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Abstract 
 

Exact closed-form solutions for the mathematical model of unsteady two-fluid flow in a 

circular tube are presented. The pressure gradient is assumed to be oscillatory or 

exponentially increasing or decreasing in time. The instantaneous velocity profiles and 

flow rates depend on the size of the core fluid, the density ratio, the viscosity ratio, and a 

parameter (e.g. the Womersley number) quantifying time changes. Applications include 

blood flow in small vessels.  
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1. Introduction 
 

Viscous flow in a tube is fundamental in fluid mechanics. In some cases the fluid is not 

homogeneous but can be well-modeled by two different immiscible homogeneous fluids, 

i.e., a core fluid and a boundary fluid. Practical examples include lubricated walls in food 

processing, micro-fluidic super-hydrophobic liquid flow due to a layer of trapped gas, and 

fluids with particulate suspensions, especially blood flow in small vessels.  

 

The steady, two fluid layer channel flow, important in transport processes in chemical 

engineering, was solved by Bird et al. (2007). It was extended to starting flow by Wang 

(2017), exponentially increasing unsteady flow by Kapur and Shukla (1964), and 

oscillatory flow by Bhattacharyya (1968). The last two references considered the special 

case where the two fluid layers were of exactly the same thickness. 

 

  Available at 

http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 14, Issue 1 (June  2019),  pp. 586 - 601 

Applications and Applied 

Mathematics: 

An International Journal 

(AAM) 

mailto:cywang@mth.msu.edu
http://pvamu.edu/aam


AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 587 

 

   

The steady concentric two-fluid tube flow was first proposed by Vand (1948) for the flow 

of ink suspension in tubes. Hayes (1960) and Sharan and Popel (2001) successfully 

applied the two-fluid model to blood flow in small vessels. Notable extensions include 

the application to stenotic vessels (Shukla et al. 1980), non-Newtonian core fluid 

(Srivastava and Saxena 1994), and curved vessels (Wang and Bassingthwaighte 2003). 

The model also describes the laminar transport of oil with a lubricating envelope of water 

(Martinez-Palou et al. 2011). There seems to be very few unsteady two-fluid flow 

solutions. Bugliarello and Sevilla (1970) formulated the pulsatile (oscillatory) flow 

problem but did not give the solution or any results. The purpose of the present paper is to 

present the (only two) unsteady closed-form solutions of two-fluid tube flow. These exact 

solutions also serve as benchmarks for approximate methods, such as numerical, series, 

or perturbation results. The properties of these solutions are important not only to the 

afore-mentioned engineering applications but also to blood flow in small vessels. 

   

Modeling blood flow in the circulation primarily depends on the diameter of the blood 

vessel (relative to the size of the suspended red blood cells). It is generally accepted that 

for large blood vessels blood can be considered as a homogeneous fluid with a viscosity 

about 3-4 times that of water. If the vessel diameter is between 1-2 mm, blood could be 

modeled by a two-phase fluid where blood and plasma have separate dynamics (e.g., 

Chow 1975, Srivastava and Srivastava 1983). If the size of the blood vessel is less than 

1000 microns (1 mm) and down to 40 microns, the apparent viscosity decreases. This 

phenomenon, or Fahraeus-Lindqvist effect, can be explained by the steric hindrance of 

the red blood cells near the wall, where a less viscous, relatively cell-free plasma layer 

exists (Pries et al. 1996). For this range of vessel diameters, it is natural to use the 

two-fluid model to describe blood flow. Wang and Bassingthwaighte (2003) successfully 

curve-fitted the the two-fluid theory with the experimental data of Pries (1996) and 

Secomb (1995) for various hematocrit contents. It is found that nonlinear effects such as 

shear dependence, rouleaux formation, wall deformation, cell deformation etc are 

contained in the curve fit. For vessel diameters less than 10 microns, the apparent 

viscosity increases due to the resistance of individual (now comparable in size) red blood 

cells. Thus the present work shall be applicable to blood flow in vessels of 40-1000 

microns in diameter.           

 

2. Formulation 
 

First we formulate the generic unsteady axisymmetric two-fluid problem. Figure 1 shows 

a section of the long tube where region 1 is the core fluid and region 2 is the annular 

boundary fluid. The Navier-Stokes equation for parallel flow degenerates to 
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Here u' is axial velocity in the axial z' direction, t' is the time, p is the pressure,  is the 

density,   is the kinematic viscosity, and r' is the radial coordinate. The primes mean 

dimensional quantities and the subscripts indicate the region. An unsteady pressure 

gradient of magnitude 
0G  is applied. 
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Normalizing all lengths by the tube radius a, the time by 1

2 /a , the velocity by 

)/( 110

2 Ga  and dropping primes, equations (1) and (2) reduce to 
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Here,   (<1) is the normalized core radius,  

 

21

2

21 /,/   ,                  (6) 

 

are density and kinematic viscosity ratios. The boundary conditions are that the velocity 

is bounded on the axis, no slip on the wall and velocities and shear stresses match on the 

interface at r : 

 

21 uu  ,                      (7) 

rr uu 21

2  .                     (8) 

 

We shall consider the two cases which yield closed-form solutions, that when the pressure 

gradient is oscillatory, and when the pressure gradient is exponential in time. 

 

3.  Oscillatory flow 
 
For oscillatory flow, let  
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where   is the dimensional frequency, 1i , s is the Womersley number, and only 

the real part of any physical term has significance. Let 
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Equations (4) and (5) reduce to 
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The solutions satisfying boundedness on the axis and zero on the wall is 
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Here, 2/)1(  ik  , 0J  and 0Y are Bessel functions of the first and second kind, and 

21, CC  are constants to be determined by equations (7,8). We find 
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For a single fluid, one can set 1  or 1  . The solution degenerates to 
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This is the solution of the oscillatory single-fluid flow in a circular tube found by Sexl 

(1930).  

 

The steady-state solution of the two-fluid flow can be obtained by letting s = 0 and 

solving equations (12) and (13). We find the velocity profile is composed of two different 

paraboloids, 
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This steady-state solution agrees with all previous reports. Although our equations (14) 

and (15) do not directly accept s = 0, the steady-state solution can be recovered by taking 

the analytic limit 0s , or evaluating numerically by letting s to be a small number, 
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such as 0001.0s . The steady-state flow rate is  
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Note that for 1 , or for 2 =1, the two-fluid steady-state solution reduces to the 

well-known single-fluid Poiseuille solution. 

 

Figure 2 shows some typical oscillatory velocity profiles. The velocity is composed of 

two parts, discontinuous in slope at the interface, and its magnitude is oscillatory. It is 

seen that at low Womersley number s, the velocity profile is similar to the steady-state 

case, with maximum on the axis of the tube. However, for s large, the maximum velocity 

moved closer to the walls. This phenomenon, called the "annular effect", also exists for 

single-fluid oscillatory flows (see e.g., Schlichting and Gersten 2000).   

 

The instantaneous flow rate is 
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The amplitude A and the phase lag P of the flow rate are 
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Figure 3 shows the amplitude decays from the steady state value to zero as frequency is 

increased. The effect of increased core diameter   is to decrease the amplitude, while 

increased viscosity ratio   increases the amplitude. Figure 4 shows the phase of the 

oscillatory flow rate lags behind the oscillatory pressure. The phase lag is small for low 

frequencies, but increases to 2/  for large frequencies. Also shown are the effects of 

  and  .  

 

Also of interest is the shear stress on the wall. The shear stress, normalized by 0aG , is 
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The magnitude of the shear stress  
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is plotted in Figure 5. We see that an increase in   or a decrease in   increases the 
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shear stress. Increased shear stress retards accumulation of deposits, such as 

atherosclerosis in vascular vessels. 

 

4.  Exponential Acceleration or Deceleration 

 
Another closed-form solution is possible when the unsteady pressure gradient is 

exponentially growing or decaying in time. Let b > 0 be a measure of the rate of increase 

or decrease  
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Here, the top sign is for increasing pressure gradient and the bottom sign is for decreasing 

pressure gradient. Let 
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Equations (4) and (5) reduce to  
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The solution for the case of increasing pressure gradient is 
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Here, 0I  and 0K  are modified Bessel functions. The matching conditions, then, 

determine the constants, i.e., 
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Figure 6 shows the velocity profiles, here normalized by the maximum velocity which 

occurs on the axis. When the acceleration parameter   is zero, the velocity profile is 
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that of the steady-state solution. As   increases, the velocity profile becomes more 

blunted. For different times, the velocity profiles are similar, i.e., as time increases the 

magnitudes increase exponentially. The instantaneous flow rate is 
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In the case of a single fluid with exponentially increasing pressure gradient, our solution 

reduces to 
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This exact solution agrees with that of Sanyal (1956).     

 

For the exponentially decreasing pressure gradient, we find 
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In the case of a single fluid, put 1 or 1  , and the solution becomes 
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Equation (37) reduces to the paraboloidal Poiseuille velocity when  =0. However, it 

fails when   is increased to 2.4048, or the first zero of 0J . This is because the velocity 

can no longer be described by the same exponential decay as the pressure gradient. The 

solution should be replaced by 
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Note that there is a homogeneous solution with arbitrary constant 1c which depends on 

the initial conditions, and the existence of a slower decay tte
2  term. We shall limit 

equation (37) to 0 < < 2.4048, since for large   values the pressure decrease is too 

precipitous to be practical. For example, experimental measurements after the occlusion 

of 100 micron microvessels show the pressure decreased with two slowly decaying 

exponentials of  = 0.028 and 0.079, (Maarek et al. 1990).    

 

For two-fluid flow, the exact solution equations (26), (34) and (35) is also limited in the 

deceleration rate. The upper limit range for the exponent is found from the zero of the 

denominator of the coefficient 
1D  given in Table 1.  

 

 Table 1. Upper limit for deceleration exponent   for the case 1  

 \  1 1.5 2 2.5 3 

0.8 2.4048 1.9305 1.5615 1.2953 1.1011 

0.85 2.4048 2.0108 1.6802 1.4159 1.2148 

0.9 2.4048 2.1287 1.8450 1.5966 1.3930 

0.95 2.4048 2.2586 2.0800 1.8923 1.7133 

1 2.4048 2.4048 2.4048 2.4048 2.4048 

  

The decelerating velocity profiles for the admissible   ranges are similar to the 

steady-state profiles and are not presented here. The instantaneous flow rate is 
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5. Discussion 
 

Axisymmetric two-fluid flow in a tube is also called core-annular flow, important in the 

transport of viscous liquids such as oil. The steady core-annular flow has been studied by 

many authors, both theoretically (for stability) and experimentally. The existence of a 

stable core-annular flow depends on the inner diameter of the tube, the diameter of the 

core fluid, the densities, viscosities and velocities of the two fluids, the material and 

smoothness of the wall, the orientation with respect to gravity, and whether surfactants 

are added. See the review of Ghosh et al. (2009) for the details.  
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We are interested in the two-fluid tube flow and its applications to blood flow. As 

mentioned before, experimental blood flow properties such as velocity and resistance 

(including the Fahraeus-Lindqvist effect) in the microvasculature can be predicted by the 

two-fluid model. The parameter ranges for which the two-fluid model is applicable are as 

follows: the (inner) vessel diameter between 40-1000 microns, the hematocrit between 

15% to 60%, the ratio of the core diameter to the vessel diameter between 0.82 to 1, and 

the ratio of core viscosity to plasma viscosity between 1.5 to 5. See Wang and 

Bassingthwaighte (2003) and Wang (2008) for the justification of using the two-fluid 

model in explaining the experimental results.  

 

The pressure gradient of our analysis is assumed to be either sinusoidal or exponential in 

time. In practice the pressure gradient may be pulsatile, which can be decomposed into a 

steady part and an oscillatory part. The oscillatory part may be further Fourier 

decomposed to a sum of single harmonics. For example, we found a typical pressure 

measurement in a venule (e.g., Gaehtgens 1970) can be very accurately represented by a 

constant and several sinusoidal harmonics, each with its own amplitude and phase.  

   

Aside from geometric factors, oscillatory flow is governed by the Womersley number s in 

equation (10). For normal blood flow in arterioles of 100 micron diameter, and a resting 

frequency of 60 beats per minute, we find the (dominant harmonic) s is about 0.1. The 

value of s is about 1 for birds with a heart beat of 900 beats per minute. The s value for 

the higher harmonics may be several times larger.    

 

The exponentially growing or exponentially decaying solutions model increased or 

decreased pressure gradient as in opening or closing a valve or a sphincter. These results 

are quite different from those of the oscillatory flow. These exponential solutions can also 

be superposed. For example, it was found that micro-vascular pressure measurements 

decays after an arterial occlusion. This pressure decay can be described by the sum of two 

exponentials (Pellett et al. 1999). Then using our analysis, the velocity, flow and stress 

properties (which are difficult to measure) can be predicted.  

 

In order to maintain the interface between the two fluids, gravity effects must not be 

important, or the density ratio   is close to one. This is indeed true for suspensions such 

as ink or blood. To illustrate, it takes much effort by ultracentrifuge to separate plasma 

from whole blood. Thus in normal circumstances the interface is maintained.  

 

Our exact solutions may be limited by stability. Using a perturbation on the exact 

solutions found in this paper, the resulting Orr-Sommerfeld equation can be analyzed 

using Floquet theory (for oscillatory flow) and/or numerical integration. This has not 

been done due to the limited aims of the present paper. However, some conclusions about 

stability can be made from existing reports as follows.  

 

Oscillatory tube flow is governed by an oscillatory Reynolds number defined as 
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2
Re

U
 ,                   (41) 

 

where U  is the maximum oscillatory velocity. Typical experimental observations in a 

cat venule of 78 micron diameter yield a maximum velocity about 10.67  0.33 cm/sec at 

a frequency of 2.5 beats/sec (Intaglietta et al. 1971). Using these values we find Re=0.37 

from Equation (41). The steady through-flow Reynolds number is also small, about 3.34.  

 

Thomas et al. (2011) used linear stability theory on single-fluid oscillatory tube flow. 

They found the critical oscillatory Reynolds number to be 600-700, which is two or three 

times the experimentally measured values. The addition of a steady through flow 

increased stability. For two-fluid tube flow, there are added stability concerns at the 

interface due to differences in density, velocity and shear, aside from surface tension. 

Using linear analysis, Preziosi et al. (1989) predicted the two-fluid steady tube flow is 

stable for Reynolds numbers below about 100. At small Reynolds numbers the flow may 

be unstable to long waves due to surface tension. However, surface tension is absent for 

our two-fluid blood flow model, since the interface is due to steric hindrance instead of a 

true immiscible interface. Since both oscillatory and through-flow Reynolds numbers are 

of order unity (even for larger micro-vessels), we can safely conclude oscillatory (and 

pulsatile) two-fluid blood flow in micro-vessels are stable.     

 

6. Conclusions 
 

Exact closed-form solutions of the Navier-Stokes equations are found for the unsteady 

two-fluid motion in a tube.  

 

An important parameter governing oscillatory flow is the Womersley number s. At small 

s the velocity profile is composed of two paraboloids, with a kink at the interface. At 

large s the velocity profile exhibits "annular effect", or its maximum moves toward the 

wall. For a given oscillatory pressure, the flow rate decreases with larger s, larger core 

radius fraction, and smaller viscosity ratio. 

 

The velocity profile for exponentially accelerating flow is composed of two paraboloids 

at low acceleration, but becomes flattened when the acceleration is high. On the other 

hand, non-uniqueness occurs for exponentially decelerating flow, when the deceleration 

exponent has the same value as the zero of the Bessel function.  

 

Two-fluid flow in a tube is an important model for blood flow in micro-vessels of 

40-1000 microns, as illustrated by the many examples. Our exact solutions may serve as a 

base for future more-refined models.     
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Figure 1. A segment of the tube showing the two regions.  
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Figure 2. Velocity profiles for 1 , 2 , 9.0 . (a) s=1 (b) s=5  
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Figure 3. Flow rate magnitude A as a function of s for 1  (a) 2  (b) 9.0    
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Figure 4. Flow rate phase lag P as a function of s for 1  (a) 2  (b) 9.0   
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Figure 5. Shear stress magnitude M as a function of s for 1  (a) 2  (b) 9.0    

 

 
 

Figure 6.  Normalized velocity profiles for exponentially accelerating flow, 1 , 

2 , 9.0   


