate roots, µ ± iw, since p(λ) is of degree
three. Notice that ν > 0 and µ > 0. Since, if µ < 0 then E3 is stable, and then by Routh-Hurwitz
criteria b1b2 − b3 > 0, which also contradicts the hypothesis. Therefore, µ > 0, and hence, E3 is
unstable. Finally, if b1b2 − b3 = 0, then J(E3) has one negative root and two purely imaginary
roots given by −b1 and ±i

√
b2, where b1 and b2 are defined in Equation (3.4), which implies that

E3 is a non-hyperbolic equilibrium point. �

4. Bifurcation Analysis

A better insight into the behavior of the system (1)-(3) can be obtained by looking at the bifurcation
of each equilibrium point with respect to the parameter db, which is varied in the biologically
meaningful interval (0,∞), while fixing all other model parameter values (Wiggins (2003)). Figure
2 shows the bifurcation diagrams for the steady state of the variables C∗

m and C∗
b for the equilibria

E1 (red lines), E2 (blue lines) and E3 (black lines) in the case when b1b2 − b3 < 0. The case
b1b2 − b3 > 0 leads to similar bifurcation diagrams except for the corresponding lines of the
equilibrium E3 that are solid, since it does not change stability in its parameter domain, and hence,
it is omitted here. In addition, the variables for the E0 are also omitted, since E0 is unstable for
all db values. The state-variable g∗b is also omitted, since its qualitative behaviour is similar to
the qualitative behaviour of C∗

b . Notice that Figure 2(b) is a left shift of the bifurcation diagrams
presented in Figure 2(a). Since db2 = kpb (1− dgkpm/dmkgbKlb) exists only when dmkgbKlb >
dgkpm. Therefore, Figure 2 shows that the system (1)-(3) undergoes a bifurcation at db1 , kpb, db2 ,
and db3 , where db1 = kpb + dmkgbKlm/dg, and db3 is a root of the polynomial function b1b2 − b3
with respect to db such that db2 < db3 < db1 .

In addition, the system (1)-(3) undergoes a Hopf-bifurcation at db3 , when b1b2 − b3 < 0. Due to
the complexity of the expressions of E3 and J(E3) with respect to db for any positive value of
db, the theoretical proof of the existence of the Hopf-bifurcation at db3 is omitted. However, from
the explicit expression of b1b2 − b3 and from Theorem 3.4, it is easy to prove that the stability of
E3 changes in a neighborhood of db3 , as the sign of the polynomial function b1b2 − b3 changes in
the interval db2 < db < db1 , since either C∗

b3
= 0 or C∗

m3
= 0 at db2 or db1 , which implies that

b1b2 − b3 > 0 in a neighborhood of these parameter values.

Furthermore, it is also easy to prove that C∗
b2
> C∗

b3
when db < db2 (Figure 2(a) bottom), while

C∗
b3
> C∗

b2
otherwise (Figure 2(a) bottom) or when dgkpm > dmkgbKlb (Figure 2(b) bottom). Since

the bone formation mainly depends on osteoblasts, the above inequalities can be used in strategies
to enhance bone synthesis. For instance, a faster bone formation may be observed under E2 rather
than under E3 when db < db2 . Such inequality implies that the growth factor’s concentration is
above of the threshold value kpm/dm, i.e, g∗b2 = kgbKlb(1− db/kpb)/dg > kpm/dm.

Moreover, during bone fracture healing process, the equilibria E2 represents a successful healing
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(a) dmkgbKlb > kpmdg (b) dmkgbKlb < kpmdg

Figure 2. Bifurcation diagram of System (1)-(3): solid lines represent stable variables while dashed lines represent
unstable variables. E1 exists for all db, E2 exists when db < kpb, and E3 exists when db2 < db < db1 . E1

changes stability at db1 , E2 changes stability at db2 , and E3 changes stability at db3

outcome (Trejo et al. (2019)). According to Theorem 3.3, E2 is observed if and only if the pro-
liferation rate of osteoblasts is bigger than their differentiation rate, i.e, kpb > db, and the growth
factor’s concentration is above the value given by kpm/dm. Such results confirm the numerical
findings obtained in Bailon-Plaza and Van Der Meulen (2001).

5. Numerical Simulations

In this section a set of numerical simulations is presented to support the theoretical results and to
investigate the evolution of the osteoblastogenesis under different therapeutic interventions. Ac-
cording to the qualitative analysis of Model (1)-(3), there are four equilibria: E0, E1, E2, and
E3, where their stability conditions are determined based on the following bifurcation values: kpb,
db1 = kpb + dmkgbKlm/dg, db2 = kpb (1− dgkpm/dmkgbKlb), and db3 such that db2 < db3 < db1 and
db3 is a root of the polynomial function b1b2 − b3 with respect to db.

Table 2. Parameter descriptions and units

Parameter Description Range of values Reference
kpm Proliferation rate of Cm 0.5/day Trejo et al. (2019)
dm Differentiation rate of Cm 0.1 (ng/mL)−1/day Bailon-Plaza and Van Der Meulen (2001), Trejo et al. (2019)
kpb Proliferation rate of Cb 0.2202 /day Bailon-Plaza and Van Der Meulen (2001), Trejo et al. (2019)
db Differentiation rate of Cb 0.15 /day Bailon-Plaza and Van Der Meulen (2001), Trejo et al. (2019)
kgb Secretion rate of gb by Cb 0.05− 25 (ng/cell)/day Bailon-Plaza and Van Der Meulen (2001), Moreo et al. (2009)
dg Decay rate of gb 10− 100 /day Bailon-Plaza and Van Der Meulen (2001), Moreo et al. (2009)
Klb Carrying capacity of Cb 1× 106 cells/mL Bailon-Plaza and Van Der Meulen (2001)
Klm Carrying capacity of Cm 1× 106 cells/mL Bailon-Plaza and Van Der Meulen (2001)

Table 2 summarizes the baseline parameter values and units for the numerical simulations. These
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values are estimated in a qualitative manner from data in other studies (Bailon-Plaza and Van Der
Meulen (2001), Moreo et al. (2009), Trejo et al. (2019)), with some being rescaled to account
for the different mathematical expressions presented in this work. All simulations are obtained by
using the adaptive MATLAB solver ode23tb and are initiated with densities of MSCs, osteoblasts,
and growth factors set to Cm(0) = 1000, Cb(0) = 1000, and gb(0) = 200.
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Figure 3. Cellular and molecular evolution for E1 and E2, when each of them is stable

Figure 3 shows the time evolution of the MSCs, osteoblasts, and the TGF-β densities of the equi-
libria E1 (right) and E2 (left), when each of them is stable. The simulation in Figure 3 (left) uses
db = 51, and therefore, db > db1 = 50.2202, while the simulation in Figure 3 (right) uses db = 0.1,
and therefore, db < db2 = 0.218. For the equilibrium E1, the MSCs maintain a maximum constant
density given by their carrying capacity Klm = 1 × 106, while the osteoblasts and growth factors
densities decay to zero over time. For the equilibrium E2, the MSCs density decays to zero over
time, while the osteoblasts and growth factors maintain constant densities.

The following parameter values are used to show the existence of a Hopf-bifurcation for the model
(1)-(3): Klm = 10000, kpm = 0.5, dm = 0.1, kpb = 0.2202, Klb = 10000, dg = 1, kgb = 0.04. In
this case,E3 has a Hopf-bifurcation value at db3 ≈ 5.091. Figure 4 shows the numerical solution for
E3, when E3 is stable (left): db = 6, that implies b1b2 − b3 ≈ 0.905131, and when E3 is unstable
(right): db = 4, that implies b1b2 − b3 ≈ −0.607299. In Figure 4 (left), the MSCs, osteoblasts,
and growth factors densities remain constant over time while in Figure 4 (right), these densities
oscillate over time.

Next, the model is used to explore two of the clinical trials, the injection of growth factors
and the injection of MSCs (Devescovi et al. (2008), Fakhry et al. (2013)) that have been im-
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Figure 4. Cellular and molecular evolution for E3: stable (left) and unstable (right)

plemented in orthopedics to accelerate osteoblastogenesis. The administration of growth-factor
drugs is simulated by increasing the production rate of gb using kgb = 0.005, 0.05, 0.5, with
Cm(0) = 1× 106. The MSCs injection therapy is simulated by using different initial MSCs densi-
ties: Cm(0) = 1× 103, 1× 105, 1× 106. The above parameter values correspond to the successful
osteogenic outcome E2.

Figure 5 shows that the administrations of TGF-β and the MSCs are both viable therapeutic inter-
ventions, as they each stimulate an earlier increase in the osteoblasts population (middle), driven
by corresponding increases in the MSCs differentiation over time (top) and in the growth factor
concentrations (bottom).

6. Discussion and Conclusion

The presented model was used to study the fundamental mechanisms of mesenchymal stem cell
differentiation towards osteoblasts by taking into account the growth factors stimuli directing the
osteoblastogenesis process. The corresponding mathematical findings revealed that there are two
possible successful outcomes, E2 and E3, which are observed when db < kpb + dmkgbKlm/dg,
depending on the MSCs differentiation site (Lin et al. (2019), Via et al. (2012)). Moreover, the
osteoblastogenesis process evolves to the equilibria E2 when the growth factor concentration is
above the growth factor’s concentration value given by kpm/dm (Theorem 3.3). Otherwise, the
osteoblastogenesis results in E3 (Theorem 3.4).
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Figure 5. Cellular and molecular evolution of the osteoblastogenesis under the administration of growth factors (left)
and MSCs injection (right)

Furthermore, since in a successful osteoblastogenesis, it is expected that MSCs, osteoblasts, and
growth factors remain at constant densities over time, then E3 under the conditions db2 < db < db1
and b1b2 − b3 < 0 represents a pathological successful osteogenic differentiation. In this case, the
state-variables of E3 may never achieve a constant-steady state value, as seen in Figure 4 (right).
Additionally, it can be concluded, from the stability and bifurcation analysis of the model, that
when the proliferation rate of osteoblasts is bigger than their differentiation rate, i.e, kpb > db,
and the growth factors concentration is above the growth factor’s concentration value given by
kpm/dm, then a faster bone formation would be observed under E2 rather than under E3 variables.
Conversely, a faster bone formation would be observed under E3 rather than under E2 when the
growth factors concentration is below the growth factor’s concentration value given by kpm/dm,
ensuring that db2 < db < db1 and b1b2 − b3 > 0.

The numerical simulations show that growth factors and MSCs therapeutic interventions are both
feasible orthopaedic strategies to accelerate bone formation. The model can also be easily adapted
to other therapeutic approaches, such as the administration of other molecular agents that stimulate
the osteogenic process. Next, we plan to extend the model by incorporating the growth factor
stimulus in the cellular migration, proliferation, and differentiation processes, which will allow for
a better understanding of the regulatory effects of growth factors in tissue formation.
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