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Abstract 

 
One-dimensional advection-dispersion equation (ADE) is studied along unsteady longitudinal 

flow through a semi-infinite heterogeneous medium. Adsorption coefficient is considered 

temporally and spatially–dependent function i.e., expressed in degenerate form. The 

dispersion parameter is considered as inversely proportional to adsorption coefficient. The 

input source is of pulse type. The Laplace Transformation Technique (LTT) is used to obtain 

the analytical solution by introducing certain new independent variables through separate 

transformations. The effects of adsorption, heterogeneity and unsteadiness are investigated 

and discussed with the help of various graphs. 
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1. Introduction 

 
One fundamental assumption of the theory which refers to the homogeneity of the adsorbent 

surface is not justified in many cases. In case of inhomogeneous/heterogeneous, the 

adsorption points are distributed over different levels. Such studies are of great importance in 

the remedial processes of groundwater, soil, industrial and blood where substances are in 

mixture form as well as in the environmental protection processes Dabrowski (2001). Most of 

natural environments are heterogeneous. On the basis of field evidence, experiment studies 
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and statistical approach, many authors have suggested that the porosity of a porous medium 

varies with position and time due to the heterogeneity. Hence velocity of the flow through the 

medium also depends upon position and time variable. An adsorption is a process in which 

solute concentration in the liquid phase is attracted by the solid boundaries of the pores and is 

deposited on them (a process in which molecules accumulate in the interfacial layer). A 

theory of the monomolecular adsorption on energetically homogeneous surfaces is first given 

by Langmuir and latter tried to extend theoretical approach to account for heterogeneity of 

solid adsorbent and the multilayer character of adsorption. The fundamental practical 

applications of adsorption and related areas are separation and purification of liquid and gas 

mixtures, recovery of chemicals from industrial and vent gases. 

 

The longitudinal dispersion coefficient is linearly and squarely proportional to the fluid 

velocity have been considered in previous decades and obtained analytical solutions for 

dispersion problems in a porous medium Ogata and Banks (1961), Al-Niami and Rushton 

(1977). Most of such type of works has been compiled by van Genuchten, and Alves (1982). 

We have studied some important hydro-dynamic dispersion problems based on theories of 

Scheidegger (1957), Ebach and White (1958), Matheron and de Marsily (1980) and solved 

some problems analytically Jaiswal et al. (2009), Kumar et al. (2010) Jaiswal et al. (2011). 

 

In the works of Yates (1990), Zoppou and Knight (1997), the dispersion coefficient was also 

considered as spatially dependent. But to go on increasing as x  increases along the semi-

infinite domain, hence its limiting value was assumed. The solution may be used more 

effectively than previous ones to construct the mass transport function for a new type of 

transient infinite element Zhao and Valliappan (1994), Zhao (2009) and other numerical 

solutions in a semi-infinite domain van Genuchten et al. (2013a,b). Analytical solution for a 

physical aspect is of fundamental importance to understanding the role of all the parameters 

in the physical phenomenon. Jaiswal et al. (2012, 2013, 2014) and Yadav et al. (2010, 2012) 

obtained an analytical solutions  with the help of Laplace transform technique (LTT) in finite 

and semi-infinite domain for dispersion problems with different boundary conditions related 

to physical and real scenario. 

 

Singh and Das (2016) presented a paper with mathematical modeling of solute transport in 

porous media to predict the contaminant distribution pattern in groundwater by using Laplace 

transform technique. They used the concept of dispersion related seepage velocity, together 

with the concept of Reynolds number. Wang and Shao (2016) proposed a novel solution to 

the convection–dispersion equation (CDE) for predicting profiles of solute concentrations and 

estimating transport parameters. They adapted solution from polynomial and exponential 

boundary-layer (BL) solutions based on BL theory. The accuracy of the new BL solution was 

dependent on the number of polynomial terms and the properties of the soil. Alam and Tunc 

(2016), have been used the  )(exp  - expansion method to transformed into nonlinear 

ordinary differential equations and construct to many families of exact solutions of nonlinear 

evolution equations (NLEEs) via the nonlinear diffusive predator–prey system and the 

Bogoyavlenskii equations.  

 

In the present paper, the adsorption coefficient is considered directly proportional to the 

dispersion parameter. To introduction of new independent space and time variables the ADE 

with variable coefficients is reduced into constant coefficients. The two coefficients 

dispersion and adsorption of the ADE are considered in degenerate form i.e., as functions of 

independent (space and time) variables while the flow velocity is considered temporally 
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dependent. An analytical solution is obtained for a one-dimensional advection-dispersion 

equation (ADE) by using LTT. 

 

2.  Mathematical Formulations 

 
A one dimensional ADE derived on the principle of conservation of mass and Fick’s law of 

diffusion in general form may be written as, 

 

1
( , ) ( , )
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p
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D x t u x t C

t n t x x

    
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    
 ,                                                                 (1) 

 

where C  is the solute concentration at position x  at time t  in liquid phase and F is the 

concentration in the solid phase at time t , pn  is porosity. ( , )D x t  and ( , )u x t are dispersion 

coefficient and velocity of the flow, respectively. In equation (1), D  and u  may be constants 

or functions of independent variables. This equation is solved in which one or both the 

coefficients either functions of independent variables or both constant. Lapidus and 

Amundson (1952) considered two cases, namely 
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nF k C k  ,                                                                                                                   (2) 
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Equilibrium and non-equilibrium relation between the concentrations in the two phases, 

where 1k and 2k  are constants of the medium. The relations is linear if  1n   and is non-

linear if 1n  . The former relationship is adopted in the present paper. This assumption is 

generally valid when the adsorption process is fast in relation to the ground-water velocity 

Cherry et al. (1984). Using equation (2) in equation (1) for 1n  we may get, 
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The dispersion and adsorption parameter is considered inversely proportional to each other. It 

means when adsorption will be higher then dispersion processes will be slow and vice-versa. 

It is shown in real and physical situations.  Thus we may write, 

 

   
1

( , )
( , )

D x t
R x t

  or  
1

( , )
( , )

R x t
D x t

  ,                                                                           (6) 

 

As a consequence of the heterogeneity of the medium, the dispersion coefficient transporting 

the solute particles spread out is considered spatially dependent. The dispersion is also 

considered temporally dependent. The expression for dispersion is written in degenerate form 

as,  

 

 0( , ) ( )(1 )D x t D f mt ax  ,                                                                                                 
(7) 

 

where m  may be termed as an unsteady parameter of dimension inverse of the dimension of 

t . While choosing an expression for ( )f mt , it is ensured that ( ) 1f mt   for 0m   and 0t  .  

 

The former case represents the steady flow. The latter case represents the velocity at the 

initial stage. Therefore the adsorption parameter and velocity may be written as, 
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then the equation (1) becomes,  
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Introduce a new independent variable X  Jaiswal et al. (2009), using a transformation which 

is 

 

2
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As ax  and mt  are non-dimensional terms, so the constants 0u  and
 0D  in equation (9) may be 

referred to as uniform velocity of dimension 1LT 

 and the initial dispersion coefficient of 

dimension 2 1L T  , respectively. Using equation (10), equation (9) may be written as 
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Again using a transformation Crank (1975), 
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R
  .                                                (12) 

 

An expression of ( )f mt  is chosen such that for 0t  , we get 0T  , so that the nature of 

initial condition does not change. The advection-diffusion equation (11) becomes, 
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Now with the help of other independent variables introduced through the transformation, 

 

lnZ aX  ,                                        (14) 

 

the variable coefficients of the advection-diffusion equation are reduced to constant 

coefficients, 
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3. Analytical Solutions 

 
The medium is considered to be of semi-infinite and heterogeneous. For this instance, 

seepage velocity depends upon time. In a non-porous medium, such as air or a surface water 

body, velocity is rarely uniform. Since in porous domain like as soil, blood, aquifers and 

groundwater, the velocity is changed with time and position. 

 

3.1. Continuous pulse type point source condition  

 
It is assumed that initially the medium is solute free. The input point source which is of pulse 

type be introduced at the origin of the medium. It is assumed 0C  till 0t t  i.e., 0t  is the time 

when the point source is eliminated and beyond that it is assumed zero. A flux type 

homogeneous condition is assumed at end of the medium. Thus initial and boundary 

conditions are as follows, 
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The initial and boundary conditions equations (16-18) may be written in the ( , )Z T  domain 

as, 

 

( , ) 0,C Z T   ( 0T  , 0Z  ),                                                                                        (19) 
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Applying Laplace transformation on equation and using back transformations equations (14), 

(12) and (10), the analytical solution may be written as using table of van Genutchen and 

Alves (1982),  
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3.2. Varying pulse type input point source condition 

 
The input point source condition defined by equation (17) is of uniform nature. But in real 

cases, due to increasing human and other responsible activities such as in garbage disposal 

site, pesticides in the agriculture field, the infiltration of pollutants from the earth surface into 

an aquifer may increase. Since all human activity is closely connected with the natural 

environment. This more realistic scenario may be defined by a condition of mixed type of 

non-homogeneous nature which is 
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Now to proceed further, here expression for  f mt  will be chosen. Let the expression be of 

exponentially decreasing nature.  Let   exp( )f mt mt  . From equation (12), we get the 

expression for new time variable as, 
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From the above expression of T , we may write  f mt  in terms of T  as follows, 
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So condition (23) becomes in terms of ( , )Z T  by using previous transformations equations 

(12) and (14),  
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where the series 2( )o m  from the binomial expansion of right side of equation (25) is 

neglected as m is chosen much smaller, i.e. less than 1.0. Applying Laplace transformation 

on equation and using back transformations equations (14), (12) and (10), the analytical 

solution may be written as using table of van Genutchen and Alves (1982): 
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4.  Results and Discussion 

 
A new position variable X  equation (10) introduced through a transformation which is like 

the transformation Z x ut   Bear (1972) i.e., as a moving coordinate which eliminates the 

advection term from the ADE with constant coefficient. The effects of heterogeneity and 

unsteadiness are studied and illustrated. More expressions for ( )f mt  may be chosen. Thus an 

analytical solution of ADE with variable coefficients describing solute transport from the 

perspective Schiedegger’s (1957) theory has been obtained by using the Laplace Integral 

Transform Technique (LITT). 

 

The solute concentration distribution are evaluated from the analytical solutions (22a,b) for 

continuous pulse type input point source and (27a,b) for varying pulse type input point source 

in the context of contaminants dispersion along the flow in a finite domain 0 (km) 10x   of 

semi-infinite medium. The input data are considered as 0 1.0C  , 0 0.58 (km / month)u  , 
2

0 0.93 (km / month)D   in the presence of the source (month) 1t  , 3  and 5  and in the 

absence of the source (month) 7t  , 9  and 11. In addition to these, the heterogeneous 

parameter 10.1 (km)a  , unsteady parameter 10.1(month)m   and adsorption 

coefficient 0 1.25R   have been taken for both cases (3.1 and 3.2). In all figures, horizontal 

axis shows position while vertical axis represents the concentration 0( / )C C . 

  

Figures 1 and 2 are drawn for continuous pulse type input point source. The three bold solid 

curves in Figures 1 and 2, represents the distribution of solute concentration values in the 

presence of the source and absence of the source at different time (month)t respectively, 

where the elimination of the source of the pollution is 0(month) 6.0t  . It is observed that, in 

the presence of the source, solute concentration values are increase with increasing time at 
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particular position and after elimination of the source of the pollution the solute concentration 

values are decreases with increasing time at particular position.  

 

Figures 3 and 4 illustrate the concentration profile for varying pulse type input point source. 

The three bold solid curves in Figures 3 and 4 represents the concentration values at various 

time (month)t . The concentration levels at the source boundary are higher for higher time in 

Figure 3. The concentration decreases with position for all time in Figure 4. On other hand in 

the absence of the source of pollution 0( )t t  the concentration levels is lower for the higher 

adsorption.  

 

The parameters ,    and  a m R  play an important role on concentration profile in the domain. 

In all figures, comparisons of three parameters i.e., heterogeneous parameter a  is shown by 

bold dashed line, adsorption parameter 0R  is shown by thin dashed line and unsteady 

parameter m  is shown by thin solid line. Distribution of concentration for 10.2 (meter)a  , 
10.25(day)m  and 0 1.45R   at a particular time (month) 3t   are shown in the Figures 1 

and 3, i.e., in the presence of source at (month) 3.0t   and in Figures 2 and 4, i.e., in the 

absence of source concentration at time (month) 9t  . It is observed that from all figures, the 

distribution of concentration at particular time with heterogeneous parameter a increases and 

decreases with adsorption and unsteady parameters. These show that the physical phenomena 

of present problem and it are found in real scenario. Distribution of solute concentration with 

heterogeneity, unsteadiness and adsorption parameters are discussed in this section with 

suitable figures. This study different from other literatures since in several papers discussed 

only dispersion and advection coefficients where as in this paper all parameters are discussed 

i.e., unsteadiness, heterogeneity including adsorption coefficient which reflect the most 

physical problems. 

 

5.   Conclusion 

 
An analytical solution of one-dimensional advection-dispersion equation is obtained along 

unsteady longitudinal flow through a semi-infinite heterogeneous medium. Adsorption 

coefficient is considered temporally and spatially–dependent function and inversely 

proportional to the dispersion parameter. The Laplace Transformation Technique (LTT) is 

used to obtain the analytical solution by introducing certain new independent variables 

through separate transformations for input source which is of pulse type. The changes in 

distribution of concentration due to adsorption, dispersion and unsteadiness by choosing 

appropriate values of their respective parameters are studied in present paper. From this 

study, it is found that when adsorption coefficient is higher the dispersion coefficient is lower 

and vise-versa. The analytical solutions of ADE validate the numerical solutions and have 

many applications in surface water, groundwater, environment, industries etc., pollution 

along with heterogeneity and unsteadiness with effective adsorption coefficient. 
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Figure 1.  Distribution of solute in the presence of source 

  0( )t t  at different time for equation (22a) 
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Figure 2.  Distribution of solute in the absence of source  

  0( )t t at different time for equation (22b) 

 

t 5 month

t 3 month

t 1 month

R0 1.45

a 0.2 km 1

m 0.25 month 1

2 4 6 8 10

0.2

0.4

0.6

0.8

 
 

Figure 3.  Distribution of solute in the presence of source  

  0( )t t  at different time for equation (27a) 
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Figure 4.  Distribution of solute in the absence of source  

  0( )t t at different time for equation (27b) 


