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Abstract

In this paper, we consider a continuous review one-to-one ordering policy inventory system with
multiple vacations and negative customers. The maximum storage capacity is S. The customers
arrive according to a Poisson process with finite waiting hall. There are two types of customers:
ordinary and negative. An ordinary customer, on arrival, joins the queue and the negative customer
does not join the queue and takes away any one of the waiting customers. When the waiting hall
is full, the arriving primary customer is considered to be lost. The service time and lead time
are assumed to have independent exponential distribution. When the inventory becomes empty,
the server takes a vacation and the vacation duration is exponentially distributed. The stationary
distribution of the number of customers in the waiting hall, the inventory level and the server
status for the steady state case. Some system performance measures and numerical illustrations are
discussed.
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1. Introduction

The (S − 1, S) policy have been studied extensively by Schmidt and Nahmias (1985), Pal (1989),
Kalpakam and Sapna (1995) and Kalpakam and Sapna (1996). In all these models, whenever the
inventory level drops by one unit, either due to a demand or a failure, an order for one item is
placed. Kalpakam and Arivaringnan (1998) discussed with a (S − 1, S) system with renewal de-
mands for non-perishable items. Kalpakam and Shanthi (2000) have considered the modified base
stock policy and random supply quantity. Recently, Gomathi et al. (2012) considered a two com-
modity inventory system for base-stock policy with service facility.

Berman and Kim (1999) considered a queueing - inventory system with Poisson arrivals, exponen-
tial service times and zero lead times. Berman and Sapna (2000) studied the concept of "queueing
- inventory" system with service facility. Krishnamoorthy and Anbazhagan (2008) analyzed a per-
ishable queueing inventory system with N policy, Poisson arrivals, exponential distributed lead
times and service times. Yadavalli et al. (2018) considered a service facility inventory system with
two stage services and repeated attempt for the customers. Jeganathan et al. (2013) and Jeganathan
et al. (2016) studied a retrial inventory system with non-preemptive priority service and optional
service provided for the customers.

In all the above models, the authors have considered that the arrival of customers to the service
station should join the system until it is full. The customers who arrive at the service station are
classified as ordinary (positive or regular) and negative customers. The arrival of ordinary cus-
tomers to the service station increases the queue length by one and the arrival of negative customer
to the service station causes to remove one ordinary customer, if any is present.This type of cus-
tomer is called negative customer. Since the work is analysed by Gelenbe (1991), the research on
queueing systems with negative arrivals has been greatly motivated by some practical applications
in computers, neural networks and communication networks, etc. For comprehensive literature on
queueing networks with negative arrivals, one may refer to Chao et al. (1999) and Gelenba (1998).
A recent review can be found in Artalejo (2000).

In several situations, the server is unavailable to the customers due to server’s failure, which may be
engaged in other works such as maintenance or serving secondary customers, or may just go away
and may not be waiting. The aim of studying the queueing model with vacation for utilizing the idle
time of the server, by which the total average cost involved may be minimized. Applications arise
naturally in call centres with multitask employees, customized manufacturing, telecommunication
and computer networks, maintenance activities, production and quality control problems, etc. Da-
nial and Ramanarayanan (1987) and Daniel and Ramanarayanan (1988) have first introduced the
server vacation in inventory with two servers. Also they have studied an inventory system in which
the server takes rest when the level of the inventory is zero. They assumed that the demands that oc-
curred during stock-out period are assumed to be lost. Narayanan et al. (2008) studied on an (s, S)
inventory policy with service time, vacation to server and correlated lead time. Sivakumar (2011)
has considered a retrial inventory system with multiple server vacaion. He has assumed Poisson
arrival and exponential service time. Padmavathi et al. (2015) developed a retrial inventory system
with single and modified multiple vacation. They have assumed that two different vacation models
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when the inventory level zero. Rustamov and Adamov (2017) deal with a numerical method to
perisable inventory systems with server vacations.

In real life situations, the sale agencies deal with two different items with high cost like email server
and data server, refrigerator and washing machine, etc. Keeping them in stock for sales purpose is
high risk but yields high profit, wherein the waiting customers may be wooed or taken away by new
arriving customers from a large population. Many companies are looking for prospective customers
at others’ sales centers. Motivated by such situations, this paper focuses on (S − 1, S) policy
stochastic inventory system under continuous review at a service facility with a finite waiting hall
for customers. The customers arriving to the service station are classified as ordinary and negative
customers. The server takes a vacation of exponential length each time when the inventory level
becomes empty. When the vacation ends he finds the inventory level is still zero and the server takes
another vacation; otherwise, he terminates his vacation is ready to serve any arriving demands. The
joint probability distribution of the number of customers in the waiting hall, the inventory level and
the server status is obtained for the steady state case. Various system performance measures in the
steady state are derived and the long-run total expected cost rate is calculated.

The remainder of this paper is organized as follows. In Section 2, we present the mathematical
model and the notations. Analysis of the model and the steady state solution are given in Section 3.
In Section 4, we derive various measures of system performance in steady state. In Section 5, the
total expected cost rate is calculated and numerical study is presented. The last section is meant for
conclusion.

2. Model description

We consider a single server continuous review stochastic inventory system adopted by one-to-one
ordering policy. According to this policy, orders are placed for one unit as and when the inventory
level drops due to a demand. The maximum inventory level is denoted by S. Customers arrive at
the system one by one in according to a Poisson stream with arrival rate λ(> 0). If the server is
busy, the arriving customer first try to queue up in a finite waiting room of capacity M. Finding that
at full, he considered to be lost. The probability that a customer is an ordinary is p and a negative is
q(= 1− p). We have assumed that the negative customer removes any one of the ordinary waiting
customers from the system including the one at the service point. Each customer requires a single
item having random duration of service which follows an exponential distribution with parameter
µ. The lead time is exponentially distributed with the rate β. The server takes a vacation of random
duration once the inventory level becomes empty. On return from vacation, if the inventory level
is positive, otherwise he takes another vacation. The vacation duration is exponentially distributed
with rate θ. We assume that the inter-demand times between primary customers, the lead times,
service times and the sever vacation times are mutually independent random variables.

Notations

[A]ij : The element/submatrix at (i, j)th position of A.
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0 : Zero matrix.
I : Identity matrix.
e : A column vector of 1′s of appropriate dimension.

δij :
{

1, if i = j.

0, otherwise.
δ̄ij : 1− δij ,

Y (t) :

{
0, if server is on vacation at time t.
1, if server is not on vacation at time t.

3. Analysis

Let X(t), L(t) and Y (t) denote the number of customers in the waiting hall, the inventory level of
the commodity and the server status at time t. From the assumptions made on the input and output
processes, it can be shown that the triplet {(X(t), L(t), Y (t)), t ≥ 0} is a continuous time Markov
chain with state space given by E,

E = {(i, 0, 0) : i = 0, 1, 2, . . . ,M}∪{(i, k,m) : i = 0, 1, 2, . . . ,M, k = 1, 2, . . . , S, m = 1, 0}.

To determine the infinitesimal generator,

P = (h((i, k,m), (j, l, n))), (i, k,m), (j, l, n) ∈ E,

of this process we use the following arguments:

∗ Transitions due to the arrival of an ordinary customers:

• (i, k,m)→ (i+ 1, k,m) : the rate is pλ, for 0 ≤ i ≤M − 1, 1 ≤ k ≤ S, m = 1, 0.
• (i, 0, 0)→ (i+ 1, 0, 0) : the rate is pλ, for 0 ≤ i ≤M − 1.

∗ Transitions due to the arrival of a negative customers:

• (i, k,m)→ (i− 1, k,m) : the rate is qλ, for 1 ≤ i ≤M , 1 ≤ k ≤ S, m = 1, 0.
• (i, 0, 0)→ (i− 1, 0, 0) : the rate is qλ, for 1 ≤ i ≤M .

∗ Transitions due to service completion in the system:

• (i, k, 1)→ (i− 1, k − 1, 1) : the rate is µ, for 1 ≤ i ≤M , 2 ≤ k ≤ S.
• (i, 1, 1)→ (i− 1, 0, 0) : the rate is µ, for 1 ≤ i ≤M .

∗ Transitions due to replenishments:
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• (i, k,m)→ (i, k + 1,m) : the rate is (S − k)β, for 0 ≤ i ≤M , 1 ≤ k ≤ S, m = 1, 0.
• (i, 0, 0)→ (i, 1, 0) : the rate is Sβ, for 0 ≤ i ≤M .

∗ Transitions due to vacation completion:

• (i, k, 0)→ (i, k, 1) : the rate is θ, for 0 ≤ i ≤M , 1 ≤ k ≤ S.

∗ We observe that no transition other than the above is possible.

Hence, we have h((i, k,m), (j, l, n))=



pλ, j = i+ 1, l = k, n = m,
i = 0, 1, . . . ,M − 1, k = S, S − 1, . . . , 1, m = 1, 0,

or
j = i+ 1, l = k, n = m,
i = 0, 1, . . . ,M − 1, k = 0, m = 0,

qλ, j = i− 1, l = k, n = m,
i = 1, . . . ,M, k = S, S − 1, . . . , 1, m = 1, 0,

or
j = i− 1, l = k, n = m,
i = 1, . . . ,M, k = 0, m = 0,

θ, j = i, l = 0, n = 1,
i = 0, 1, 2, . . . ,M, k = S, S − 1, . . . , 1, m = 0,

µ, j = i− 1, l = k − 1, n = m,
i = 1, 2, . . . ,M, k = S, S − 1, . . . , 2, m = 1,

or
j = i− 1, l = k, n = 0,
i = 1, . . . ,M, k = 1, m = 1,

(S − k)β, j = i, l = k + 1, n = m,
i = 0, 1, . . . ,M, k = S − 1, S − 2, . . . , 1 m = 1, 0,

or
j = i, l = 1, n = m,
i = 0, 1, . . . ,M, k = 0, m = 0,

−((S − k)β + pλ+ δ0mθ), j = i, l = k, n = m,
i = 0, k = S, S − 1, . . . , 1, m = 1, 0,

−(Sβ + pλ), j = i, l = k, n = m,
i = 0, k = 0, m = 0,

−((S − k)β + λ+ δ1mµ+ δ0mθ), j = i, l = k, n = m,
i = 1, 2, . . . ,M − 1, k = S, S − 1, . . . , 1, m = 1, 0,
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

−(Sβ + λ), j = i, l = k, n = m,
i = 1, 2, . . . ,M − 1, k = 0, m = 0,

−((S − k)β + qλ+ δ1mµ+ δ0mθ), j = i, l = k, n = m,
i =M, k = S, S − 1, . . . , 1, m = 1, 0,

−(Sβ + pλ), j = i, l = k, n = m,
i = 0, k = 0, m = 0,

0, otherwise.

Denote q = ((q, 0, 0), (q, 1, 0), (q, 1, 1), (q, 2, 0), (q, 2, 1), . . . , (q, S, 0), (q, S, 1)) for q =
0, 1, . . . ,M . By ordering states lexicographically, the infinitesimal generatorA can be conveniently
expressed in a block partitioned matrix with entries

[A]ij =



A2, j = i, i = M,
A1, j = i, i = 1, 2, . . . ,M − 1,
A0, j = i, i = 0,
B, j = i+ 1, i = 0, 1, 2, . . . ,M − 1,
C, j = i− 1, i = 1, 2, . . . ,M,
0, otherwise,

where

[A0]ij =


FS−i, j = i, i = S, S − 1 . . . , 1,
F01, j = 1, i = 0,
F00, j = 0, i = 0,
0, otherwise,

[FS−i]mn =


θ, n = 1, m = 0,
(S − i)β, n = i, m = 1, 0,
−((S − i)β + pλ), n = 1, m = 1,
−((S − i)β + pλ+ θ), n = 0, m = 0,
0, otherwise.

For i = S, S − 1, . . . , 1,

F01 =
( 1 0

0 0 Sβ
)
, F00 =

( 0

0 −(Sβ + pλ)
)
,
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[A1]ij =


QS−i, j = i, i = S, S − 1 . . . , 1,
F01, j = 1, i = 0,
Q00, j = 0, i = 0,
0, otherwise,

[QS−i]mn =


θ, n = 1, m = 0,
(S − i)β, n = i, m = 1, 0,
−((S − i)β + λ+ µ), n = 1, m = 1,
−((S − i)β + λ+ θ), n = 0, m = 0,
0, otherwise.

For i = S, S − 1, . . . , 1,

Q00 =
( 0

0 −(Sβ + λ)
)
,

[A2]ij =


PS−i, j = i, i = S, S − 1 . . . , 1,
F01, j = 1, i = 0,
P00, j = 0, i = 0,
0, otherwise,

[PS−i]mn =


θ, n = 1, m = 0,
(S − i)β, n = i, m = 1, 0,
−((S − i)β + qλ+ µ), n = 1, m = 1,
−((S − i)β + qλ+ θ), n = 0, m = 0,
0, otherwise.

For i = S, S − 1, . . . , 1,

P00 =
( 0

0 −(Sβ + qλ)
)
,

B = pλI(2S+1)×(2S+1), C = qλI(2S+1)×(2S+1).

It may be noted that the matrices A0, A1, A2, B and C are square matrices of order (2S + 1).
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3.1. Steady State Analysis

The structure ofA that the homogeneous Markov process {(X(t), L(t), Y (t)), t ≥ 0} on the finite
state space E is irreducible. Hence, the limiting distribution

π(i,j,k) = lim
t→∞

pr{X(t) = i, L(t) = j, Y (t) = k|X(0), L(0), Y (0)},

exists. Let

Π= (Π(0),Π(1),Π(2), . . . ,Π(M)).

We partition the vector Π(i) into as follows,

Π(i)= (Π(i,0),Π(i,1),Π(i,2), . . . ,Π(i,S)), i = 0, 1, 2, . . . ,M,

which is partitioned as follows,

Π(i,j) = (π(i,0,0)),

Π(i,j) = (π(i,j,0), π(i,j,1)).

for i = 0, 1, 2, . . . ,M , j = 1, 2, . . . , S.

Then, the limiting probability Π satisfies

ΠA = 0, Πe = 1. (1)

From the structure of A, it is a finite QBD matrix, therefore, its steady state vector Π can be
computed by using the following algorithm described by Gaver et al. (1984).

Algorithm :

1. Determine recursively the matrices

F0 = A0,

Fi = A1 +B(−F−1i−1)C, i = 1, 2, . . . ,M − 1,

FM = A2 +B(−F−1M−1)C.

2. Compute recursively the vectors Π(i) using

Π(i) = Π(i+1)B(−F−1i ), i = 0, 1, 2, . . . ,M − 1.

3. Solve the system of equations

Π(M)FM = 0 and
M∑
i=0

Π(i)e = 1.
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From the system of equations Π(M)FM = 0, vector Π(M) could be determined uniquely, up to a
multiplicative constant. This constant is decided by

Π(i) = Π(i+1)B(−F−1i ), i = 0, 1, 2, . . . ,M − 1 and
M∑
i=0

Π(i)e = 1.

4. System Performance Measures

In this section some performance measures of the system under consideration in the steady state
are derived.

4.1. Expected inventory level

Let ρI denote the mean inventory level in the steady state. Then,

ρI =
M∑
i=0

S∑
j=1

j
[
π(i,j,1) + π(i,j,0)

]
.

4.2. Expected reorder rate

Let ρR denote the expected reorder rate in the steady state. Then,

ρR =
M∑
i=1

S∑
j=1

µ
[
π(i,j,1)

]
.

4.3. Expected number of demands in the waiting hall

Let ρW denote the expected number of demands in the waiting hall in the steady state. Then,

ρW =
M∑
i=1

S∑
j=1

i
[
π(i,j,1) + π(i,j,0) + π(i,0,0)

]
.

4.4. Fraction of time server is on vacation

Let ρFV denote the server is on vacation in the steady state. Then,

ρFV =
M∑
i=0

S∑
j=0

[
π(i,j,0)

]
.
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4.5. Expected blocking rate

Let ρB denote the expected blocking rate in the steady state. Then,

ρB =
S∑
j=1

pλ
[
π(M,j,1) + π(M,j,0) + π(M,0,0)

]
.

4.6. Mean rate of arrivals of negative customers

Let ρNg denote mean rate of arrivals of negative customers in the steady state. Then,

ρNg =
M∑
i=1

S∑
j=1

qλ
[
π(i,j,1) + π(i,j,0) + π(i,0,0)

]
.

5. Cost Analysis

The expected total cost per unit time (expected total cost rate) in the steady state for this model is
defined to be
ch : the inventory holding cost per unit item per unit time,
cs : the inventory setup cost per unit item per unit time,
cb : cost per blocking customer,
cw : waiting cost of a customer in the waiting hall per unit time,
cn : cost of loss per unit time due to arrival of a negative customer.

The long run total expected cost rate is given by

TC(S,M) = chρI + csρR + cbρB + cwρW + cnρNg.

Substituting ρ’s into the above equation, we obtain

TC(S,M) =ch

M∑
i=0

S∑
j=1

j
[
π(i,j,1) + π(i,j,0)

]
+ cs

M∑
i=1

S∑
j=1

µ
[
π(i,j,1)

]
+ cb

S∑
j=1

pλ
[
π(M,j,1) + π(M,j,0) + π(M,0,0)

]
+ cw

M∑
i=1

S∑
j=1

i
[
π(i,j,1) + π(i,j,0) + π(i,0,0)

]
+ cn

M∑
i=1

S∑
j=1

qλ
[
π(i,j,1) + π(i,j,0) + π(i,0,0)

]

6. Numerical Examples

In this section we illustrated the sensitivity investigation is given by considering the following
parameters and cost values. Table 1 presents the optimal value of the total expected cost rate for
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various combinations of the primary demand rate λ and the service rate µ. We have assumed
constant values for other parameters and costs. Namely, S = 5, M = 5 θ = 0.05, β = 0.7,
p = 0.7, q = 0.3, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03. The optimal value of the total
expected cost rate is TC∗(2.3, 0.9) = 12.659332 for the values of λ = 2.3 and µ = 0.9. The
value that is shown bold is the least among the values in that column and the value that is shown
underlined is the least in that row. Convexity of the total cost for various combinations of λ and µ
is given in Figure 1.

S = 5, M = 5 θ = 0.05, β = 0.7, p = 0.7, q = 0.3, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03

Figure 1. Convexity of the total cost for various combinations of λ and µ

Table 1. Total expected cost rate as a function of λ and µ

S = 5, M = 5 θ = 0.05, β = 0.7, p = 0.7, q = 0.3, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03
µ 0.6 0.7 0.8 0.9 1.0 1.1

λ
1.7 12.733593 12.729977 12.772855 12.848242 12.943846 13.050069
1.8 12.728964 12.703866 12.724866 12.779530 12.856327 12.945879
1.9 12.732824 12.690244 12.693029 12.730161 12.790871 12.866053
2.0 12.742915 12.686194 12.673904 12.696304 12.743353 12.806243
2.1 12.757527 12.689439 12.664740 12.674827 12.710343 12.762782
2.2 12.775365 12.698203 12.663342 12.663189 12.689012 12.732606
2.3 12.795448 12.711102 12.667966 12.659332 12.677039 12.713172
2.4 12.817035 12.727060 12.677224 12.661596 12.672532 12.702388
2.5 12.839564 12.745239 12.690016 12.668646 12.673950 12.698534
2.6 12.862613 12.764987 12.705470 12.679410 12.680042 12.700207

We assign the following values to the parameters: S = 5, M = 5 θ = 0.05, λ = 2, p = 0.7,
q = 0.3, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03. For different values of β and µ, the total
expected cost rate presented in Table 2. The value that is shown bold is the least among the values
in that column and the value that is shown underlined is the least in that row. The two dimensional
convexity of the total cost for various combinations of β and µ is given in Figure 2.

From Table 3, we observe that an increase in the arrival rate and server vacation rate makes a
decrease in measures like expected inventory level, expected number of demands in the waiting
hall, expected blocking rate and the total expected cost rate. However, the expected reorder rate
and mean rate of arrivals of negative customers are increased considerably.



AAM: Intern. J., Vol. 14, Issue 2 (December 2019) 683

S = 5, M = 5 θ = 0.05, λ = 2, p = 0.7, q = 0.3, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03

Figure 2. Effect for various combinations of β and µ

Table 2. Total expected cost rate as a function of β and µ

S = 5, M = 5 θ = 0.05, λ = 2, p = 0.7, q = 0.3, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03
µ 1.3 1.4 1.5 1.6 1.7

β
0.9 13.869944 13.869042 13.880297 13.900157 13.925797
1.1 13.833343 13.810877 13.806440 13.816461 13.837569
1.3 13.848195 13.809033 13.790986 13.791285 13.806810
1.5 13.891897 13.843180 13.816835 13.810995 13.823088
1.7 13.947261 13.894733 13.865039 13.857013 13.868605
1.9 14.004568 13.951894 13.922257 13.914978 13.928403

Table 4 indicates that increase in arrival rate and lead time makes expected inventory level, ex-
pected reorder rate and total expected cost rate. However, expected number of demands in the
waiting hall, expected blocking rate and mean rate of arrivals of negative customers decrease to the
considerable extent.

Table 5 shows that the expected inventory level, expected reorder rate and total expected cost rate
increase when increase in lead time and service rate. However, expected number of demands in the
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waiting hall, expected blocking rate and mean rate of arrivals of negative customers decrease.

Table 3. Effects of λ and θ on some performance measures and total cost

λ θ ρI ρR ρW ρB ρN TC

2 1 5.308861 0.719987 3.113831 0.563783 0.834559 12.599611
2 5.311536 0.722475 3.108817 0.561933 0.834901 12.594750
3 5.312544 0.723274 3.107098 0.561407 0.835208 12.593113

3 1 4.799978 0.742670 3.431449 0.935586 1.154436 12.801543
2 4.799326 0.745854 3.427138 0.933283 1.155487 12.795747
3 4.799195 0.746897 3.425628 0.932667 1.156202 12.793736

4 1 4.554990 0.753809 3.619659 1.325271 1.470018 12.977649
2 4.552364 0.757416 3.616049 1.322910 1.471833 12.971914
3 4.551529 0.758613 3.614775 1.322369 1.472993 12.969904

µ = 0.8, β = 0.7, p = 0.7, q = 1 − p, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03,S = 5,M = 5

Table 4. Effects of λ and β on some performance measures and total cost

λ β ρI ρR ρW ρB ρN TC

3 5 6.624869 0.726192 3.100115 0.556737 0.817071 13.867555
6 6.661288 0.726235 3.100041 0.556700 0.817065 13.903142
7 6.687283 0.726254 3.100009 0.556684 0.817063 13.928574

4 5 6.020099 0.750882 3.419034 0.922619 1.126501 13.980331
6 6.054287 0.750939 3.418965 0.922568 1.126494 14.013759
7 6.078704 0.750963 3.418936 0.922546 1.126491 14.037657

5 5 5.716825 0.763314 3.608952 1.305218 1.431470 14.104119
6 5.749639 0.763381 3.608890 1.305157 1.431463 14.136228
7 5.773089 0.763410 3.608864 1.305131 1.431460 14.159189

µ = 0.8, θ = 0.05, p = 0.7, q = 1 − p, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03,S = 5,M = 5

Table 5. Effects of β and µ on some performance measures and total cost

β µ ρI ρR ρW ρB ρN TC

2 1 8.730789 0.769228 2.126565 0.166029 0.464821 13.937712
2 12.697318 1.027743 1.100815 0.048213 0.324373 15.987098
3 14.780886 1.111886 0.773299 0.039019 0.249588 17.443215

3 1 9.008422 0.772386 2.117229 0.163509 0.464114 14.194049
2 13.377446 1.047881 1.036016 0.034151 0.318011 16.542169
3 15.801879 1.148591 0.653699 0.015223 0.236255 18.237470

4 1 9.142190 0.772955 2.115548 0.163056 0.463991 14.322307
2 13.670081 1.051866 1.023190 0.031371 0.316772 16.806890
3 16.216018 1.156294 0.628600 0.010233 0.233489 18.600030

λ = 2, θ = 0.05, p = 0.7, q = 1 − p, ch = 0.98, cs = 1.2, cw = 2.09, cn = 0.03,S = 5,M = 5
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7. Conclusion

In this paper, we discussed continuous review inventory system with base stock policy and cus-
tomers are of two type: ordinary and negative. Various system performance measures are derived
in the steady state. The results are illustrated with numerically. This model addresses the intraction
between inventory and the quality of service. The current situation faced by manufacturing com-
panies and server, which are under instance pressure to reduce inventory and idle (vacation) time
for utilize capacity, slow moving items and provide high holding cost service levels. And also the
total expected cost rate is minimized.

Acknowledgment:

N. Anbazhagan’s research has been financialy supported jointly by RUSA-Phase 2.0 grant sanc-
tioned vide letter No. F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, Dt.
09.10.2018, UGC-SAP (DRS-I) vide letter No. F.510/8/DRS-I/2016(SAP-I) Dt. 23.08.2016, DST-
PURSE 2nd Phase programme vide letter No. SR/PURSE Phase 2/38 (G) Dt. 21.02.2017 and DST
(FST - level I) 657876570 vide letter No. SR/FIST/MS-I/2018/17 Dt. 20.12.2018.

REFERENCES

Artalejo, J. R. (2000). G-networks: A versatile approach for work removal in queueing networks,
European J. Oper. Res, Vol. 126, pp. 233-249.

Berman, O. and Kim, E. (1999). Stochastic models for inventory management of service facilities,
Stochastic Models, Vol. 15, pp. 695-718.

Berman, O. and Sapna, K.P. (2000). Inventory management at service fa cility for systems with
arbitrarily distributed service times, Communications in Statistics and Stochastic Models, Vol.
16, No. 3, pp. 343-360.

Chao, X., Miyazawa, M. and Pinedo, M. (1999). Queueing networks: Customers, Signal and Prod-
uct Form Solutions, Wiley, Chichester.

Daniel, J. K. and Ramanarayanan, R. (1987). An inventory system with two servers and rest peri-
ods, Cahiers du C.E.R.O, Universite Libre De Bruxelles, Vol. 29, pp. 95-100.

Daniel, J. K. and Ramanarayanan, R. (1988). An inventory system with rest periods to the server,
Naval Research Logistics, John Wiley and Sons, Vol. 35, pp. 119-123.

Gaver, D.P., Jacobs, P. A. and Latouche, G. (1984). Finite birth-and-death models in randomly
changing environments, Advances in Applied Probability, Vol. 16, pp. 715 - 731.

Gelenbe, E. (1991). Production-form queueing networks with negative and positive customers, J.
Appl. Prob, Vol. 30, pp. 742 - 748.

Gelenbe, E. and Pujolle, G. (1998). Introduction to queueing networks, (Second Edition), Wiley
Chichester.

Gomathi, D., Jeganathan, K. and Anbazhagan, N. (2012). Two-commodity inventory system for



686 K. Jothivel and A. Neelamegam

base-stock policy with service facility, Global Journal of Science Frontier Research (F), Vol.
XII, No. I, pp. 69-79.

Jeganathan, K. Anbazhagan, N. and Kathiresan, J. (2013). A retrial inventory system with non-
preemptive priority service, International Journal of Information and Management Sciences,
Vol. 24, pp. 57-77.

Jeganathan, K., Kathiresan, J. and Anbazhagan, N. (2016). A retrial inventory system with priority
customers and second optional service, OPSEARCH, Vol. 53, pp. 808-834.

Kalpakam, S. and Arivarignan, G. (1998). The (S − 1, S) inventory system with lost sales, Proc.
of the Int. Conf. on Math. Mod. Sci. and Tech, Vol. 2, pp. 205-212.

Kalpakam, S. and Sapna, K.P. (1995). (S-1, S) perishable system with stochastic lead times, Mathl.
Comput. Modelling, Vol. 21, No. 6, pp. 95-104.

Kalpakam, S. and Sapna, K.P. (1996). An (S-1, S) perishable inventory system with renewal de-
mands, Naval Research Logistics, Vol. 43, pp. 129-142.

Kalpakam, S. and Shanthi, S. (2000). A perishable system with modified base stock policy and
random supply quantity, Computers and Mathematics with Applications, Vol. 39, pp. 79-89.

Krishnamoorthy, A. and Anbazhagan, N. (2008). Perishable inventory system at service facility
with N policy, Stochastic Analysis and Applications, Vol. 26, pp. 1-17.

Narayanan, V. C., Deepak, T. G., Krishnamoorthy, A. and Krishnakumar, B. (2008). On an (s, S)
inventory policy with service time, vacation to server and correlated lead time, Qualitative
Technology and Quantitative Management, Vol. 5, No. 2, pp. 129-143.

Padmavathi, I., Sivakumar, B. and Arivarignan, G. (2015). A retrial inventory system with single
and modified multiple vacation for server, Annals of Operation Research, Vol. 233, No. 1, pp.
335-364.

Pal, M. (1989). The (S − 1, S) inventory model for deteriorating items with exponential leadtime,
Calcutta Statistical Association Bulletin, Vol. 38, pp. 149-150.

Rustamov, A. and Adamov, A. (2017). Numerical method to analysis of perishable queueing-
inventory systems with server vacations, IEEE 11th International Conference on Application
of Information and Communication Technologies (AICT).

Schmidt, C.P. and Nahmias, S. (1985). (S − 1, S) Policies for perishable inventory, Management
Science, Vol. 31, pp. 719-728.

Sivakumar, B. (2011). An inventory system with retrial demands and multiple server vacation,
Quality Technology and Quantitative Management, Vol. 8, pp. 125-146.

Yadavalli, V.S.S., Kathiresan, J. and Anbazhagan, N. (2018). A continuous review inventory system
with retrial customers and two-stage service, Applied Mathematics and Information Sciences,
Vol. 12, No. 2, pp. 441-449.


