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Abstract
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1. Introduction

We denote the space of complex numbers z = x+ iy by C and

Cm = {z = (z1, . . . , zm) : zj ∈ C, j = 1,m},

an m-dimensional complex space. Let Γj, j = 1,m be given Jordan curves in the complex plane
C and Dj, Ej be the interior and exterior respectively of Γj . Let ϕj map Ej conformally onto
{wj : |wj| > 1} such that ϕj(∞) = ∞ and ϕ′j(∞) > 0. Then, in view of Faber (1979), for
sufficiently large |zj|, ϕj(zj) can be expressed as

w1 = ϕ1(z1) =
z1

d1

+ c0 +
c1

z1

+
c2

z2
1

+ . . . ,

w2 = ϕ2(z2) =
z2

d2

+ c′0 +
c′1
z2

+
c′2
z2

2

+ . . . ,

. . . ,

wm = ϕm(zm) =
zm
dm

+ c
(m−1)′
0 +

c
(m−1)′
1

zm
+
c

(m−1)′
2

z2
m

+ . . . ,

where dj > 0.

Let us put D = D1 × D2 × · · · × Dm and E = E1 × E2 × · · · × Em in Cm and let the function
ϕ map E conformally onto the unit polydisk Um = {z ∈ Cm : |wj| > 1, j = 1,m} such that
ϕ(z) = ϕ1(z1)ϕ1(z1) . . . ϕm(zm) satisfies the conditions ϕ(∞) = ∞ : ∞ = (∞, . . . ,∞) and
ϕ′(∞) > 0. Then, for sufficiently large value of |zj|, ϕ(z) can be expressed as

w1w2 . . . wm = ϕ(z) =
z

d
+

∞∑
|k|=0

ck

zk
,

where z
d

= z1
d1
. . . zm

dm
,k = (k1, . . . , km) ∈ zm+ , |k| = k1 + k2 + · · · + km, z

k = zk11 . . . zkmm and
ck = ck1,...,km . It is known that an arbitrary Jordan curve can be approximated from the inside as
well as from the outside by analytic Jordan curves. Since Γ = Γ1×Γ2×· · ·×Γm is analytic and ϕ
is holomorphic on Γ as well the kth Faber polynomial Fk(z) of Γj is the principal part of (ϕ(z))|k|

at (∞), so that

Fk(z) =
( z

d

)k

+ . . . .

Following the one variable case of Faber (1979), it can be seen that

Fk(z) ∼ (ϕ1(z1))k1(ϕ2(z2))k2 . . . (ϕm(zm))km ∼
( z

d

)k

(1)

uniformally for zj ∈ Ej and

lim
|k|→∞

(max
z∈Γ
|Fk(z)|)

1

|k| = 1. (2)

A function f holomorphic in D can be represented by its Faber series

f(z) =
∞∑
|k|=0

akFk(z),
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where

ak =
1

(2πi)m

∫
|w1|=r1

· · ·
∫
|wm|=rm

f(ϕ−1
1 (w1), . . . , ϕ−1

m (wm))w
−(k1+1)
1 . . . w−(km+1)

m dw,

ak = ak1,...,km ,dw = dw1dw2 . . . dwm and 0 < r1, . . . , rm < 1 are sufficiently close to 1 so that for
j = 1, . . . ,m, ϕ−1

j are holomorphic and univalent in |wj| ≥ rj respectively, the series converging
uniformly on compact subsets of D.

Consider a unit polydisk Um = {z ∈ Cm : |zj| < 1, j = 1,m} and let Γm = {z ∈ Cm : |zj| =
1, j = 1,m} be its skeleton. By R, we denote the set of all finite real numbers. Also, let Rm be an
m-dimensional real space. Further, by

Tm = {x = (x1, . . . , xm) ∈ Rm : 0 ≤ xj ≤ 2π, j = 1,m},

and

Πm = {r = (r1, . . . , rm) ∈ Rm : 0 ≤ rj < 1, j = 1,m},

we denote m-dimensional cubes in Rm.

Now we consider the following Banach spaces X formed by the functions analytic in a unit poly-
disk Um with finite norm.

(1) The space B of functions analytic in the set Um and continuous in its skeleton Γm with the
norm

‖f‖B = max
z∈Γm

|f(z)| <∞.

(2) Let A(Um) be the set of all functions f analytic in the set Um. By Hp(U
m), 0 < p ≤ ∞, we

denote a Hardy space formed by functions f ∈ A(Um) with the norm

‖f‖Hp = sup{Mp(r, f) : r ∈ Πm} <∞,

Mp(r, f) =

{
1

(2π)m

∫
Tm
|f(reit)|pdt

}1/p

, p ∈ [1,∞),

M∞(r, f) = max
{
|f(reit)| : t ∈ Tm

}
, r ∈ Πm,

where

f(reit) = f(r1e
it1 , . . . , rme

itm), dt = dt1 . . . dtm.

Hp(U
m) is a Banach space for p ≥ 1.

Remark 1.1.

For m = 1, the spaces Hp(U) ≡ Hp(U
1), 0 < p ≤ ∞, were studied for the first time by Hardy

(1914). Further, these spaces are completely investigated by Littlewood, Privalov, F. Riesz, M.
Riesz, Zygmund, etc.

(3) The Bergman spaces H ′p(U
m) of functions f ∈ A(Um) for p ∈ [1,∞) with the norm

‖f‖H′p =

(
1

(π)m

∫ ∫
z∈Γm

|f(x+ iy)|pdxdy
)1/p

,
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where f(x+ iy) = f(x1 + iy1, . . . , xm + iym), dxdy = dx1dy1 . . . dxmdym.
(4) The spaces Ap(Um), p ∈ (0, 1), of functions f ∈ A(Um) with the norm

‖f‖Ap(Um) =

∫
Πm

(1− r)1/p−1M1(r, f)dr.

These spaces were first studied by Hardy and Littlewood (1931) and later by Duren et al.(1969)
for m = 1.

(5) The spaces Bm(p, q, λ), 0 < p < q ≤ ∞, λ > 0, of functions f ∈ A(Um) with the norm

‖f‖p,q,λ =

{∫
Πm

(1− r)λ( 1

p
− 1

q
)−1Mλ

q (r, f)dr

} 1

λ

, 0 < λ <∞,

and

‖f‖p,q,∞ = sup
{

(1− r)
1

p
− 1

qMq(r, f) : r ∈ Πm
}
<∞, λ =∞.

Remark 1.2.

The space Bm(p, q, λ) is a Banach space if min(q, λ) ≥ 1. Gvaradze (1977) considered the
spaces of analytic functions B(p, q, λ), 0 < p < q ≤ ∞, 0 < λ ≤ ∞, to generalize the
Hardy spaces and established the properties of functions from these spaces for functions f ∈
A(U) ≡ A(U1), with weaker restrictions imposed on their behavior near boundary of a unit
disk and latter Gvaradze (1975, 1980) introduced the spacesBm(p, q, λ) to the case of polydisk
Um,m ∈ N\{1}.

Let X be one of the Banach spaces of analytic functions of m-complex variables. By Pn we
denote a subspace of algebraic polynomials of m-complex variables of the form

Pn =


n∑
|k|=0

akzk : ak ∈ C

 , n ∈ Z+.

ByEn(f,X), we denote the value of the best polynomial approximation of the function f ∈ X
by elements of the subspace Pn, i.e.,

En(f,X) = inf {‖f − pn‖X : pn ∈ Pn} .

To study the generalized growth in single complex variable of entire function f(z) =∑∞
n=0 anFn(z), Ganti and Srivastava (2009) defined the general functions as follows.

Let L0 denote the class of functions h satisfying the following conditions.

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable and tends to∞ as
x→∞,

(ii) limx→∞
h{(1+1/ξ(x))x}

h(x)
= 1, for every function ξ(x) such that ξ(x)→∞ as x→∞.

Let ∆ denote the class of functions h satisfying condition (i)and limx→∞
h(cx)
h(x)

= 1, provided c > 0,
that is, h(x) is slowly increasing.



606 D. Kumar and M. Vijayran

For functions α(x) ∈ ∆, β(x) ∈ L0, Ganti and Srivastava (2009) defined generalized order as

ρ(α, β, f) = lim sup
r→∞

α[logM(r, f)]

β(log r)
,

where M(r, f) = max|z|=r |f(z)|, and obtained coefficients characterizations over Jordan do-
mains.

The necessary and sufficient conditions of generalized order of entire functions in terms of approx-
imation errors also have been studied. All these results have been obtained by using the condition.

d(β−1(cα(x)))

d(log x)
≤ b, x ≥ a, 0 < c <∞, (3)

where a and b are positive constants. It has been observed that the condition (3) does not hold for
α = β. To overcome, this problem Kumar (2013) used the approach introduced by Kapoor and
Nautiyal (1981) and defined generalized order ρ(α, α, f) of slow growth with the help of general
functions as follows.

Let Ω be the class of functions h(x) satisfying (i) and

(iv) there exists a η(x) ∈ Ω and x0, K1 and K2 such that

0 < K1 ≤
d(h(x))

d(η(log x))
≤ K2 <∞ for all x > x0.

Let Ω be the class of functions h(x) satisfying (i) and
(v)

lim
x→∞

d(h(x))

d(log x)
= K , 0 < K <∞.

Kapoor and Nautiyal (1981) showed that classes Ω and Ω are contained in ∆. Further, Ω ∩ Ω = φ
and they defined the generalized order ρ(α, α, f) for entire function f(z) of slow growth as

ρ(α, α, f) = lim sup
r→∞

α(logM(r, f))

α(log r)
,

where α(x) either belongs to Ω or to Ω.

Kumar (2013) improved the results studied by Ganti and Srivastava (2009). Generalized α-
logarithmic order has been studied in the spaces 1,2,4,5 mentioned above in finite domain by
Vakarchuk and Zhir (2011). The coefficient characterizations of classical order and type of entire
functions of two complex variables over Jordan domains by using Faber polynomials have been
obtained in terms of the approximation error in Lp-norm (2 ≤ p ≤ ∞) by Ganti and Srivastava
(2009). The aim of this paper is to extend the above mentioned results in several complex variables
using the concept of generalized order of slow growth. Also, Harfaoui (2010, 2014) investigated
some results concerning generalized growth and approximation of entire functions in Lp-norm but
our results are different from those of Harfaoui.

The paper is organized as follows. Section 1 incorporate a brief introduction of the topic. Section
2, deals with some preliminary results which have been used to prove the main results. In Section
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3, the coefficient characterizations of generalized α-order of entire functions represented by Faber
series expansion in several complex variables have been obtained in terms of approximation errors
in the Banach spaces (1-5).

2. Auxiliary Results

This section contains some auxiliary results which will be used in the sequel.

Lemma 2.1.

Let f ∈ X and f(z) =
∑∞
|k|=0 ak(f)Fk(z) be an entire function of m-complex variables.

Then,

lim
|k|→∞

{
K∗X(k)

dk

} 1

|k|

= 1, (4)

where

K∗X(k) = {‖Fk(z)‖X}−1.

Proof:

In view of (1), we have

‖Fk(z)‖X ∼
‖zk‖X
‖dk‖X

=
‖zk‖X

dk
.

Using the definition of norms

‖f(.eit)‖X = ‖f(.)‖X ,

for all t ∈ Rm and f ∈ X ,

‖f(.)‖X <∞,

for any entire function in the spaces B and Hp(U
m), 0 < p ≤ ∞, respectively, we get

‖zk‖X = 1,

and K∗X(k) = dk,k ∈ Zm+ , i,e., the result (4). In the space X = H ′p(U
m), p ≥ 1, we have

K∗H′p(Um)(k)

dk
=
{

Πm
j=1(kjp+ 2)1/p

}1/p
, kj ≥ 0, (5)

≤

{
Πm
j=1

(
kjp

(
1 +

2

kjp

))1/p
}1/p

≤ χH′p(Um)|k|m/p
2

, (6)
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where

χH′p(Um) =
pm/p

2

mm/p2

(
1 +

2

p

)m/p2
.

From (6) we get the following upper bound

lim sup
|k|→∞

(
K∗H′p(Um)(k)

dk

) 1

|k|

≤ 1. (7)

For lower bound we use (5) and get

K∗H′p(Um)(k)

dk
≥ pm/p

2

mm/p2

(
Πm
j=1kj

)1/p2

≥
{

km
mm/p2

}1/p2

,

or

lim inf
|k|→∞

{
K∗H′p(Um)(k)

dk

}1/|k|

≥ 1. (8)

(7) and (8) together gives the required result.

In the space X = Ap(U
m), 0 < p < 1, we have

K∗Ap(Um)(k)

dk
= (2π)−m/p

(
Πm
j=1B

(
kjp+ 1;

1

p
− 1

))−1/p2

.

We have the asymptotic relation Lebedev (1963)

Γ(x+ s1)

Γ(x+ s2)
= xs1−s2

(
1 +

(s1 − s2)(s1 + s2 − 1)

2x
+ 0(|x−2|)

)
,

where |x| � 1, x ∈ R, and s1 and s2 are arbitrary fixed real numbers.

Also, the relation between the Euler integral of the first kind B(a, b) and Γ-function for a, b > 0 is
given by

B(a, b) =
ΓaΓb

Γ(a+ b)
.

Setting x = kjp, s1 = 1
p

and s2 = 1, for sufficiently large |k|, for kj � 1, j = 1,m in above
relations, we get

K∗Ap(Um)(k)

dk
=

[
(2π)−mp

Γm(1
p
− 1)

Πm
j=1

Γ(kjp+ 1
p
)

Γ(kjp+ 1)

]1/p2
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=
(2π)−mppm/p

2(1/p−1)

Γm/p2(1/p− 1)

Πm
j=1kj

1 +
(1
p
− 1)

(
1
p

)
2kjp

+O
(
k−2
j p−2

)
1/p2

≤ χAp(Um)|k|m/p
2

,

where

χAp(Um) =
(2π)−mppm/p

2(1/p−1)

Γm/p2(1
p
− 1)mm/p2

(
1 +

(
1

p
− 1

)(
1

p

)
+ A

)m/p2
,

here A is an absolute constant independent of k. Therefore,

lim sup
|k|→∞

(
K∗Ap(Um)(k)

dk

)1/|k|

≤ 1. (9)

For lower bound

K∗Ap(Um)(k)

dk
≥ (2π)−mpp

m

p2
(1/p−1)

Γm/p2(1/p− 1)

{
Πm
j=1kj

}1/p2

≥
{

km
Γm(1/p− 1)

}1/p2

,

or

lim inf
|k|→∞

{
K∗Ap(U

m)(k)

dk

}1/|k|

≥ 1. (10)

Combining (9) and (10) we get the required result.

Finally, for the spaces X = Bm(p, q, λ), 0 < p < q ≤ ∞, 0 < λ ≤ ∞, it follows from Vakarchuk
and Zhir (2015) that

lim
|k|→∞

{
K∗Bm(p,q,λ)(k)

dk

}1/|k|

= 1. �

Lemma 2.2.

Let f ∈ X and let

f(z) =
∞∑
|k|=0

ak(f)Fk(z) in Um.

Then, for |k| = n+ 1,

dk|ak(f)|‖Fk(z)‖X ≤ En(f,X) ≤ ‖f‖X . (11)
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Proof:

Let {z ∈ Cm : |zjζj| = rj, j = 1,m, rj ∈ Πm}. Using the relation for the Taylor coefficients
ak(f), k ∈ z+, of the function f ∈ X , we obtain

dk|ak(f)|‖Fk(z)‖X = |ak|‖zk‖X =
1

(2πi)m

∫
|ζ|=1

f(zζ)− pn(zζ)

ζn+1
dζ,

here pn ∈ Pn is a polynomial of the best approximation for f(z) of degree not greater than n− 1.
Now using the conditions of the norm defined in Lemma 2.1, we get (11) for |k| = n+ 1. �

Following on the lines of Srivastava and Ganti (2012, Thm. 1, 2) we get the following relationship
between order, type and moduli of the Faber coefficients |ak(f)| of entire function f(z) of m-
complex variables:

ρ = lim sup
|k|→∞

|k| log |k|
− log |ak(f)|

, (12)

T =
1

eρ
lim sup
|k|→∞

|k|
( |ak(f)|

dk )−ρ/|k|
. (13)

Now we define the quantities ρm(α, f) and ρ′m(α, f) as the generalized α-order of growth as:

ρm(α, f) = lim sup
r→∞

α(logM(r, f))

α(log r)
, (14)

ρ′m(α, f) = lim sup
|k|→∞

α(|k|)
α( 1
|k| log |ak(f)|−1)

. (15)

3. Main Results

In this section we shall prove our main results.

Theorem 3.1.

Let f ∈ X and f(z) =
∑∞
|k|=0 ak(f)Fk(z) be an entire function of m-complex variables with a

generalized α-order of growth ρm(α, f). Then, the following equality is valid for α(x) ∈ Ω:

ρm(α, f) = ρ′m(α, f) + 1. (16)

Proof:

From (14), for an arbitrary ε > 0, there exist real numbers rj0(ε) > 1, j = 1,m such that, for all
r > rj0(ε), the inequality

α(logM(r, f))

α(log r)
≤ ρm(α, f) + ε ≡ ρ,
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holds. It gives

M(r, f) ≤ exp(α−1(ρα(log r))). (17)

Following Faber (1979), the Faber coefficients ak(f) satisfy the relation

|ak(f)| ≤M(r, f)r−k. (18)

Using (17) and (18) we get

|ak(f)| ≤ r−k exp(α−1(ρα(log r))). (19)

The minimum value of right hand side of (19) is attained at

r(k) = exp

(
G

(
|k| log r

ρ
,

1

ρ

))
, (20)

where G(x, c) = α−1(cα(x)). Since α ∈ Λ, (19) implies that r increases monotonically with k.
Therefore, there exist n0(ε) ∈ N for which r(n0(ε)) > r0(ε).

Moreover, for all |k| > n0(ε), we have r(|k|) > r0(ε). Substituting (20) in (19) we obtain

α(log r) < α

{
ρ

(ρ− 1)|k|
log |ak(f)|−1

}
.

Since α ∈ Ω as k→∞, we have

α(log r) ∼ 1

ρ− 1
α(|k|),

for r = r(k) satisfying (20). Thus, we obtain

|ak(f)| ≤ exp

(
−|k|(ρ− 1

ρ
)G(|k|, 1

ρ− 1
)

)
,

or

G(|k|, 1

ρ− 1
) ≤ ρ

ρ− 1
log |ak(f)|

1

|k| ,

or

lim sup
|k→∞|

α(|k|)
α(log( 1

|ak(f)|
1
|k|

))
≤ ρ− 1.

Conversely, let

ρ′m(α, f) = lim sup
|k|→∞

α(|k|)
α( 1
|k| log |ak(f)|−1)

.

Suppose ρ′m(α, f) < ∞. Then, for every ε > 0, there exists a natural number n2(ε) such that, for
all k > n2(ε), we have

|ak(f)| ≤ (exp(α−1(
1

ρ̃
α(|k|))))−k, ρ̃ = ρ′m(α, f) + ε.
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Let {DR} ∈ Cm, R > 1 be a family of complete m-circular domains depending on the parameter
R such that z ∈ DR if, and only if

z

R
=
(z1

R
, . . . ,

zm
R

)
∈ D,D = D1.

Since f ∈ X, fR ∈ X i.e., fζ(z) = f(zζ) and f is entire function. We have

f(z) =
∞∑
|k|=0

ak(f)Fk(z),

fR(z) = f(Rz) =
∞∑
|k|=0

ak(f)Fk(Rz),

‖fR(z)‖X =
∞∑
|k|=0

|ak(f)|‖Fk(Rz)‖X .

We have

‖fR(Rz)‖X ∼
Rk‖zk‖X

dk
∼ Rk

dk
as ‖zk‖X = 1.

By the definition of ϕ(z), for large zj, j = 1,m, we have

‖fR(z)‖X ≤
∞∑
|k|=0

(exp(α−1(
1

ρ̃
α(|k|))))−k Rk

(d− ε)k
.

Now proceeding on the lines of proof of Bose and Sharma (1963, Thm. IV), we get

M(R, f) ≤ O{exp(α−1(ρ̃+mε)α(log(
2mR

d− ε
)) logR)}.

Since ε is arbitrary and independent of R, we have

lim sup
R→∞

α(logM(R, f))

α(logR)
≤ ρ′m(α, f) + 1.

Now we have to show that left hand side is equal to ρm(α, f) defined by (14). Let z = φ(w) be
the function inverse to the function w = ϕ(z) defined in Section 1. The former maps the domains
|wj| > 1 onto the domains Ej conformally. Its Laurent series expansion in a vicinity of the point
wj = 0 has the form

z1 = φ1(w1) = νw1 + ν0 +
ν1

w2
1

+ . . . ,

z2 = φ2(w2) = νw2 + ν ′0 +
ν ′1
w2

1

+ . . . ,

. . .

zm = φm(wm) = νwm + ν
(m−1)′
0 +

ν(m−1)′

w2
m

+ . . . ,
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where ν = d. Using above formulae and the definition of the quantity ρm(α, f) and setting zj =
wj.ν;R = |wj|.ν, we get

lim sup
rj→∞

α(logM(r, f))

α(log r)
= lim sup

rj→∞

α(log max|wj |=rj |f(φj(wj))|)
α(log r)

= lim sup
rj→∞

α(log max|wj |=rj |f(wj(ν + ν
(j−1)′
o

wj
+ . . . ))|)

α(log r)

= lim sup
rj→∞

α(log max|zj |=R |f(z)|)
α(log r)

= lim sup
R→∞

α(logM(R, f))

α(logR)
= ρm(α, f).

. �

Theorem 3.2.

Let X be one of the Banach spaces (1 − 5) of functions analytic in Um. For the function f ∈ X
the condition

lim
n→∞

(En(f,X))1/n = 0, (21)

is necessary and sufficient for the function f to be entire.

Proof:

Let f(z) =
∑∞
|k|=0 ak(f)Fk(z) for z ∈ Um and condition (21) holds. First we prove the sufficiency,

by using Lemma 2.2, we get

|ak(f)| ≤ En(f,X)

dk‖Fk(z)‖X
,

or

lim
|k|→∞

|ak(f)|
1

|k| ≤ lim
n→∞

(
K∗X(n+ 1)En(f,X)

dn+1
)1/n+1 = 0 for |k| = n+ 1,

in view of Lemma 2.1, f is entire.

For necessary part, we know that

En(f,X) ≤ R−nEn(fR, X) ≤ R−n‖fR‖X ,
or

0 ≤ lim
n→∞

(
En(f,X)K∗X(k)

dk
)1/n+1

≤ 1

R
lim
|k|→∞

(
K∗X(k)

dk
)1/|k| =

1

R
.

Since R > 1 is arbitrary, it gives

lim
n→∞

(En(f,X))
1

n+1 = 0.

This completes the proof. �
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Theorem 3.3.

Let f ∈ X and f(z) =
∑∞
|k|=0 ak(f)Fk(z) be an entire function of m-complex variables with a

generalized α-order of growth ρm(α, f), 0 < ρm(α, f) <∞, it is necessary and sufficient that

ρm(α, f) = 1 + lim sup
n→∞

α(n)

α(− 1
n

log
{
K∗X(n+1)En(f,X)

dn+1

} n

(n+1)

)
, (22)

where α(x) ∈ Ω and {
K∗X(n+ 1)

dn+1

}−1

= max
|k|=n+1

{
K∗X(k)

dk

}−1

.

Proof:

Theorem 3.2 prove that f is entire function. Using Lemma 2.2, we obtain

ρ′m(α, f) = lim sup
|k|→∞

α(|k|)
α( 1
|k| log |ak(f)|−1)

≤ lim sup
n→∞

α(n)

α(− 1
n

log
{
K∗X(n+1)En(f,X)

dn+1

}
)

n

(n+1)

= ρm(α, f)− 1.

(23)

In order to prove reverse inequality in (23), we consider

ρ′m(α, f) = lim sup
|k|→∞

α(|k|)
α( 1
|k| log |ak(f)|−1)

.

Then, for any ε > 0, there exists no(ε) ∈ N such that

|ak(f)| ≤
{

exp{|k|α−1{ α(|k|)
ρ′m(α, f) + ε

}}
}−1

, for |k| > no(ε).

Using (2), for sufficiently large no(ε) so that ‖Fk(z)‖X ≤ (1 + ε)|k| for |k| > no(ε). Then,

En(f,X) ≤ ‖
∞∑

|k|=n+1

ak(f)Fk(z)‖X

≤
∞∑

|k|=n+1

|ak(f)|‖Fk(z)‖X

≤
∞∑

|k|=n+1

{exp{|k|α−1{ α(|k|)
ρ′m(α, f) + ε

}}}−1(1 + ε)|k|

=
(1 + ε)(n+1)

{exp{(n+ 1)α−1{ α(n+1)
ρ′m(α,f)+ε

}}}
(1− 1

exp{α−1( α(n+1)
ρ′m(α,f)+ε

)}
)−1.

(24)
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Now we have

lim sup
n→∞

α(n)

α(− 1
n

log{K
∗
X(n+1)En(f,X)

d(n+1) }
n

n+1 )

≤ lim sup
n→∞

α(n)

α(log{(S1)
1

n+1 exp{S2}(1 + ε)−
1

n+1 (S3)
1

n+1})

= lim sup
n→∞

α(n)

α(log{(S1)
1

n+1 + S2 − 1
n+1

log(1 + ε) + 1
n+1

log(S3)})

= lim sup
n→∞

α(n)(ρ′m(α, f) + ε)

α(n+ 1)
= ρ′m(α, f),

where S1 = K∗X(n+1)
dn+1 , S2 = α−1{ α(n+1)

ρ′m(α,f)+ε
} and S3 = 1− 1

exp{α−1( α(n+1)

ρ′m(α,f)+ε
)} .

This completes the sufficiency part. To prove the necessity of the condition (22), we assume that
f ∈ X be an entire function of finite generalized order ρm(α, f) i.e.,

lim sup
|k|→∞

α(|k|)
α( 1
|k| log |ak(f)|−1)

= ρm(α, f)− 1.

Set

ρ′m(α, f) = lim sup
n→∞

α(n)

α(− 1
n

log
{
K∗X(n+1)En(f,X)

dn+1

} n

(n+1)

)
.

In this case the notations ρm(α, f) and ρ′m(α, f) are changed as compared with the proof of suffi-
ciency and we prove equality ρm(α, f)− 1 = ρ′m(α, f). Hence, the proof is complete. �

4. Conclusion

Vakarchuk and Zhir investigated the generalized α-logarithmic order in the spaces 1,2,4,5 men-
tioned above in finite domain. Ganti and Srivastava obtained coefficient characterizations of growth
parameters order and type of entire functions in terms of Lp-approximation errors (2 ≤ p ≤ ∞)
by using Faber polynomials over Jordan domains in two complex variables. Kumar improved the
results discussed by Srivastava and Ganti. In the present paper our results extends all results men-
tioned above in several complex variables using the concept of generalized order of slow growth.
When we discuss the dependent problems in C2 it leads to the study of growth parameters in
Cn, n ≥ 3. Therefore, our study is reasonable.
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