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Abstract

In this paper, we study MX), M1X2l /G G, /1 retrial queueing system with discretionary priority
services. There are two stages of service for the ordinary units. During the first stage of service
of the ordinary unit, arriving priority units can have an option to interrupt the service, but, in the
second stage of service it cannot interrupt. When ordinary units enter the system, they may get the
service even if the server is busy with the first stage of service of an ordinary unit or may enter
into the orbit or leave the system. Also, the system may breakdown at any point of time when the
server is in regular service period. During the breakdown period, the interrupted priority unit will
get the fresh service at a slower rate but the ordinary unit can not get the service and the server will
go for repair immediately. During the ordinary unit service period, the arrival of negative unit will
interrupt the service and it may enter into an orbit or leave the system. After completion of each
priority unit’s service, the server goes for a vacation with a certain probability. We allow reneging
to happen during repair and vacation periods. Using the supplementary variable technique, the
Laplace transforms of time-dependent probabilities of system state are derived. From this, we
deduce the steady-state results. Also, the expected number of units in the respective queues and the
expected waiting times, are computed. Finally, the numerical results are graphically expressed.

Keywords: Batch arrivals; Discretionary priority queues; Working breakdown; Negative arrival;
Bernoulli vacation
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1. Introduction

In queueing system, retrial queues have been pretty impressive, in which the arriving units which
find the server busy upon entry, leave the service space and attempt to get their service when the
server is idle. In between, awaiting unit (blocked unit) which remains in a retrial group is said
to be in orbit. Such a retrial queue plays a significant part in communication systems, computer
networks, call center networks, etc.

Choudhury and Deka (2015) discussed M~ /G/1 retrial queueing system with two phases of ser-
vice and Bernoulli vacation. Rajadurai et al. (2015) studied a batch arrival feedback G-retrial queue
with two phases of service and server breakdown. Montazer-Haghighi and Mishev (2013) exam-
ined the three-stage hiring model with batch arrival and bulk service queueing system.

The priority queueing system has received significant attention in the history of queueing analysis.
The priority disciplines in queuing systems can be classified into preemptive and non-preemptive.
Under the non-preemptive discipline, in case of the arrival of priority units when an ordinary unit
is being served, arriving priority unit will wait until the service is completed. Under the preemptive
discipline, the arriving priority unit will always interrupt the ordinary unit’s service. Rajadurai et al.
(2016) considered an M /G /1 preemptive priority feedback retrial queue with working vacations
and vacation interruption. More than that, in some situations both disciplines have been considered,
which is termed as discretionary priority service. Fajardo and Drekic (2016) studied M /G /1 mixed
priority queue with discretionary service.

The idea of working breakdown is introduced by Kalidass and Ramanath (2012), in which the
server can provide the service during the breakdown period. Ayyappan and Udayageetha (2017)
proposed M* /G /1 mixed priority feedback retrial G-queue with two way-communication, work-
ing breakdown under Bernoulli vacation. Recently, Ammar and Rajadurai (2019) presented a pri-
ority retrial queueing system with disaster and working breakdown service.

Discretionary priority discipline was first proposed by Avi-Itzhak et al. (1964). Kim and Chae
(2010) studied a discrete - time discretionary priority queueing system with a single-stage service.
Zhao and Lian (2010) analyzed a two-stage M AP/M /1 discretionary priority queueing system
in which the first stage assumes the preemptive and the second stage assumes non-preemptive
service. Zhao et al. (2015) explained a two-stage M AP/PH/1 queue with discretionary prior-
ity service. Drekic and Woolford (2005) described the M /M /1 preemptive priority queue with
balking. Montazer-Haghighi et al. (2013) investigated M /M /c queueing system with balking and
reneging. Wu et al. (2013) examined a discrete-time Geo/G/1 retrial queue with preferred and
impatient units.

Our model has potential applications in computer networking systems. For example, the messages
(positive units) arrive at the router (server) according to a Poisson process. The router may subject
to breakdown during the service period and receive repair immediately. Such a system is affected
by a virus (negative units), destroying the message in transmission. This destructed message may
be put in the buffer (orbit) or may be cancelled for transmission.
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Figure 1. Schematic Diagram

In this article, we analyze a single server batch arrival discretionary priority-based retrial G-queue
with two stages of service, working breakdown, Bernoulli vacation, preferred and impatient units.
We assume that units arrive according to compound Poisson process in which priority units are
assigned as type-1 units and ordinary units (retrial units) as type-2. The type-3 units are called as
negative units. If the server is busy with the ordinary unit, the arriving type-3 unit will interrupt
the service and remove the unit under service. The removed unit can enter the orbit or leave the
system. The server provides two stages of service for ordinary units. During the first stage of
service, arriving priority unit can interrupt or it will wait in the queue. But during the second stage
of service it cannot interrupt. If the server is busy with the first stage of service at the ordinary
unit arrival epoch, the arriving ordinary unit has an option to push them out and receive the service
(preferred unit) or enter into an orbit or leave the system. Assume that the server is subject to
active breakdowns with parameter ov. When the server gets breakdown during priority unit’s service
period, it will complete the service at slower rate for current unit. But during an ordinary service
period, it is sent for repair immediately. If there is breakdown during the ordinary unit’s service
period, it will wait for remaining service to complete. After each priority unit’s service, the server
has an option to go on vacation. The priority units leave the system after joining the queue due to
server being on repair or vacation.

The article is prepared as follows. The representation of the mathematical model is stated in Section
2, equations describing the model and the time - dependent solutions are obtained in Section 3. The
steady - state results are determined in Section 4. The expected queue size and expected waiting
time are derived in Sections 5 and 6, sequentially. Remarkable particular cases are discussed in
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Section 7 and in Section 8, numerical outcomes and their graphical illustrations are shown.

2. Mathematical Description of the Model

(1) Priority and ordinary units arrive at the system in batches of variable size in a compound
Poisson process. Let Ay ¢;dt (i = 1,2,3,...) and Xy ¢;dt (j = 1,2,3,...) be the first order
probabilities that a batch of 7 and j units arrives at the system during a short interval of time
(t,t+dt),where0 < ¢; <1,>° ¢, =1,0<¢; <1, Z;’;lcj =1,and \; > 0, Ay > 0 are
the mean arrival rate for priority and ordinary units entering into the system.

(2) The retrial units are recognized as ordinary units. A new batch of ordinary units finds the
server idle and one unit among the batch gets the service quickly and the remaining units join
the orbit ultimately. An ordinary unit in the orbit always reverts to the orbit when it finds the
server busy on its retrial attempt.

(3) Consider that the server renders two stages of service for ordinary units. The first stage of
service can either be disrupted with probability » or continue the service with probability
(1 — r). But the second stage of service cannot be disrupted by the arrival of the priority unit.

(4) The negative unit appears according to a Poisson arrival rate A~. If the server is busy with the
ordinary unit, the arriving negative unit interferes the service and eliminates the unit under the
service. The removed unit either joins the orbit with probability g or leaves the system with
probability (1 — ¢).

(5) If an ordinary unit arrives during first stage of service, the arriving unit has an option to push
out the unit in service and initiates its service with probability bp (this unit is called preferred
unit) or enters the orbit with probability b(1 — p) or leaves the system with probability (1 — b).

(6) The system may become breakdown during the regular busy period and breakdowns are as-
sumed to occur according to Poisson stream with parameter . When the server gets break-
down during the priority unit’s service period, the server will complete the service at a slower
rate w(/) for the current unit, but during the ordinary unit’s service period, it is sent for re-
pair instantly. The interrupted ordinary unit waits till the repair completion of the server to
complete its remaining service.

(7) The priority units can decide to renege the queue during repair and vacation period and it
follows exponentially with rate &.

(8) After completion of each priority service, the server either goes for a vacation with probability
0 or serves the next unit with probability (1 — 6).

We defined the following notations:

N (t) = The number of units in the priority queue at time t,
N5(t) = The number of units in the orbit at time t,

Y (t) = The state of the server at time t.

In addition, let M°(t), BY(t), WO(¢), VO(¢) and RY(t), i = 1,2,3 be the elapsed time for retrial,
service of priority unit, ordinary unit first stage, ordinary unit second stage, working breakdown,
vacation and repair respectively at time ¢.
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Assume that M (0) = 0, M(o0) = 1, B;(0) = 0, B;(00) = 1, W(0) = 0, W(o0) = 1, V(0) = 1,
V(oo) = 1 are continuous at / = 0 and R;(0) = 0, R;(c0) = 1 are continuous at y = 0 for
i=1,2,3.

Then the functions 5(¢), 1;(¢), w(€), v(¢) and n;(¢) are hazard rate for retrial, service of priority
unit, ordinary unit first stage, ordinary unit second stage, working breakdown, vacation and repair
respectively. i.e,

oo S aw(
0= "= h YO T

Further, in the multivariate Markov process { Ny (t), Na(t), Y (t),t > 0}, Y () denotes the server’s
state (0, 1, 2, 3,4, 5, 6,7, 8) depending on whether the server is free, busy with priority unit, busy
with first stage ordinary unit, busy with second stage ordinary unit, working breakdown service,
vacation, repair after working breakdown service, repair for ordinary first stage and repair for
ordinary second stage respectively.

Now define the probability Iyo(t) = Pr{Ni(t) = 0,N2(t) = 0,Y(¢) = 0} and probability
densities are as follows:
Ton(t, 0)dl = Pr{Ni(t) = 0, Na(t) =n, Y (t) = 0,4 < M°(t) < £+ dl}, n > 1,
P (0, 8)de = Pr{N1(t) = m, Na(t) = n, Y (t) = 1;£ < BY(t) < { + d¢},
P (0,t)dl = Pr{N;(t) = m, Na(t) = n,Y (t) = 2;¢ < By(t) < { + dl},
P (0, 8)de = Pr{N;(t) = m, Na(t) = n,Y (t) = 3;¢ < B3(t) < { + dt},
QL) (€, 4)dl = Pr{Ny(t) = m, Na(t) = n,Y (t) = 4;£ < WO(t) < £+ d(},
Vinn (6, 1)d0 = Pr{Ny(t) = m, Nao(t) = n, Y (t) = 5;£ < V°(t) < £ + d{},
RY) (¢,8)dl = Pr{Ni(t) = m, No(t) = n, Y (t) = 6; ¢ < R)(t) < (+ d(},
R, (6,y,t)dy = Pr{Ny(t) = m, Na(t) = n, Y (t) = T;y < R(t) < y + dy/By(t) = (},

R® (0,y,t)dy = Pr{N;(t) = m, No(t) = n,Y(t) = 8y < R}(t) < y + dy/B5(t) = (},

for/{ >0,y >0¢t>0,m>0andn > 0.
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3. Equation Governing the System

The set of differential - difference equations governing the system as follows:

The server is in idle state,

d oo o0
GHoo(® == O+ 20)oalt) + (1-6) [ FQ(EOm(@dt+ [ R ()i
0 0

+ / R, yn(0)dt + / VoolL, y(0)de )
0 0

+)\_(1—q){/0 Pé%’(ﬁ,t)dwr/o g

The server is in retrial state,

0

O Bonl6:0) 4 S Tou(E.1) = ~(a + o B0 oall, ), @

ol

The server is providing priority service,

O PO+ D PILED) =~ + da + () P E.D)
m n (3)
+ (1= 0mo)M D P (1) + (1= Gao)Xe D c;PL_(41),
i=1 j=1

The server is providing ordinary first stage service,

g%ﬁMaw+§%ﬁﬂaw:—uy+&+a+xvumwﬂ$w&w
+(1 —5m0))\1Fch g Zn(ﬁ t) 4+ (1 — 6no) )\gprc]nyn i 4)
=1

+Mu—mﬂzmw+/ R, (6, t)a(y)dy.
0

The server is providing ordinary second stage service,

%P,SE’,L(& t) + %Pg%(é, t)=—(A+Xd+a+r +us(0)PP(0,1)
+ (1 = dmo) Mt Z clpf)m(ﬁ, t) + (1 — dno) A2 Zc Pmn (4t (5)
i=1 j=1

0
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The server is providing working breakdown service,

(1) + S Q1) = ~( 4+ + W)@

ot

. ey - (1 ©)
+ (1 - 5m0))\1 Z Cimei,n(g? t) + (1 - 5710))\2 Z Cij,nfj (67 t)?
i=1 j=1
The server is in repair process for priority,
8 0
(1= o)A Y RO (00 + (1= 6,000 > ;R (0,1),
i=1 j=1

The server is in repair process for ordinary first stage,

0 0
o Bon(L.y. 1) + aﬁmnw,y,w =~ Ao+ €+ m(O)RD, Ly t) + ERD (L. t)
n ®)
1 - mO )\1 ZCzRg) zn ﬁ yat) + (1 - 5n0))\2 chRg,)n—j(ga y7t)7
j=1

The server is in repair process for ordinary second stage,

0 0
S ROy D)+ S RO (6 1) = =+ Ao + €+ ma(O)RD,(Ly.1) + ERS, (L y. )
+ (1= 6mo)h Y aRE Gy ) + (1= 60X > ¢;RY,_(6,y,1),
i=1 j=1
The server is on vacation,
0 0
S Vnallt) + 5 Vi (£,8) = =+ 2 + €+ 90 Vinal,8) + EVins1n(6,1)
+ (1 — 5m0))\1 Z CiVm—i,n(& t) + (]_ — (5710))\2 Z ijmm—j(ga t)
i=1 j=1

The boundary conditions at ¢ = ( are

on(0.0)= (1=0) [ PO (0de+ [ PEE om0+ [ Roatn(0)de
0 0 0

+ / Vo6, )7(0)de + A~ (1 = g){ / Py(¢,t)de + / PO bt}
0

0 0

+/\_q{/0 Pg?gl(e,t)du/ PO (6}, (11)

0
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PO (0,8) = MemprTon(t) + (1= Gon) M7 Cm / P (£, t)de
0
s1-0) [P Com@Ode+ [P, s
0 0

[ Vot on@ae [ R om0

PN(0,1) = NacnypaLoo(t) + (1 — 50,n)A2bpzn: ¢; /0 h P (0, t)de
j=1
Y zn; ; /0 o (6, )dl + /O T Lot (6,08(0)d0,
<

R0 = [ R Dm0

Q0.0 =a [ PO

RW (0,t) = /0 h QL) (€, t)w()dl
zmmaaﬂ:aémﬂgmnﬂ,
M%waﬂ:aéwéﬂ@ﬂﬂ

Vin0.6) =0 [ P s ().
0

The initial conditions are

Pyh(0) = R, (0) = Q1 (0) = Vinin (0) = 0,

m,n m,n

i=1,2,3, mn>0, I,(0)=0, n>1 and I,,(0) = 1.

The Probability Generating Function (PGF) of this model:

It ) =Y 2 Tou(lt), At z,2) = 228 A (0,1),
n=1 m=0 n=0

Al t,z) = Zz;m (0,1), ALt 2) = ZZQAH

647

(12)

(13)

(14)

(15)

(16)

7)

(18)

(19)

(20)
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where A = P®, QW V, R®. Now taking Laplace transforms for Equation (1) to (19) and using

(20), we get

(s + M+ Ao)Too(s) — 1 = (1 —6) / Poo(t, ) (0)de + / Pt s)us(0)dl
0

0

+ /Oo Roo(l, s)n()dl + /OO Voo(l, s)v(£)dl

o)
—(3)

+A—(1—q){/omﬁg?3(e,t)de+ Py, s)dé}

0

0 - -
—Lon(l,s)+ (s+ M+ X+ 5(0)Lon(l,s) =0,

or
0 —(1)
(%Pmn(f §) 4+ (s+ A+ X +a+ ()P, (¢, s)
1_ m0 )\1261 mzn (1_ n0 >\2ZC] m,n— ](é S)
7j=1
9 - 5(2) _ [T5e
5 mn(€ )+ (s+ M+ Xb+a+ A"+ ua(0)P,, (4, s) = R, (6y, s)ma(y)dy
0
(1= dmo )\11"201 i + (1 — dno) )\gprcj o ](6 s),
9 50)
8£Pmn(€ S) (S+/\1+)\2—|—05—|—/\ +M3( R gyv 773( )d

+41—5mﬂh§:gﬁsgm@,) (1—&wM2§: Pﬁa]@S%
=1

j=1
—(1) (1)
Q w0 8) + (s + A+ A +w(l)Q,, (£, 5)
1— 'm0 )\1201 m— zn (1_ n0 /\2ZC] m,n— j(g S)
J=1

9 R0 (&s)+<s+A1+A2+5+m<é>>R£i’n< 9 =€RY, (6.s)

op" M
1
1_ m0 )\1261 m— zn 1_ nO )\ZZCJRT(n)n ]

0 — — —
aERm n(gv y,S) + (S + )‘1 + )\2 + g + nQ(g))Ris?n(& Y, 8) = gR'Esl—l,n(& Y, 8)

F (1= bmo)h Y R (Cyys) + (L= 6002 Y e R (L, s).

i=1 j=1

2L

(22)

(23)

(24)

(25)

(26)

27)

(28)
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0 — — —
aRS’L?n(& y78) + (8 + A+ A+ é + 773(£>>R1(3L?n(€7 Y, 8) = gRSZrl,n(‘€7 Y, S)

mo n (29)
+ (]- - 6m0)>\1 Z CiRS)—i,n(& Y, S) + (1 - 5710))‘2 Z CjRS?n—j (67 Y, S)u
i=1 j=1
o _— _ _
%Vm,n(e, S)+(s+ A+ +E+70)Vimnll,s) =EVimi1n(l,s)
mo n (30)
+ (1 — dpmo) M1 Z CiVm—in(l,8) + (1 = dp0) A2 Z ciVimn—i(l,s),

i=1 j=1

oo

Ton(0,8) = (1—6) / PY) (0, 5) i (0)dl + /
0 0
+ [ Vaattonierx@-of [ PO s [P e sar)

0 0 0

+27qf / P (C,)de + / Pyt s)dr G31)
0 0

F(()?BL(& 5)u3(£)d£+/ Ro..(¢,8)n(0)de
0

Fg?n((h s) = )\16m+170,n(3) +(1- 50,n))\17"0m+1/ ?gifl(& s)dl
0

L (1-0) / PO (s (0)de + / PO ()0t
0 0

[ Vsaltoon e+ [R, (om0 (32)
0 0

Fé?i((), 8) = )\2cn+17070(8) + (1 — (ng))\prZ Cj/ F[()?’r)l,*j (g, S)dg
=1 70

+ o En: ¢ /0 h Tons1i(€,8)dl + /O h Toni1(4,8)B(0)de, (33)
j=1
P05 = [ PO (34)
QW (0,s)=a /0 h P (0, s)d, (35)
09 = [ @ s (36)
0
B2 (£,0,5) = a / h P (1, s)de, (37)
0

R (0,0,8) = a / P (4, 5)de, (38)
0

m, m,n
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Vo (0, 5) _9/ P (0, s)m(e)dc. (39)

The equations from (22) to (30) are multiplied by z%', summation over n (n = 0 to co) and using
the PGF, we have

(aag+5+)\1+)\2+5( ))IO(E,S,ZQ):O, (40)

0 —(
((%—|—3+)\1~|—)\2(1—C(22))+a+u1(€)) (fszQ) (1 — dmo) Alzczp() (¢, s, 29),

41)
0 _ _ -(2)
(5 T8+ AL+Ab(1 - PC(22)) + a+ A" + pa(0)) Py, (¢, 5, 22)
N @) > _@ (42)
= (1 - 5m0))\172 CiPm—i(ev S, ZQ) + / Rm (67 Y,s, 22)772(9)55%
i=1 0
0 _ -3)
(5p Tst At Al = Clz)) +at A+ p3(0) Pr (65, 22)
(43)

= (1= a0\ Y iP5, 22) + / R4y, 5, 2)ms(y)dy,
i=1 0

(1

0 _
(57 5+ M+ ha(l = O(=)) +w(@)QW (05, 2) = (1 — 60) M ch (05, 2),  (44)
0 —(1)
(5 8+ A+ Xl = Cz)) + £ +m() R, (¢, s, 22)
— ) (1) (“43)
= (1= 0mo)M1 Y _ iRy (05, 20) + R,y (L, 5, 22),
=1
0 —(2)
(5 T s+ +A(l = Cz)) + &+ m(0)) Ry, (L5, 22)
(46)
(1 - mO >‘1 ZCZ m— z E S, 22) +€Rm+1(€73a22)7
=1
0 —(3)
((% + 5+ A+ Xl —C(z)) +E+n3(0)R,, (4, 8, z2)
47)

= (1 - 6m0))‘1 Z Czﬁfjl@(& 8, 22) + £ESLI (67 8, Z2>7

=1
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0 —
((% + 5+ M+ A1 = C(22) +E+7(0)Vin(l, 5, 20)
mo - (48)
= (1= dmo) M1 Z ¢iVini(l,8,22) + Vi1 (€, 8, 22).
i=1

The equations from (41) to (48) are multiplied by 21", summation over m (m = 0 to co) and using
PGF, we get

) _
(57 + 5+ ML= O() + Mol = C(2)) +a+ ()P (5,20, 2) =0, (49)
(zfe s M1 —TO(21)) + Aab(1 — BO(22)) + a + A~ + pa(O)P(L, s, 21, 25)
- (50)
= / E(Q) (47 Y, s, 2, 22)772 (y)dya
0
B _
(55 +5+ M= CE)) + X1 =Cle)) +at A+ ()P (L, s, 21, 20)
- (51)
—/ BV (0, y, 5,21, 20)ms(y) dy,
0
) _
(57 + 5+ M= O(1) + Xl = C(z2)) + ()R (€, 5,21, 2) =, (52)

(gg Fs M1 = C(2) + Xl — Cz)) + £(1 — le) )RV (5,20, 2) =0, (53)

((; + 54 Ar(1— C(z1)) + Aa(1 — Clza)) + (1 — Zi) + (O R (L5, 21, 22) = 0, (54)

(gg Fs M1 —C(21) + Mol — Clza)) +£(1 — le) F ()R, 5,21, 2) =0, (55)

(§€ s+ ML= O(21) + Aol — Clz)) + £(1 — z%) AV (C, 5,21, 20) = 0. (56)

Next, Equation (31) is multiplied by 23 and summation over n (n = 1 to 00), and we obtain

To(0,8,%) = 1 — (5 + M + o) To0 + (1 — 9)/0 (0,5, 20)m (0)dE

+/ ?[()3)(5,8,22)u3(f)d£—|—/ Ro(l, 5, 22)n d€+/ Voll, s, 2)y(0)de
0 0

+ A (1 —gq(l— 22)){/ P( )(E s zg)d€+/ P (E s zz)dﬁ} (57)
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Equation (33) is multiplied by Z£L+1 and summation over n (n = 0 to 00). We have

oo

zQFE)Q) (0,8,22) = MC(29)L00(s) + )\gpr(zg)/
0

PO, s, 2)dl + / To(l, s, 2)B(0)de
0
+ /\QC(ZQ) / 70(6, S, ZQ)d€7 (58)
0
Equations (32) and (34) to (39) are multiplied by 27 and summation over n (n = 0 to co). We have
?,Ei) (0, S, ZQ) = )\10m+170(8, 22) + AlTCm_;,_lZQ / F((f) (6, S, Zg)dg
0

s [ Vit de+ (1= 0) [P (s e (00
0 0

+ /0 TP (s, ) ps(O)dl + /0 TR (s, ) (0)de, (59)

R(f’)(o, S, 29) = /000 ﬁém(ﬁ, S, zo) pua(€)de, (60)
@S)(O, S,29) = a/ooopi,ll)(é, S, z9)dl, (61)
B(0,5,29) = /O TV s, ) (0)de, (62)
R2(0,0,5,2) = a/wﬁg)(&s,@)d& (63)

0

}_33(3)(6 0,8,2) = oz/oo?(g)(ﬁ,s,@)dﬁ, (64)
m(0,8,29) = 0/ ﬁ,s,zg Y (£)de. (65)

Now, Equation (59) is multiplied by zm+1 and summation over m (m = 0 to co). We have

21?(1) (0, S, 21, ZQ) = )\10(21)70(8, ZQ) + )\17”0(21)22 / ?((JQ) <£7 S, 22)d£
0

o0

+(1- 9)/ F(l)(& 3,21,22)ul(€)d€—|—/ F(g)(ﬁ, S, 21, 22) 3 (£)dl
0

0
—|—/ V(ﬁ,s,zl,@)v(ﬁ)df—i—/ E(l)(ﬁ,s,zl,@)m(f)cw
0 0
— {(1—9)/ Fél)(é,s,zg)ul(ﬁ)dﬁ%—/ Fég)(ﬁ,s,@)ug(f)df
0 0

—l—/ 70(5,3722)7(6)&4—/ }_%él)(f,s,ZQ)m(ﬁ)df}, (66)
0

0
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Equations (61), (62), (64) and (65) are multiplied by 27", and summation over m (m = 0 to o).

We have

o0

@(1)(0787’21722) = Oé/ F(l)(€7s721722)d€7
0

E(l) (0’ 8,21, ZQ) = / @(1)<£7 S, 21, 22>w<£)d€7
0

EQ)(& 075721722) = Oé/ F(2)<€,8,21722)d£,
0

§(3)<€7 0757217'22) = Oé/ F(?))(g,S,Zl?Zg)dg?
0

V(0,s,21,2) = 9/ F(l)(f, S, 21, z2) 1 (£)de.
0

Integration of Equations (40), (49) and (52) to (56) between 0 and ¢ give
To(l, 5, 25) = To(0, 5, 29) e~ CTMTA=5 B0t
ﬁ(l)(& S, 21, 22) = ?(1)(0, S, 21, 22)6—%(8,2)4—]5 ul(t)dt’
@(1)(5’ 8,21, 22) = @(1)(0’ s, 21, 22)e—¢(s,z)€—f(f w(t)dt7
RV, 5,21, 20) = B0, 5, 21, 29)e 420l mvde,
}_%(2) (L, y,s,21,22) = }_%(2) (4,0,s, 2, 22>€—¢4(5,z)y—f0y na(t)dt.
R (y,8,21,2) = RY (¢,0,s, 21, 22)e_¢4(573)y—f5’ ma(t)dt.

V(Ea $, 21, 22) = V(O, S, 21, 22)€_¢4(572)E_f02 ’Y(t)dt.

(67)

(68)

(69)

(70)

(71)

(72)
(73)
(74)
(75)
(76)
(77)

(78)

We multiply Equations (72) to (78) by 5(¢), p1(€), w(€), n1(€), n2(€), n3(£) and (), respectively,

/OO To(g, S, ZQ)ﬁ(f)dg = 70(0, S, ZQ)M(S + )\1 + )\2),

0

/ P, 5,2, ) (0)dl = PO, 5, 20, 20)Ba(e(s, 2)),
0

/OO @(1) (ﬁ, S, 21, Z2)w(£)d£ = @(1) (07 S, 21, ZQ)W(¢<37 Z))?
0

/ RV, s, 21, 2)m (0)dl = B0, 5, 21, 20) R (6a(s, 2)).
0

(79)

(80)

81)

(82)
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/ B2 (0, 5,21, 22)ma(y)dy = B (0,0, 5, 21, 25) Ra(a(s, 2)),
0
* =(3) ) -
/ R (€7y787217'z2>773(y)dy - R (ga 075721722)R3(¢4(572))7
0

/ V(L s, 21, 20)7(0)dl = V0, 5, 21, %)V ((s, 2)),
0
where

¢(s,2) = s+ Ai(1 = C(21)) + Aao(1 — C(22)),
$1(8,2) = s+ M (1 —C(z1)) + Xo(1 — C(22))
)

C(z)) + «,

G4(8,2) = s+ (1 —C(z1)) + a1 —

Now, using Equations (69) and (70), we get

or
X ?(2)(6, S, 21,22) =0,

ol
X F(B)(f, S, 21,29) = 0.
Integration of Equations (86) and (87) between 0 to ¢ gives
?2(67 S, 21, 22) = Féz) (07 S, 22)67¢2(572)£7ﬁf MZ(t)dta
F3(€, S, 21, 29) = ?(()3)(0, s, 22)e_¢3(8’z)€_f04 Ha(t)dt,
Solving Equations (88) and (89), we get
* =@ 52 —
P (4 s, 21, 20) ua(l)dl = Py (0, s, 29) Ba(¢a(s, 2)),
0
*=6) _ 506 =
P (4 s, 21, 20)u3(€)dl = Py (0, s, 29) B3(¢3(s, 2)),
0
e _ 5 =
| P s a0 =P 0.5, 2)Balins, )
0

| P s O = P05,z Balns, )
0

(2 4 s M= 70(2)) + Aab(1 — PO (22)) + a1 — Balu(s, 2))) + A~ + pia(0))

(2 st M= O21) + M1 — C2)) + a1 — Bs(a(5,2))) + A~ + 1s(0))

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

oD

92)

(93)
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where
P2(8,2) = 5+ M (1 —FCO(21)) + Aob(1 —DC(2)) + a1 — Ra(pa(s,2))) + A7,
¢3(s,2) = s+ M (1 = C(21)) + Aa(1 = C(22)) + a(1 — Ra(¢a(s, 2))) + A~
Pa(s,2) = s+ M+ Aab(1 — DC(22)) + (1 — Ra(Ya(s, 2))) + A7,
P3(8,2) = 5+ A+ Xa(1 — O(22)) + (1 — R3(tba(s, 2))) + A7,
Ya(s,2) = s+ A+ Ao(1 — C(z2)).
Now substitute Equations (79) to (85) and (90) to (93) into (57), (58) and (66). We get
I1(0,8,29) =1 — (s + A + )\2)7070(3) —|—ﬁél)(0, s, zg){§1(¢1(s, N1+ 0V (Yu(s, 2))
= 0]+ al = P, ) Bt 2+ P05, 2)
s (Bl ) Balun(s, ) 4 A-(1 = g1 - s 1P )
= 1 — Bs(1s(s, 2))
+ Bafals N ]}}, (94)

ﬁ(l)(o, s, 21, 22){21 — Bi(¢1(5,2))[1 — 0+ OV (pa(s, 2))] — a[l — Bi(¢1(s, z))]

N — - - 1—M(S+)\1+)\2)
X W(¢(372))Rl(¢4(572))} = MC(21)10(0, 8, 22)] S ]
z))

| + Ba(ta(s, 2))

+ P50, s, 22){)\17"C’(zl)z2[1 - BQE S
< [Ba(da(s,2)) = Ba(ta(s, 2))] | = Py (0.5, 2){ Baluir (s, 2))[1 — 0

O () AU IS) S 0

F((f)(o, s, 29){ % — AszC'(ZQ)[l - 52822()57 Z))]} = 20(22)To0(s) + 1o(0, 5, 22)

x {M(s+ M\ + Xo) + AoCl(z)[ — M5+ + A2)]}.

96
S+)\1+)\2 ( )
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We have to solve Equations (94), (95) and (96). Letting z; = g(z2) in (95), we get

?(()1)(0, s, 22){51(1/11(87 )1 — 0+ 0V (2ha(s, 2))] + 04[1 — iigjlz()s ))]_(1/)4(5, 2))
X Ra(in(5,2) } = MC(g(ea) Tol0, 5, ) - A2
—(2) 1— By(4s(s,2)), | =
+ P (0,5,22){/\17“6'(21)22[ e Palta(s,2)

x [Bslos(s, 2)) — Balts(s,2))] }.

97
We substitute the above in (94), and we get
T0(0.5,2) {1~ MO(g(z2) [ i”fgilg AZ)_]} =1 (s+ A+ Ae)Top(s)
+P(0,5,22) {ArClg(ea)) 2l iﬂi D) 4 Bylia(s, =)
X Bs(oa(s,2)) + A" (1 —q(1 — 22)){[1 — ij((?z(? Z))] + Ba(1s(s, 2))
1 — By(ts(s, 2))
) ]}}. (98)
We substitute Equation (98) in (96), and we get
( 1—M(s+ M+ A
2O Ton(s){1 = Mgl E 2
¢ H{L=(s4+ X+ M) oo(s) JH{M(s+ A + X2)
1—M(8+/\1+/\2)
+ XC(22)] ]}
FE)Z)(O,S,ZQ) == 5 +;1 —;)AZ 2 \} (99)
{22 )\2pr ZQ)[ ¢2 2 }{1 - )\1 )

1— (8+)\1+>\2
X [ P v }—T(s,z){M(s+)\1+)\2)

1—M(s+ A+ A
+2a0(e) [ AL Ay
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We substitute Equation (98) into (97), and we get

{ {]‘ (S + )\1 + /\2 IOO }{22 )\2pr(22)[1 525522%37'2))]}}
{zQ AabpC(z2)[ w? 2( }{1_A1 )
X [1 - i\ff}jil}\j Ag) 1) _T(S,Z){M(s+)\l ) ¢
1— M(s+ M+ A)
\ + MO (22)[ S+ A+ A ]} )

Finally substituting Equations (97), (99) and (100) in (95), we get

(M (C) ~ Clale)Tof0 5, ) LT At Aol
+ PP 0,5, P Cl) — Claten)lzat— 22202
P00 o o)+ Baltals D Bala(or2) - Balos(s, )} ) o
o 1= 0+ OV (o5, I Ba(0n(s.2)
{ - B D s, Rt z))}
where

1 - B2(77/)2(S Z))
Ya(s, 2) |Ba(ts(s, 2)) Ba(0s(s, )

1 — By (t(s, 2))

T(s,z) = M\rC(g(ze))z2]

L= Bultsls.2)) )

+ AT (1= q(1 = 2)){] | + Ba(ta(s, 2))]

¢2(57 Z) w3(57 Z)
The other boundary conditions are
Py (0,5, 22) = Py (0,5, 22) Ba(ta(s, 2)). (102)
_ — 1-B
Q(l)(O, 8,21, %) = ozP(l)(O, S, 21, 22)| ¢11((21§’ z))]> (103)
0,5, 21, 22) = P (0,5, 21, 20) Lo O 2D ) (104)
Q51(S, Z)
Ry(0, 8,21, 20) = aﬁ@)(o S, 21 22)[1 _§2<¢2(S’Z))] (105)
» 9y ) 0 » 9y ) ¢2(S, 2) )

1—§3(¢3(872))]

R3(0, s, 21, 20) = 0‘?5)2)(075721’22)§2(w2(s’z))[ 3(s,z)

) (106)

V(0,s, 2, 29) = eﬁ(”(o, s, 21, 22) B1(¢1(s, 2)).
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Theorem 3.1.

The probability generating function of the Laplace transforms of the number of units in the re-
spective queue while the system was in regular service, working breakdown service, repair and
vacation are given by

_ 1—M(S+/\1+)\2)

To(s,22) = 1o(0,,20) | S |, (107)
P (s, 21, 2) = PO, 5, 21, 20) [1 — il((flz(; Z))} , (108)
PP (s, 21, 20) = PO, 5, 2) [1 - Z((ji)s Z»], (109)
PO, 212) = P (0,5, Bal il o) [l (110)
Pl BT,
Ri(s, 21, 2) = aP (0, 5,21, 29) [ Zfiif’ D17 (s, ) [ L2 Z((z‘*z(;’ D1 i)
= I
Ra(s. 21 22) = aP (0, . 20) Baltals, 2)) [ fj((fif Ay Zj’ffﬁf Dy )
V(s, 21, 20) = 600, 5, 21, 22) B (65, 2)) L @(5: ) (115)

¢4 (57 Z)
Proof:

Integrating Equations (79) to (85), (88) and (89) with respect to ¢ and using the well known result
of renewal theory
o 1—~h
/ 1= H()]ede = L=, (116)
0

S

where h(s) is the LST of the distribution function of a random variable H (), we get the results
(107) to (115) respectively. Thus, we obtain the complete solution for the probability generating

functions for the following states I(g)(22, 5), F(i)(zl,z%s), @(1)(21,22,3), Ri(21,2,5), and

V (21, 29, 8). -



AAM: Intern. J., Vol. 14, Issue 2 (December 2019 659

4. Steady State Analysis
By applying the well-known Tauberian property,

lim 5F(s) = Jim £(0).
the normalizing condition of this model is

23: {PO(1,1) + Ry(1, 1)} + QW(1,1) + V(1,1) + Iy(1) + Lo = 1.

The probability generating function of the queue size irrespective of the state of the system

3
W21, 22) = Z {P(i)(217 2) + Ri(21, 22)} + Q(l)(zla 2) + V (21, 22) + Io(22), (117)

=1

Nr(z, z
Wq(ZbZZ) = [0,0 ( L 2)

Dr(z1, 22)’

(118)

where

Nr(z1,22) = N1(2)¢2(2)¢2(Z)¢3(2)[1 — J)\i(il)\j )\2)]{)‘1(6(21) —C(9(22))) F(z)

+ ¢(2)¢4<Z)Sl(z)} + N2<Z){¢2(Z)¢3(Z)52(2)F(2> + ¢(2)S3(Z)51(2)};

Dr(z1, z9) = ¥2(2)9a(2)d3(2)da(2)9(2) S1(2),

Fz)=[1- §1(¢1(2))]{¢(2)¢4(2) + agu(2)[1 = W(e(2))] + ag(2)W (¢(2))
x [1— El(@(z))]} +00(2)¢1(2)B1(61(2))[1 = V(ea(2))],

S1(2) = 2101(2) — ¢1(2) B1(1(2))[1 — 0 + 6V (¢4(2))] — a[l — B1(¢1(2))]W(4(2))
x Ri(¢4(2)),

Sa(z) = M7 (C(z1) — Clg(22))) 22[1 — Ba(1h2(2))] + 1h2(2) Ba(¥2(2)) [ Bs(3(2))
— Bs(os(2))],

S3(2) = 12(2)d3(2)da(2)[1 — Ba(92(2))] + ¥2(2)¢2(2)a(2) Ba(¥a(2))[1 — Bs(¢s(2))]
+ ady(2)d3(2)[1 — Ba(1h2(2))][1 — Ra(da(2))] + atha(2)d2(2) Ba(¥a(2))
x [1— Bs(¥3(2))][1 — Rs(¢a(2))].
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Now using the normalizing condition, we get

{wlx A~ Our + dabp + A7) D) {a(1 + 067 (1) B, <a>E<V>)}
+[1=Bu(a))(6,(1) + al (VEOW) + 6,(LE(R)) |

Da(A™ (A + Aabp + A7) {D(1) + Ny (1) i?ff }{ (1 + 04

1)
% Bi(a)B(V)) + [1 = Bi(a)](61(1) + a(@ (VE(W) + 6,()E(R)))) |

+ AT (A + Aobp + A_){Nl(l)@bg(l))\lr(l — B(X))E(X)] )(\j\::l—)\:\z)}

+ No(1) {ur(1 = BOG) E(X)[L = Ba(a(1)] + $a(1 B (1)) By (V)
% (65(1) = o5} M1 = Bu(@)] (1 + a(BW) + E(R))))

+0aB1(a) E(V) | + Na(D){a(DA”[1 = Ba(ir + Aghp + A7)

+ -+ dabp + A7) {82(D (e (1) [1 = Bo\ )1+ aB(Ry))

|+ A 1= Bata())E(R:)} }

and the utilization factor is given by

]0,0 =

7 , (119)

)

(

A" O+ Abp + A7) N (1) (1) A (1 = E(Xl))E(X)[M)(\i":j)\l)‘l)] \

+ No(D){ (1 = B(X0)E(X)[L = By(t)] + (1) Balta(1) By(A)
% (63(1) = 03(1)} H{ L = Ba(a)) (1 + a(B(W) + E(R1)) +aBi(a)
x E(V)} + Ng( ){%(1) “[1 = Ba(Anr + Aibp + A7) + (ar + b

+ A {e2(1)Ba(t2(1)1 = BsA N1+ aB(Ry)) + oA~ [1 = Ba(vz(1))]
A X E(RQ)}} )

. (120)
Ga(DA~ (A + Abp + A7) {D(1) +N1(1)[M§1A1:AA2>]}{ (1+66,(1)

< Bi@)E(V)) + L - Bi(@)] (61(1) + a(é (DEOV) + 6, E(R)

A+ dabp £ A N (DAL — B B(Y >[M§?f§

+N2 {Alr 1 - E(Xy))E ( )[1—32(1/12( )] + ©a(1)Ba(th2(1)) By (A ’)
) — o4(1 }}{[ [(14 a(E(W)+ E(Ry))) +
x E(V)} + Ng( ){%(1) “[1 = Ba(Aar + Aabp + A7) + (a7 + Aobp

+ A7) {12(1) Ba(¢h2(1))[1 — Bs(A\)](1 + aB(Rs)) + A ™ [L — Ba(t2(1))]
L XE(RQ)}}

’

HaB
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where p < 1 is the stability condition under which steady state exist, for the model.

5. The Expected Queue Lengths

The expected priority queue size

d
Ly = - Wolen, Dl

and the expected ordinary orbit size

d
L, = d_ZQW (1, 22)] =1,
then,
I DR"(1)NR™) (1) — DR™)(1)NR" (1)
[ 4(DR/”(1))2 ’
L - dr" (1)nr@) (1) — dr®™ (1)nr" (1)
q2 — 4(d7‘”/(1>>2 ’
where
NR"(1) = Ny (1)t (1) iwl(ilg A2)]{A<A1r + Aobp + AT BN E(X)F (1)
+60 (13, (1S} } + Na ({8 Our + dabp + A7) F'(1)S5(1)
66 (1S (1S (1) ],
M(AL+ A9)

NR(1) = M(1)ba(D— 1{4(<A1r +abp + A)3(1) + A By(1)
x {3\rE(X)F" (1) + 66 (1)d4(1)8; (1)} + A~ (Arr + Aabp + A7) {2Ay7
< (BEQX)F (1) 4 28(X)F <>)+1z(¢<>¢4<>+¢<>¢4<>) Si(1)
+126 (1084(1)S] (1)} } + Na(1){12(Our + Aabp + X7)G5(1) + A~ 5(1)
X So(1)F" (1) + 23~ (A1 + Aebp + A7) {35, (1) F" (1) + 2S,(1)F " (1)}
+126 S,(1)S5(1) + 126 (1) (8] (1)} + S, (1)S5 (1) },

DR”(1) = 6A~ (A7 + Aabp + A7)tba(1)8 (1), (1) D(1)S, (1),

DR)(1) = o (1)D{24((ar + Aabp + A7)d5(1) + A 6,(1))@ (1)4(1)S; (1)
1207y + dabp + A (6 (18a(1) +6 (1)6,(1) S1(1) +6 (18 (1)
x 8/(1)}},

661

(121)

(122)

(123)

(124)
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F'(1) =26 (1)6,(0{[1 = Bi(@)) (1 + a(E(W) + E(Ry)) + baBy(@)E(V) },

F'(1) = 66 ()6, (Dy(1){ = B, (1) (1 + a(E(W) + E(Ry))) + 0[Bi(a) + aB, ()]
! ’ [1 —E( )](1 +a(E(W) + E(Ry)))

Sy(1) = a+[1 = Bi(a)]{$,(1) + a(@ (NEW) + 3,(1)E(R1)) } + abd,(1) By () E(V),

s{<1>=25;<1>[1—$;<1>E;<a>J+$I<1>[1—B ()] + a{0B1 ()b, (D E(V)
04 (1) B(R1)) } — a6B1(a)(04(1)*E(V?)
%) 4 (64(1))? <R2>+2¢<1> oy(DE(W)E(Ry)}
B, (a)] — 20,(1)B, (a)

(@ (WEW)
+ G4 (1)E(Ry)),
Sy(1) = A1 = Ba(@a(1)]E(X) + ¢(1)65(1) Ba(s (1)) By (A7),
S5 (1) = Arr[l = Ba(tha(1))]E(X2) + (1) Ba(tha(1)) {65 (1) By(A7) + (5(1))*Bs (A7)},

S5(1) = A tha(1)6, (D1 = Ba(hr + Aabp + A7)] + aA~(Air + Aabp + A)d,(1) E(Ra)

x [1 = Ba(ta(1))] + (M7 + Aabp + A )a(1), (1) Ba(ta(1)[L — B(A)]
X (1 ‘f‘OéE(Rg)),

85(1) = ¥a(1)[1 = Ba(Aar + dabp + A7)) (205(1)84(1) + A~ (1)) — 23" 1ha(1),(1)

% oa()By(Mr + Aabp + A7) + 1a(1)Ba(42(1)) (1 + aB(R5)){2[1 — B3(A")]

X Ga(1)4(1) + (A + Aobp + A7) (@, (1)[1 — Ba(A >]—2¢3< 1)$4(1)B3(A7)) }

— a1 = Ba(t(1))]{(6,(1)2E(RE) + 2X" 0, (1),(1) E ( 2) + (M + Aobp

+ A7){205(1)8, (1) E(Rz) + A~ (64 (VE(Ry) — (6,(1)2E(R2)) }}.

(1) = 3NN Our + Aabp -+ A [y 2
X f1(1) +2¢ (1), (1)s) (1)} + 3Na(1){A™ (Ar + Aabp + A7 )s,(1) (1)
+2¢'(1)sy(1)s5(1) },

{ = MrE(X1)E(X)
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_]Awl(ilg A2)]{(A17"+A2bp+A JH{NDA™G:(1) + M)A (1)

T+ N(Da(D)g,(1)} + MDA ()6 }{ NrB(X)E(X)f" (1)

— MM+ X2)
AL+ Ao

x = \r[BOG)B(X) + (BOG) B3] £(1) = WrE(X)B(X) (1)

£2(0(16,(1) + ¢ (19, (1)5,(1) + 20 (1), (157 (1) } + 3N (1) {A (ar

4 Aobp + A” ) L) (1) + 20 (1)) 1)5;,(1)}+N2(1){(/\1r+)\2bp+/\‘)

x {120(1)s5(1) (1) + 6”55 (1) (1) + 4N sp(1)f (1)} + 12076, (1)si(1)
x f(1 >+129 (1)s1(1)s5,(1) + 126/ (1) (51 (1)s5(1) + 51 (s (1) },

]

+ 2@’@)94(1)51(1)} 6N (1)da(1)A™ (7 + Agbp + A7)

dr' (1) = 6A~ (A7 + Aabp + A7) D(L)a(1)6 (1)) (1)s7 (1),

dr®(1) = 24{()\1r + Aabp + A7) {D (A ¢ha(1) + DDA ¢y (1) + D(1)eha(1)¢, (1)}
+ D(1)A~ ( )¢ (1)}¢> (1)@(1)31(1) + 1207 (Arr + Aobp + A7) D(1)e(1)
< { (6" (W), 6,(1))s) + ¢ (e, (s (1)},

F(1) =26 ()¢, (V{[1 = Bi(a))(1 + a(E(W) + B(R1))) + aBi(a)E(V)},

17(1) = 66 ()6, (1){ ;1B (@) (1 + a(BOW) + B(R)) + 0(Bi(a) + aBy(a))
x 6 (E(WV)}+3(6"(1 >gs (1) + ¢/ (16, (1)) (1 + a(E(W) + E(1))

x {11 = By(e)] + B (a v>}—3au—31<a>]<¢ (1))%0,(1) (EW?)
+2B(W)E(Ry)) = 3a¢ (1)(6,(1)){[L = Bi(a)] E(R}) + 6B1(a) E(V?)},

(
)

51(1) = ag,()Bi()E(V) + [1 = Bi(a)){g,(1) + (¢ (N EW) + 6,(1) E(R1)) },

Bi(a)l{¢,(1) +a(e (1)E(W)+¢4( VE(R)} = 2{(¢,(1))* + a¢, (1)

x (¢ (EW) + ¢,(1) E(R)) } By (a) - aft = Ba(@){(¢'(1))*E(W?)
+(9,(1)*E(RY) +2¢ (D, (DEW)E(R)} + 209, (1)¢,(1) [Bi(a)
+8,(DB(@)] B(V) + abg (1) Bi(@) E(V) - af(g, (1)) Bi(@) E(V?),

$3(1) = =\r E(XG) E(X)[1 = Ba(ta(1))] + (1) Ba(ths (1)) By (\) (9,(1) — 75(1)),
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s5(1) = Mr{E(X})E(X) 4+ (E(X1))’E(X?*)}[1 — Ba(1s(1))] — 2MrE(X1)E(X)

2(1)
x {1 = Bay((1)) — vp(1)By(th2(1) }+2¢2 F'(A )(6,(1) — ay(1))
)

/

x {Ba(a(1)) + (1 sz(l)} Ba(2(1)){ (6, (1) — 05 (1))
x B3(A7) + ((6,(1))? — (05(1))*) By }

( ) = A"(1 )¢ (D[ = Ba(AMr + Aobp + A7) + (A + Aobp + A7) {Oé)\f
X [1 = Ba(1h2(1))] E(Ry) + 2(1) Ba(¥2(1))[1 — Ba(A~ )](1+04E(R3))}7

55(1) = 20 <1>{[1 = BaOur + dabp + A (A1) + v2(1)6,(1) = A (L)1)
x B, ST+ Xabp + A7)} A+ Ny 1)(b (D)[L = Ba(Air + Xabp + A7),

6. The Expected Waiting Time

The expected waiting time of priority and ordinary units are

L
W, = 24 125
q1 )\1 ) ( )
and
L
W, = =2, (126)
A2

7. Particular Cases

Case 1: If there are no priority queue, no breakdown, no preferred unit and single service i.e
M =0,a=0,p=0, Bs(.) = 1. Then, this model becomes to M~ /G /1 queueing system with
balking

]0@/\2(0(22) — 1) 1-— EQ(}\Q()(]. — O(ZQ)))}

W) = B b - e el - CCea)

The above result coincides with the result of Sing et al. (2014).

Case 2: If there are no priority queue, no breakdown, no preferred unit, no balking and single
arrival for ordinary uniti.e Ay = 0, &« = 0, p = 0, b = 1 and C(z3) = 2. Then, this model
becomes to M /G /1 queue with two stage of service

]070 [1 — EQ(}\Q(]_ — ZQ))FQ,()\Q(]_ — ZQ))}

W) = T el = 2By a1 = 22))

The above result coincides with the result of Zadeh and Shahkar (2008).
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8. Numerical Results

Here, we present some numerical examples with the following assumptions. We consider that the
regular service time, working breakdown service time, repair time and vacation time are to be
exponentially and Erlangianly distributed. Also, we assume that the units will arrive one by one,
so F(X)=1land E(X(X — 1)) =0.

Table 1 shows that when an increase in the vacation probability (), then decreases the idle proba-
bility and increase the expected queue size and waiting time for the arbitrary values to the param-
eters are chosenas \y = 0.2, \o =15, A" =3, u =3, w=09,a=7,1=9,7y=0.6,p =0.2,
q=04,b=0.5,r=04,&=0.8, 3 = 15, while 6, varies from 0.5 to 0.9, such that the stability
condition is satisfied.

Table 2 shows that when an increase in the retrial rate (/3), then increases the idle probability and
decrease the expected queue size and waiting time for the arbitrary values to the parameters are
chosenas \y = 0.2, o =15, A" =3, u =3, w=09a=7,171=9,v=06,p=0.2,¢q =04,
b=0.5,r=0.4,&=0.8,60 = 0.8, while 3, varies from 15 to 19 such that the stability condition
1s satisfied.

Table 3 shows that when an increase in the breakdown rate («), then increase the expected queue
size and waiting time for the arbitrary values to the parameters are chosen as \; = 3, Ay = 0.5,
AN =3 up=14,w=091n=01,7=12,6=22,p=02,¢g=04,b=0.5,£ =0.8,0 =0.1,
while «, varies from 3.1 to 3.5 such that the stability condition is satisfied.

Table 4 shows that when an increase in the priority arrival rate (\;), then increase the expected
queue size and the expected waiting time for the arbitrary values to the parameters are chosen as
A=08A\"=15,a=01,pu=12,w=10,n=5,7y=06,p=0.2,¢=0.2,b=0.6,& = 0.1,
6 = 0.6 while A\, varies from 0.3 to 0.7 such that the stability condition is satisfied.

Two dimensional graphs are illustrated in Figure 2 and 3. Figure 2, presents the expected priority
queue size (L, ) which increases for increase in priority arrival rate (\;) as compared to the first
stage of ordinary service disciplines. The expected priority queue size (L,, ) increases for increasing
breakdown rate () as compared to the first stage of ordinary service disciplines as shown in Figure
3.

Three-dimensional figures are shown:

e Figure 4, shows the behaviour of the expected queue size (L,,) which increases in order to
increase the value of the priority arrival rate (\;) and ordinary arrival rate (\s).

e Figure 5, shows the behaviour of the expected orbit size (L,,) which increases in order to
increase the value of the priority arrival rate (\;) and ordinary arrival rate (\y).

e Figure 6, shows the behaviour of the expected queue size (L,,) which decreases in order to
increase the value of the reneging rate (£) and slow service rate (w).

e Figure 7, shows the behaviour of the expected orbit size (L,,) which decreases in order to
increase the value of the reneging rate (£) and slow service rate (w).
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Table 1. Effect of vacation probability (6)

Exponential Erlang-2
0 Iy qu th LtI2 W(D Io L!h Wlh L112 Wth
0.5 04915 0.7427 3.7137 0.3016 0.2011 0.4931 0.7559 3.7797 0.4330 0.2887
0.6 04905 0.7778 3.8891 0.3017 0.2011 0.4921 0.7917 3.9585 0.4340 0.2893
0.7 04895 0.8121 4.0604 0.3017 0.2012 0.4911 0.8268 4.1340 0.4349 0.2900
0.8 0.4887 0.8455 4.2277 0.3018 0.2012 0.4903 0.8612 4.3059 0.4358 0.2908
0.9 04879 0.8781 4.3907 0.3019 0.2013 0.4895 0.8948 4.4740 0.4366 0.2911

Table 2. Effect of retrial rate (3)

Exponential Erlang-2
B Io Lg, W, Lg, W, Io Lg, Wy, Lq, W,
15 0.4887 0.8455 4.2277 0.3018 0.2012 0.4903 0.8612 4.3059 0.4358 0.2905
16 0.4890 0.8447 4.2236 0.2607 0.1738 0.4906 0.8603 4.3016 0.3980 0.2653
17 0.4893 0.8440 4.2199 0.2253 0.1502 0.4909 0.8595 4.2977 0.3656 0.2437
18 0.4895 0.8433 4.2166 0.1947 0.1298 0.4911 0.8588 4.2942 0.3376 0.2251
19 0.4898 0.8727 4.2136 0.1679 0.1119 0.4814 0.8582 4.2911 0.3133 0.2089

Table 3. Effect of breakdown rate ()

Pre-emptive Non-pre-emptive
o LQ1 Wlh L¢12 WQ2 Lth qu LQ2 qu
3.1 34932 1.1644 49772  9.9545 245168 8.1723  4.2712 8.5424
32 69730 23243 5.1688 10.3375 28.4909 94970 4.3369 8.6738
3.3 10.3045 3.4348 5.3467 10.6934 32.3247 10.7749 4.3976 8.7952
34 135059 45020 5.5123 11.0247 36.0349 12.0116 4.4536 8.9073
3.5 16.5922 55307 5.6668 11.3335 39.6358 13.2119 4.5052 9.0105

Table 4. Effect of priority arrival rate (A1)

Pre-emptive Non-pre-emptive
AL LQ1 Wlh LQQ qu LQ1 qu LQ2 qu
0.3 0.1019 03398 37.7016 47.1270 0.1643  0.5475 29548 3.6935
04 0499  1.2490 61.8236  77.2795 0.8165  2.0262 5.3196 6.6495
0.5 15831 3.1662 745742 93.2177 2.5832  5.1664 6.7939  8.4923

0.6 43783  7.2972 81.8400 102.3000 7.1934 119890 7.7243  9.6554
0.7 12.0315 17.1878 86.1267 107.6583 19.9327 28.4753 8.3059 10.3824




AAM: Intern. J., Vol. 14, Issue 2 (December 2019

20

18-

14+

10+

Expected queue size (qu)

T
—+— Non-preemptive
X Preemptive i

X

0.3

.
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Priority arrival rate ()\1)

Figure 2. Lq; versus \;

40

30

255

Expected queue size (Lg,)
n
o
T

—+— Non-preemptive|
*X— Preemptive

151 b
X
10+ X B
X
5h 1
0 s s s s s s s
3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5

Breakdown rate (o)

Figure 3. Lq; versus «

667



668

w N 15 o ~
S S S S =]

N
o

Expected queue size (qu)

G. Ayyappan and B. Somasundaram

Ordinary arrival rate (A,) 05 02 Priority arrival rate (A,)

50

N w S
o o o

Expected orbit size (qu)

=
o

Figure 4. Lq; versus A1 and A2

Ordinary arrival rate (A,) 05 02 Priority arrival rate (A,)

Figure 5. Lgs versus A1 and A2



AAM: Intern. J., Vol. 14, Issue 2 (December 2019

0.12

Expected queue size (qu)

0.02

Expected orbit size (Lq2)

o
s

o
o
@

o
o
>

o
[=3
5

Low rate service () Reneging rate (€)

Figure 6. Lq; versus £ and w

14+

1.2

-

o
e

o
o

N
~
L

0.2+

0.5

5.7

55 01
Low rate service () Reneging rate (£)

Figure 7. Lgo versus € and w

669



670 G. Ayyappan and B. Somasundaram

9. Conclusion

In this paper, we have studied two types of batch arrivals, priority and ordinary units with discre-
tionary priority services, working breakdown, negative arrival, Bernoulli vacation, preferred and
impatient units. The corresponding steady state results for time-dependent probability generat-
ing functions are obtained explicitly. Performance measures like, the mean queue size and mean
waiting times are obtained. Finally, some numerical results are computed along with graphical
representations are given.

Acknowledgment:

The authors would like to express their gratitude to the reviewers and editor-in-chief for their
valuable suggestions which have considerably improved the earlier version of the paper

REFERENCES

Ammar, S. I. and Rajadurai, P. (2019). Performance analysis of preemptive priority retrial queueing
system with disaster under working breakdown services, Symmetry, Vol. 11, No. 3, Article
Number 419.

Avi-Itzhak, B., Brosh, I. and Naor, P. (1964). On discretionary priority queueing, Zeitschrift fur
Angewandte Mathematik und Mechanikz, Vol. 44, No. 6, pp. 235-ﬁA5242.

Ayyappan, G. and Udayageetha, J. (2017). Analysis of mixed priority retrial queueing system with
two way communication, collisions, working breakdown, Bernoulli vacation, negative arrival,
repair, immediate feedback and reneging, Stochastic Modeling and Applications, Vol. 21, No.
2, pp. 67-83.

Choudhury, G. and Deka, M. (2015). A batch arrival unreliable Bernoulli vacation model with two
phases of service and general retrial times, Int. J. Mathematics in Operational Research, Vol.
7, No. 3, pp. 318-347.

Drekic, S. and Woolford, D. G. (2005). A preemptive priority queue with balking, European Jour-
nal of Operational Research, Vol. 164, No. 2, pp. 387-4A$401.

Fajardo, V. A. and Drekic, S. (2016). On a general mixed priority queue with server discretion,
Stochastic Models, Vol. 32, No. 4, pp. 643—-673.

Kalidass, K. and Ramanath, K. (2012). A queue with working breakdowns, Computers and Indus-
trial Engineering, Vol. 63, No. 4, pp. 779-783.

Kim, K. and Chae, K. C. (2010). Discrete-time queues with discretionary priorities, European
Journal of Operational Research, Vol. 200, No. 2, pp. 473-485.

Montazer-Haghighi, A. and Mishev, D. P. (2013). Stochastic three-stage hiring model as a tan-
dem queueing process with bulk arrivals and Erlang phase-type selection, M*X /M (k, K)/1 —
MY /E,/1 — oo, Int. J. Mathematics in Operational Research, Vol. 5, No. 5, pp. 571-603.



AAM: Intern. J., Vol. 14, Issue 2 (December 2019 671

Montazer-Haghichi, A., Medhi, J. and Mohaty, S. G. (1986). On a multiserver Markovian queueing
system with balking and reneging, Computers & Operations Research, Vol. 13, No. 4, pp.
421-425.

Rajadurai, P., Chandrasekaran,V. M. and Saravanarajan, M. C. (2015). Steady state analysis of
batch arrival feedback retrial queue with two phases of service, negative customers, Bernoulli
vacation and server breakdown, Int. J. Mathematics in Operational Research, Vol. 7, No. 5,
pp- 519-546.

Rajadurai, P., Yuvarani, S. and Saravanarajan, M. C. (2016). Performance analysis of preemptive
priority retrial queue with immediate Bernoulli feedback under working vacations and vaca-
tion interruption, Songklanakarin J. Sci. Technol, Vol. 38, No. 5, pp. 507-520.

Singh, C. J., Jain, M. and Kumar, B. (2014). Analysis of M /G/1 queueing model with balking
and vacation, International Journal of Operational Research, Vol. 19, No. 2, pp. 154-173.
Wu, J., Wang, J. and Liu, Z. (2013). A discrete-time Geo/G /1 retrial queue with preferred and
impatient customers, Applied Mathematical Modelling, Vol. 37, No. 4, pp. 2552-2561.
Zadeh, A. B. and Shahkar, G. H. (2008). A two phases queue system with Bernoulli feedback and
Bernoulli schedule server vacation, Information and Management Sciences, Vol. 19, No. 2,

pp- 329-338.

Zhao, N. and Lian, Z. A two-stage discretionary priority service system with Markovian arrival
inputs, In 2010 IEEE International Conference on Industrial Engineering and Engineering
Management, Macao, pp. 438-442.

Zhao, N., Lian, Z. and Wu, K. (2015). Analysis of a M AP/ P H/1 queue with discretionary priority
based on service stages, Asia-Pacific Journal of Operational Research, Vol. 32, No. 6, pp. 1-
22.



