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Abstract

The essential goal of our study is to search for a solution of an infinite system of differential
equations in two different Banach spaces under certain assumptions by the aid of measure of non-
compactness. Also, we establish some interesting examples related to our results.
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1. Introduction

The theory of infinite systems of differential equations is an outstanding field of study for func-
tional analysis and applied mathematics since it has many applications in the theory of artificial
neural networks, branching processes, the theory of dissociation of polymers and so on (cf. Hille
(1961), Zautykov (1965), Oğuztöreli (1972), Deimling (1977)). Also, Persidskii (1959), Persidskii
(1961) and Zautykov and Valeev (1974) have studied various problems in mechanics which lead
to infinite systems of differential equations.
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Recently, Banaś and Lecko (2001) and Mursaleen and Mohiuddine (2012) have studied the solv-
ability of infinite systems of differential equations in classical Banach spaces by using the measure
of non-compactness. For further results and discussions related to this topic, we refer to the pa-
pers of Banaś (2012), Mursaleen and Alotaibi (2012), Banaś and Sadarangani (2013), Mursaleen
(2013), Alotaibi et al. (2015), Mohiuddine et al. (2016), Demiriz (2017), Banaś and Krajewska
(2017), Srivastava et al. (2018) and various references given therein. A large number of these re-
sults have been formulated from the point of measures of non-compactness. Also, Olszowy (2009)
and Olszowy (2010) have studied the infinite systems of integral equations in Frechet spaces with
measure of non-compactness.

For the foundation of the Hausdorff measure of non-compactness, we refer to Kara et al. (2015).
The theory of measure of non-compactness has been handled to establish the classes of compact
operators on some sequence spaces (see Mursaleen and Noman (2010a), Mursaleen and Noman
(2010b), Mursaleen et al. (2011), Kara and Başarır (2011), Başarır and Kara (2012), Alotaibi et al.
(2015)).

For some papers related to sequence spaces, one can consult the papers of Kara (2013), Candan
(2015), Başarır et al. (2016), Kara and İlkhan (2016) and Ellidokuzoğlu et al. (2018).

In this paper, by applying the technique of measure of non-compactness, we search for the solvabil-
ity of infinite systems of differential equations in some Banach spaces. Also, we give an example
of infinite system of differential equations which has a solution in these spaces but has no solution
in the classical sequence spaces c0 and `p.

2. Background and notation

In this section, we give some basic definitions, notations and results about sequence spaces and the
Hausdorff measure of noncompactness (special case of measure of noncompactness). These can
be found in the papers of Koshy (2001) and Banaś et al. (2017).

Let N = {0, 1, 2, ...} and R be the set of all real numbers. By ω and R∞, we denote the vector
space of all real sequences u = (uk)k∈N. Let c0 be the set of all null sequences. We write `p =
{u ∈ ω :

∑
k |uk|

p <∞}, for 1 ≤ p <∞. The spaces c0 and `p are Banach spaces with the norms
‖u‖∞ = supk |uk| and ‖u‖p = (

∑
k |uk|

p)
1/p, respectively.

Let (X, ρ) ((X, ‖.‖)) be a metric space (a normed space). By B(u0, r) and B(u0, r), we denote
the open ball and closed ball in X centered u0 and with radius r > 0. Moreover, let MX be the
collection of all non-empty and bounded subsets of X. If Y ∈MX , then the Hausdorff measure of
noncompactness of the set Y , denoted by χ (Y ) , is defined by

χ (Y ) := inf
{
ε > 0 : Y ⊂

n
∪
i=1
B (ui, ri) , ui ∈ X, ri < ε (i = 1, 2, ..., n) , n ∈ N− {0}

}
:= inf {ε > 0 : Y has a finite ε-net in X} .
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The function χ :MX → [0,∞) is called the Hausdorff measure of non-compactness.

The following result gives the Hausdorff measure of non-compactness of a bounded set in the
spaces c0 and `p for 1 ≤ p <∞.

Lemma 2.1. (Rakočević (1998))

Let X = `p or X = c0 and Y ∈ MX . If Pm : X → X (m ∈ N) is the operator defined by
Pm(u) = (u0, u1, ..., um, 0, 0, ...) for all u = (uk) ∈ X , then we have

χ(Y ) = lim
m→∞

(
sup
u∈Y
‖(I − Pm)(u)‖

)
,

where I is the identity operator on X.

The set

λA = {u = (un) ∈ ω : Au ∈ λ},

is called as the matrix domain of an infinite matrix A in the sequence space λ.

If A = (ank) is triangle, that is, ank = 0 for k > n and ann 6= 0 for all n ∈ N, then the spaces λA
and λ are linearly isomorphic.

For r, s ∈ R\{0}, the generalized difference matrix B(r, s) = {bnk(r, s)} is given by

bnk(r, s) =


r, k = n,
s, k = n− 1,
0, 0 ≤ k < n− 1 or k > n,

for all n, k ∈ N.

Kirişçi and Başar (2010) defined the following spaces

̂̀
p =

{
u = (un) ∈ ω :

∞∑
n=0

|run + sun−1|p <∞

}
,

for 1 ≤ p <∞, and

ĉ0 =
{
u = (un) ∈ ω : lim

n→∞
|run + sun−1| = 0

}
.

Here u−1 = 0. The spaces ̂̀p and ĉ0 are Banach spaces with the norms given by

‖u‖ ̂̀
p
=

(
∞∑
n=0

|run + sun−1|p
)1/p

and ‖u‖ĉ0 = sup
n∈N
|run + sun−1| ,

respectively.

One can redefine the spaces ̂̀p and ĉ0 aŝ̀
p = {`p}B(r,s) and ĉ0 = {c0}B(r,s).
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Theorem 2.2. (Kirişçi and Başar (2010))

Let λ ∈ {`p, c0} and B = B(r, s). Then,

(i) λ = λB if |s/r| < 1.

(ii) λ ⊂ λB is strict if |s/r| ≥ 1.

Throughout the study, we assume that |s| ≥ |r|. Otherwise, our solutions coincide with the solu-
tions given for the spaces `p and c0.

3. Solutions for infinite systems of differential equations in ̂̀p and ĉ0

In this section, by applying the technique of measure of non-compactness, we search for the solv-
ability of infinite systems of differential equations in Banach spaces ̂̀p and ĉ0. Also, we give an
example of infinite system of differential equations which has a solution in these spaces but has no
solution in the spaces c0 and `p.

Consider the ordinary differential equation

u
′
= g(a, u), (1)

with the initial condition

u(0) = u0. (2)

Now, let (X, ‖.‖) be a real Banach space and take the interval I = [0, A], A > 0. Then, we give the
following result proved by Banaś and Goebel (1980), and modified by Banaś and Lecko (2001).

Theorem 3.1.

Assume that g is a function defined on I ×X with values in X such that

‖g(a, u)‖ ≤ Q+R ‖u‖ ,

for any u ∈ X , where Q and R are non-negative constants. Also, let g be uniformly continuous on
J1×B(u0, r), where r = (QA1+RA1 ‖u0‖)/(1−RA1), and I1 = [0, A1] ⊂ I , RA1 < 1. Further,
assume that for any subset Y of B(u0, r) and for almost all a ∈ I the following inequality holds:

µ(g(a, Y )) ≤ q(a)µ(Y ), (3)

with a sublinear measure of non-compactness µ such that {u0} ∈ ker µ. Then, the problem (1)-(2)
has a solution u such that {u(a)} ∈ ker µ for a ∈ I1, where q is an integrable function on I and
ker µ = {E ∈MX : µ(E) = 0 } is the kernel of the measure µ.

Remark 3.2.

If we take the Hausdorff measure of non-compactness χ instead of µ in the above theorem, then
the assumption of the uniform continuity of g can be replaced by the continuity of g.
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We need the following lemma to prove our main results, which can be obtained from Lemma 2.1.

Lemma 3.3.

(i) If Y ∈M ̂̀
p
, then

χ(Y ) = lim
n→∞

(
sup

(uk)∈Y

∑
k≥n

|ruk + suk−1|p
)
,

holds.

(ii) If Y ∈Mĉ0 , then

χ(Y ) = lim
n→∞

(
sup

(uk)∈Y

(
sup
k≥n
|ruk + suk−1|

))
,

holds.

We have the following theorem.

Theorem 3.4.

Let

u
′

i = hi(a, u1, u2, ...), (a ∈ I = [0, A]), (4)

be the infinite system of ordinary differential equations with the initial condition

ui(0) = u0i , (5)

where hi : I × R∞ → R for all i = 1, 2, 3, .... Suppose that

i) u0 = (u0i ) ∈ ĉ0,

ii) the mapping h = (h1, h2, ...) : I × ĉ0 → ĉ0 is continuous,

iii) there exists an increasing sequence (kn) of natural numbers (kn →∞ as n→∞) such that for
any a ∈ I , (ui) ∈ ĉ0 and for n = 1, 2, ... the inequality

|hn(a, u1, u2, ...)| ≤ vn(a) + wn(a) sup {|rui + sui−1| : i ≥ kn} ,

holds, where vn and wn are real valued continuous functions on I such that (vn(a)) converges
uniformly on I to the function vanishing identically and (wn(a)) is equibounded on I . Set

w(a) = sup {wn(a) : n = 1, 2, ...} ; a ∈ I,

W1 = sup {w(a) : a ∈ I} ,

V1 = sup {vn(a) : a ∈ I, n = 1, 2, ...} .
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Then, the problem (4)-(5) has at least one solution u = u(a) = (un(a)) on I1 = [0, A1] ⊂ I , where
WA1 < 1 and W = 2|s|W1. Also, u(a) ∈ ĉ0 for a ∈ I1.

Proof:

Let us take an arbitrary u = (un(a)) ∈ ĉ0. By using the above assumptions, for any a ∈ I and for
a fixed n, we obtain

|rhn(a, u) + shn−1(a, u)| = |rhn(a, u1, u2, ...) + shn−1(a, u1, u2, ...)|
≤ |r| (vn(a) + wn(a) sup {|rui + sui−1| : i ≥ kn})
+ |s| (vn−1(a) + wn−1(a) sup {|rui + sui−1| : i ≥ kn−1})
≤ |s| (V1 +W1 sup {|rui + sui−1| : i ≥ kn})
+ |s| (V1 +W1 sup {|rui + sui−1| : i ≥ kn−1})
≤ V +W ‖u‖ĉ0 ,

where V = 2|s|V1 and W = 2|s|W1.

Thus, we have

‖h(a, u)‖ĉ0 ≤ V +W ‖u‖ĉ0 . (6)

Now, let us take the closed ball B(u0, r) in ĉ0, where r =
V A1+WA1‖u‖ĉ0

1−WA1
. Let X be a subset of

B(u0, r) and a ∈ I1. Then, by using Lemma 3.3 (ii), we get

χ(h(a,X)) = lim
n→∞

{
sup
u∈X
{sup {|rhi(a, u) + shi−1(a, u)| : i ≥ n}}

}
= lim

n→∞

{
sup

(ui)∈X
{sup {|rhi(a, u1, u2, ...) + shi−1(a, u1, u2, ...)| : i ≥ n}}

}

≤ lim
n→∞

{
sup

(ui)∈X

{
|r| sup

i≥n
{vi(a) + wi(a) sup [|rup + sup−1| : p ≥ ki]}

}}

+ lim
n→∞

{
sup

(ui)∈X

{
|s| sup

i≥n
{vi−1(a) + wi−1(a) sup [|rup + sup−1| : p ≥ ki−1]}

}}

≤ |r| lim
n→∞

(
sup
i≥n
{vi(a)}

)
+ |s| lim

n→∞

(
sup
i≥n
{vi−1(a)}

)
+ |r|w(a) lim

n→∞

(
sup

(ui)∈X

{
sup
i≥n
{sup [|rup + sup−1| : p ≥ ki]}

})

+ |s|w(a) lim
n→∞

(
sup

(ui)∈X

{
sup
i≥n
{sup [|rup + sup−1| : p ≥ ki−1]}

})
≤ w1(a)χ(X), (7)

where w1(a) = 2|s|w(a).
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It follows from inequalities (6) and (7), Theorem 2.2 and Remark that there exists a solution u =
u(a) of the problem (4)-(5) such that u(a) ∈ ĉ0 for any a ∈ I1. �

Now, we consider the solvability of the problem (4)-(5) in the Banach space ̂̀p.

Theorem 3.5.

Consider the infinite system of ordinary differential equations (4) with (5). Suppose that

(i) u0 = (u0n) ∈ ̂̀p,

(ii) the mapping h = (h1, h2, ...) : I × ̂̀p → ̂̀
p is continuous,

(iii) there exist functions wi, ti : I → [0,∞) for every i ∈ N such that

|hi(a, u1, u2, ...)|p ≤ wi(a) + ti(a) |rui + sui−1|p ,

for a ∈ I , u = (un) ∈ ̂̀p,

(iv) wi is continuous on I and the the series
∞∑
i=0

wi(a) converges uniformly on I ,

(v) the sequence (wi(a)) is equibounded on I and the function t(a) = lim supi→∞ ti(a) is inte-
grable on I .

Then, the problem (4)-(5) has a solution u(a) = (ui(a)) defined on the interval I = [0, A] whenever
T1A < 2−(p+1), where

T1 = sup {ti(a) : a ∈ I, i = 0, 1, 2, ...} .

Also, u(a) ∈ ̂̀p for any a ∈ I .

Proof:

For any u(a) ∈ ̂̀p and a ∈ I , we have

‖h(a, u)‖p̂̀
p

=
∞∑
i=0

|rhi(a, u) + shi−1(a, u)|p

≤
∞∑
i=0

2p (|rhi(a, u)|p + |shi−1(a, u)|p)

≤ |2s|p
∞∑
i=0

(|hi(a, u)|p + |hi−1(a, u)|p)

≤ |2s|p
∞∑
i=0

(wi(a) + ti(a) |rui + sui−1|p) + |2s|p
∞∑
i=0

(wi−1(a) + ti−1(a) |rui−1 + sui−2|p)
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≤ |2s|p
(
∞∑
i=0

wi(a) + sup
i≥0

(ti(a))
∞∑
i=0

|rui + sui−1|p
)

+ |2s|p
(
∞∑
i=0

wi−1(a) + sup
i≥0

(ti−1(a))
∞∑
i=0

|rui−1 + sui−2|p
)

= 2|2s|p
(
∞∑
i=0

wi(a) + sup
i≥0

(ti(a))
∞∑
i=0

|rui + sui−1|p
)

≤ W + T ‖u‖p̂̀
p

,

where W = 2|2s|p supa∈I
∑∞

i=0wi(a) and T = 2|2s|pT1.

Now, let us take the closed ball B(u0, r) in ̂̀p, where r = (WA+ TA ‖u0‖p̂̀
p

)/(1− TA).

Consider the operator h = (hi) on the set I × B(u0, r) and let Y be subset of B(u0, r). Then, we
get

χ(h(a, Y )) = lim
n→∞

sup
u∈Y

(∑
i≥n

|rhi(a, u) + shi−1(a, u)|p
)

≤ |2s|p lim
n→∞

sup
u∈Y

(∑
i≥n

(|hi(a, u)|p + |hi−1(a, u)|p)

)

≤ |2s|p lim
n→∞

(∑
i≥n

wi(a) +
∑
i≥n

wi−1(a)

)

+ |2s|p lim
n→∞

(
sup
i≥n

ti(a). sup
(ui)∈Y

[∑
i≥n

|rui + sui−1|p
])

+ |2s|p lim
n→∞

(
sup
i≥n

ti−1(a). sup
(ui)∈Y

[∑
i≥n

|rui−1 + sui−2|p
])

.

It follows from assumptions (i)-(v) and Lemma 3.3 (i) that

χ(h(a, Y )) ≤ t1(a)χ(Y ),

where t1(a) = 2|2s|pt(a). This says that the operator h satisfies (3) of Theorem 3.1 and Remark.
Thus, we obtain that there exists a solution u = u(a) of problem (4)-(5) such that u(a) ∈ ̂̀p for
any a ∈ I . �

Example 3.6.

Let us consider the infinite system of differential equations

u
′

i = ui; ui(0) =
1 + (−1)i

2
, (8)

for i = 0, 1, 2, ... .
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It is easily seen that the solution of (8) has the form

(u(a)) =

(
1 + (−1)i

2
ea
)
,

on the interval I = [0, A].

Now, for every a ∈ I , we will show that u(a) /∈ ĉ0. Let a ∈ I . Then, we have

|rui(a) + sui−1(a)| = |r|ea,

for i = 0, 2, 4, .... Also, for i = 1, 3, 5, ..., we have

|rui(a) + sui−1(a)| = |s|ea.

Thus, we get limi→∞ |rui(a) + sui−1(a)| 6= 0 for every a ∈ I . This shows that u(a) /∈ ĉ0 for every
a ∈ I . Therefore, the sequence space ĉ0 is not suitable to consider solvability of problem (8) in
this space. Indeed, this situation appears quite naturally since the initial point (u0i ) =

(
1+(−1)i

2

)
is

not in the space ĉ0.

Corollary 3.7.

The problem in the above example has no solution in the space ̂̀p.
Proof:

The proof is clear since the inclusion ̂̀p ⊂ ĉ0 holds. �

Example 3.8.

Let us consider the infinite system of differential equations

u
′

i = ui; ui(0) = (−s/r)i/r, (9)

for i = 0, 1, 2, ... and take the interval I = [0, A]. Then, the solution of (9) has the form

u(a) = (u(a)) =
(
((−s/r)i/r)ea

)
= ((1/r)ea, (−s/r2)ea, (s2/r3)ea, ...),

for every a ∈ I . Also, for every a ∈ I , we have that

|rui(a) + sui−1(a)| = ea
∣∣r(−s/r)i/r + s(−s/r)i−1/r

∣∣ = 0,

for i ≥ 1 and |rui(a) + sui−1(a)| = ea for i = 0. Thus, the problem (9) has a solution in the spacề
p (or ĉ0). On the other hand, the initial condition (u0i ) = ((−s/r)i/r) is not in c0 (and so `p).

Thus, the problem (9) has no solution in the spaces c0 and `p according to Theorem 3 by Banaś
and Lecko (2001) and Theorem 3.1 by Mursaleen and Mohiuddine (2012).

4. Conclusion

This study deals with the solution for an infinite system of ordinary differential equations with
initial condition in some Banach sequence spaces. For this purpose, it is adopted the technique of
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measures of noncompactness. Also, it is observed with an example that this problem has a solution
in the generalized Banach spaces ̂̀p or ĉ0 but it has no solution in the classical Banach spaces `p or
c0.
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