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Abstract

In this paper, we give a general theorem dealing with absolute matrix summability by using quasi σ-
power increasing sequences. This theorem includes some results concerning absolute summability
methods.
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1. Introduction

Summability theory plays an important role in Analysis, Applied Mathematics and
Engineering Sciences. The aim in this theory is to bring a value to the indefinite divergent se-
ries. Various summability methods have been introduced by researchers to find this value. Some of
these methods are Cesàro, Abel, Nörlund, Riesz, matrix summability, etc.
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In the 1700s, Bernoulli intuitively assigned values to the divergent series. He assigned the value
1/2 for the series

∑
(−1)n. The significant rise of summability began in the latter part of the

19th century. In 1890, Cesàro made a study dealing with the multiplication of series and Cesàro
became the first mathematician who founded summability (see Hardy (1949)). Das (1969) gave the
definition of absolute summability. Then Kishore and Hotta (1970) defined the summability factor.
By using lower triangular matrices, the definition of |A|k summability was given by Tanović-
Miller (1979). Bor (1985) defined

∣∣N̄ , pn∣∣k summability, and later he (1993) defined
∣∣N̄ , pn; δ

∣∣
k

summability of an infinite series. The definition of |A, pn|k summability of an infinite series was
given by Sulaiman (2003). Then, the more general |A, pn; δ|k summability method was defined by
Özarslan and Öğdük (2004).

There is an important application area of these methods. They have some different applications
on sequences such as positive non-decreasing, almost increasing and quasi power increasing se-
quences. The purpose of this paper is to obtain a general theorem on absolute matrix summability
of an infinite series.

2. Notation and Preliminaries

A positive sequence (bn) is said to be almost increasing if there exist a positive
increasing sequence (cn) and two positive constants L and M such that
Lcn ≤ bn ≤ Mcn (see Bari and Stečkin (1956)). A positive sequence (µn) is said
to be a quasi σ-power increasing sequence if there exists a constant K = K(σ, µ) ≥
1 such that Knσµn ≥ mσµm holds, for all n ≥ m ≥ 1 (see Leindler (2001)). It
should be noted that every almost increasing sequence is a quasi σ-power increasing se-
quence for any non-negative σ, but the converse need not be true as can be seen by taking
the example µn = n−σ for σ > 0. A sequence (λn) is said to be of bounded variation, denoted by
(λn) ∈ BV , if

∑∞
n=1 |∆λn| =

∑∞
n=1 |λn − λn+1| <∞.

Let
∑
an be a given infinite series with partial sums (sn). Let (pn) be a sequence of positive

numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

ωn =
1

Pn

n∑
v=0

pvsv,

defines the sequence (ωn) of the (N̄ , pn) means of the sequence (sn), generated by the sequence
of coefficients (pn) (see Hardy (1949)). The series

∑
an is said to be summable | N̄ , pn, β; δ |k,

k ≥ 1, δ ≥ 0, and β is a real number, if (see Gürkan (1998))
∞∑
n=1

(
Pn
pn

)β(δk+k−1)
| ωn − ωn−1 |k<∞.
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Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries.
Then, A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
As = (An(s)), where

An(s) =
n∑
v=0

anvsv, n = 0, 1, ...

We say that the series
∑
an is summable | A, pn, β; δ |k, k ≥ 1, δ ≥ 0, and β is a real number, if
∞∑
n=1

(
Pn
pn

)β(δk+k−1)
| An(s)− An−1(s) |k<∞.

For β = 1, | A, pn, β; δ |k summability reduces to | A, pn; δ |k summability (see Özarslan and
Öğdük (2004)). Additionally, if we take β = 1 and δ = 0, then | N̄ , pn, β; δ |k summability reduces
to | N̄ , pn |k summability (see Bor (1985)).

Given a normal matrix A = (anv), two lower semimatrices Ā = (ānv) and Â = (ânv) are defined
as follows:

ānv =
n∑
i=v

ani, n, v = 0, 1, . . . , (1)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (2)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then, we write

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav, (3)

and

∆̄An(s) =
n∑
v=0

ânvav. (4)

Bor (2008) obtained the following theorem.

Theorem 2.1.

Let (Xn) be an almost increasing sequence and let there be sequences (γn) and (λn) such that

| ∆λn |≤ γn, (5)

γn → 0 as n→∞, (6)

∞∑
n=1

n | ∆γn | Xn <∞, (7)

| λn | Xn = O(1), (8)
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where ∆λn = λn − λn+1. If
n∑
v=1

| sv |k

v
= O(Xn) as n→∞, (9)

and (pn) is a sequence such that

Pn = O(npn), (10)

Pn∆pn = O(pnpn+1), (11)

then the series
∑∞

n=1 an
Pnλn

npn
is summable | N̄ , pn |k, k ≥ 1.

Lemma 2.2.

Let (Xn) be a quasi σ-power increasing sequence for some 0 < σ < 1. If conditions (6) and (7)
are satisfied, then

nXnγn = O(1), (12)

∞∑
n=1

γnXn <∞, (13)

(see Leindler (2001)).

3. Main Result

Many works concerning absolute matrix summability methods have been done (see Özarslan
(2013, 2014, 2015, 2019a, 2019b, 2019c), Özarslan and Yavuz (2013, 2014)). The aim of this
paper is to generalize Theorem 2.1 to |A, pn, β; δ|k summability by using a quasi σ-power increas-
ing sequence instead of an almost increasing sequence.

Now, we shall prove the following theorem.

Theorem 3.1.

Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (14)

an−1,v ≥ anv, for n ≥ v + 1, (15)

ann = O

(
pn
Pn

)
, (16)

| ân,v+1 |= O(v | ∆v(ânv) |), (17)
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where ∆v(ânv) = ânv − ân,v+1. Let (Xn) be a quasi σ-power increasing sequence, for some
0 < σ < 1. If (λn) ∈ BV , and the conditions (5)-(8), (10)-(11) of Theorem 2.1 and

m∑
n=1

(
Pn
pn

)β(δk+k−1)−k+1 |sn|k

n
= O(Xm) as m→∞, (18)

∞∑
n=v+1

(
Pn
pn

)β(δk+k−1)−k+1

|∆v(ânv)| = O

((
Pv
pv

)β(δk+k−1)−k)
, (19)

∞∑
n=v+1

(
Pn
pn

)β(δk+k−1)−k+1

|ân,v+1| = O

((
Pv
pv

)β(δk+k−1)−k+1
)
, (20)

are satisfied, then the series
∑∞

n=1 an
Pnλn

npn
is summable | A, pn, β; δ |k, k ≥ 1, δ ≥ 0, and

−β(δk + k − 1) + k > 0.

If we take (Xn) as an almost increasing sequence, we get another result for | A, pn, β; δ |k
summability (see Özarslan and Karakaş (2018)). If we take (Xn) as an almost increasing sequence,
β = 1, δ = 0 and anv = pv

Pn
, then we get Theorem 2.1.

Proof:

Let (In) denotes A-transform of the series
∑∞

n=1 an
Pnλn

npn
. Then, by (3) and (4), we obtain

∆̄In =
n∑
v=1

ânv
avPvλv
vpv

.

Applying Abel’s transformation to this sum, we get that

∆̄In =
n−1∑
v=1

∆v

(
ânvPvλv
vpv

) v∑
r=1

ar +
ânnPnλn
npn

n∑
r=1

ar

=
n−1∑
v=1

∆v

(
ânvPvλv
vpv

)
sv +

annPnλn
npn

sn

=
n−1∑
v=1

ân,v+1Pv+1∆λv
(v + 1)pv+1

sv +
n−1∑
v=1

ân,v+1∆(
Pv
vpv

)λvsv +
n−1∑
v=1

∆v(ânv)Pvλv
vpv

sv +
annPnλn
npn

sn

= In,1 + In,2 + In,3 + In,4.

For the proof of Theorem 3.1, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)β(δk+k−1)
| In,r |k<∞, for r = 1, 2, 3, 4.
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Using (10) and applying Hölder’s inequality, we have

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
| In,1 |k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)(n−1∑
v=1

|ân,v+1| |∆λv|| |sv|

)k

= O(1)
m+1∑
n=2

(
Pn
pn

)β(δk+k−1)(n−1∑
v=1

|ân,v+1| |∆λv| |sv
|k
)

×

(
n−1∑
v=1

|ân,v+1| |∆λv|

)k−1

.

Here, by virtue of (1), (2), (14) and (15), we find

ân,v+1 = ān,v+1 − ān−1,v+1 =
n∑

i=v+1

ani −
n−1∑
i=v+1

an−1,i

=
n∑
i=0

ani −
v∑
i=0

ani −
n−1∑
i=0

an−1,i +
v∑
i=0

an−1,i

= 1−
v∑
i=0

ani − 1 +
v∑
i=0

an−1,i

=
v∑
i=0

(an−1,i − ani)

≥ 0,

and so, by (1), (2), (15), we get

|ân,v+1| = ân,v+1 = ān,v+1 − ān−1,v+1

= ann +
n−1∑
i=v+1

(ani − an−1,i)

≤ ann.

Therefore, we have

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
| In,1 |k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
ak−1nn

(
n−1∑
v=1

|ân,v+1| γv |sv
|k
)

×

(
n−1∑
v=1

|∆λv|

)k−1

.

Now, using the fact that ann = O( pn
Pn

) by (16) and (λn) ∈ BV , we obtain
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m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
| In,1 |k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)−k+1
(
n−1∑
v=1

|ân,v+1| γv |sv
|k
)

= O(1)
m∑
v=1

γv |sv
|k

m+1∑
n=v+1

(
Pn
pn

)β(δk+k−1)−k+1

|ân,v+1|

= O(1)
m∑
v=1

(
Pv
pv

)β(δk+k−1)−k+1

vγv
|sv|k

v

= O(1)
m−1∑
v=1

∆(vγv)
v∑
r=1

(
Pr
pr

)β(δk+k−1)−k+1 |sr|k

r

+O(1)mγm

m∑
v=1

(
Pv
pv

)β(δk+k−1)−k+1 |sv|k

v

= O(1)
m−1∑
v=1

v|∆γv|Xv +O(1)
m−1∑
v=1

γvXv +O(1)mγmXm

= O(1) as m→∞,

by (7), (12), (13), (18) and (20).

Again, applying Hölder’s inequality, using the fact that ∆
(
Pv

vpv

)
= O( 1

v
) (see Mishra and Srivas-

tava (1984)) and (17), we obtain

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
| In,2 |k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)(n−1∑
v=1

|ân,v+1|
v
|λv||sv|

)k

= O(1)
m+1∑
n=2

(
Pn
pn

)β(δk+k−1)(n−1∑
v=1

|ân,v+1|
v
|λv|k|sv|k

)

×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

.

Here, by (1) and (2), we have

∆v(ânv) = ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv − an−1,v.

Hence, using (1), (14), and (15)

n−1∑
v=1

|∆v(ânv)| =
n−1∑
v=1

(an−1,v − anv) ≤ ann. (21)

Then,
m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
| In,2 |k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
ak−1nn

(
n−1∑
v=1

|ân,v+1|
v
|λv|k|sv|k

)
.
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By using (16), we have

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
| In,2 |k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)−k+1
(
n−1∑
v=1

|ân,v+1|
v
|λv|k|sv|k

)

= O(1)
m∑
v=1

1

v
|λv||sv|k

m+1∑
n=v+1

(
Pn
pn

)β(δk+k−1)−k+1

|ân,v+1|

= O(1)
m∑
v=1

(
Pv
pv

)β(δk+k−1)−k+1

|λv|
|sv|k

v

= O(1)
m−1∑
v=1

∆|λv|
v∑

n=1

(
Pn
pn

)β(δk+k−1)−k+1 |sn|k

n

+O(1)|λm|
m∑
v=1

(
Pv
pv

)β(δk+k−1)−k+1 |sv|k

v

= O(1)
m−1∑
v=1

γvXv +O(1)|λm|Xm

= O(1) as m→∞,

by (5), (8), (13), (18) and (20).

Now, we have

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
|In,3|k ≤

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)(n−1∑
v=1

Pv
vpv
|∆v(ânv)| |λv||sv|

)k

= O(1)
m+1∑
n=2

(
Pn
pn

)β(δk+k−1)(n−1∑
v=1

(
Pv
vpv

)k
|∆v(ânv)| |λv|k|sv|k

)

×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

.

By virtue of (16) and (21),

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
|In,3|k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)−k+1
(
n−1∑
v=1

(
Pv
vpv

)k
|∆v(ânv)| |λv|k|sv|k

)

= O(1)
m∑
v=1

Pv
vpv
|λv||sv|k

m+1∑
n=v+1

(
Pn
pn

)β(δk+k−1)−k+1

|∆v(ânv)|

= O(1)
m∑
v=1

(
Pv
pv

)β(δk+k−1)−k+1

|λv|
|sv|k

v

= O(1) as m→∞,

as in In,2, in regard to the hypotheses of Theorem 3.1 and Lemma 2.2.
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Finally, from Abel’s transformation, as in In,2, we have
m∑
n=1

(
Pn
pn

)β(δk+k−1)
| In,4 |k =

m∑
n=1

(
Pn
pn

)β(δk+k−1)(
Pn
npn

)k
aknn|λn|k|sn|k

= O(1)
m∑
n=1

(
Pn
pn

)β(δk+k−1)−k+1(
Pn
pn

)k−1
1

nk
|λn|k−1|λn||sn|k

= O(1)
m∑
n=1

(
Pn
pn

)β(δk+k−1)−k+1

|λn|
|sn|k

n

= O(1) as m→∞,
in regard to the hypotheses of Theorem 3.1 and Lemma 2.2.

Therefore, Theorem 3.1 is proved. �

4. Conclusion

In this paper, absolute matrix summability of an infinite series has been studied. A general theo-
rem on | A, pn, β; δ |k summability method has been proved by using a quasi σ-power increasing
sequence instead of an almost increasing sequence under weaker conditions. This general theorem
brings a different perspective and studying field, and so it creates a basis for future research of in-
terested researchers; also, the | A, pn, β; δ |k summability method can be used to generalize some
different theorems on absolute summability.
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