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Abstract  
 

In this paper, we focused on general nonlinear programming (NLP) problems having m nonlinear 

(or linear) algebraic inequality (or equality or mixed) constraints with a nonlinear (or linear) 

algebraic objective function in n variables. We proposed a new two-phase-successive linearization 

approach for solving NLP problems. Aim of this proposed approach is to find a solution of the 

NLP problem, based on optimal solution of linear programming (LP) problems, satisfying the 

nonlinear constraints oversensitively. This approach leads to novel methods. Numerical examples 

are given to illustrate the approach.  
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1. Introduction 
 

Optimization occurs in many fields. Constructing a mathematical model for real life problems is 

important for optimizers to find optimal strategies effectively. Optimization problems can be 

classified according to the nature of the objective function and constraints. An optimization 

problem can be defined as min (or max) of a single (or multi) objective function, subject to (or not 

to) single (or multi) nonlinear (or linear) inequality (or equality or mixed) constraints. If all 

objective function(s) and constraint(s) are linear, then the problem is known LP problem. NLP 

problems are an extension of LP, i.e. the objective function and/or constraint(s) are nonlinear, that 
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is called general NLP problems. LP or NLP problems optimize an objective function subject to 

finite number of constraints, considering usually non-negativity restrictions of variables. There is 

no effective method for solving the general NLP problems like simplex method in LP. When the 

number of variables or constraints increases, solving NLP problems numerically needs huge 

computational efforts by using special optimization algorithms in Cornuejols and Tutuncu (2006).  

 

Since 1951, there has been great progress for solving NLP problems. Constrained optimization 

techniques can be classified into direct and indirect methods. In the direct methods, the constraints 

are handled explicitly. However, translating of the constrained problem to unconstrained one by 

making change of variables, i.e. inducing sub-problems, can be considered as indirect methods. 

Hestenes (1969) proposed augmented Lagrangian methods for solving equality constrained 

problems.  This approach was extended in Rockafellar (1974) to a constrained optimization 

problem with both equality and inequality constraints. Sannomiya et al. (1977) proposed an 

effective method even if there is no feasible solution satisfying the approximate linear constraints. 

 

As a direct method, random search methods are very simple to program, and reliable in finding a 

nearly optimal solution. Another direct method, solving NLP problems approximately, is known 

Sequential Linear Programming (SLP). This method solves a series of LP problems generated by 

using first order Taylor series expansions of objective functions and constraints. As a direct 

method, Sequential Quadratic Programming (SQP) is an extension of optimization version of 

Newton’s method, and based on derivation of nonlinear equations to Lagrangian. There are many 

different SQP methods described in the literature. Wilson proposed the first SQP method in his 

PhD thesis in 1963. SQP methods can be taken into account as a powerful and effective class for 

a wide range of optimization problems. Although it is noted that the feasible points are not required 

at any stage of the process as an advantage of SQP, Bonnans et al. (1992) developed a technique 

as a version of SQP that always remains feasible. An overview of SQP can be found in Fletcher 

(1987), Rockafellar (1974) and also Boggs and Tolle (1995), Nocedal and Wright (2006) and 

Fletcher (2010) can be referred. Gill and Wong (2012) reviewed some of the most prominent 

developments in SQP methods, and discussed the relationship of SQP methods to other popular 

methods including augmented Lagrangian methods and interior methods. An improved SQP 

algorithm with arbitrary initial iteration point for solving a class of general NLP problems with 

equality and inequality constraints is proposed in Guo et al. (2014).  

 

In this paper, a new two-phase-successive linearization approach for solving general NLP 

problems having m nonlinear (or linear) algebraic inequality (or equality or mixed) constraints 

with nonlinear (or linear) objective function in n variables ( m n ) is presented. 

 

This paper is organized as follows: Section 2 presents briefly required information used in this 

study. In Section 3, the proposed approach is handled. Section 4 and Section 5 consist of numerical 

examples and conclusion, respectively.  

 

2. Preliminaries  

 
In this section, required information is presented.  

 

Definition 2.1. (Sivri et al. (2018)) 
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A general constrained NLP problem can be defined as follows:    

 

 

min ( )

s.t.

f x

 (1) 

 
 

( ) , 1,2,...,

, 1,..., ,

i i

j j

g x b i p

g x b j p m

 

  
 

where  1,...,
n

nx x x R   is a vector,  : 1,...,n

ig R R i p  ,  : 1,...,n

jg R R j p m    and 

m n . If the objective function and constraints are linear in (1), then it is known as LP problem.  

 

Definition 2.2. (Sivri et al. (2018))  

 

Any point x satisfying all the constraints of (1) is called a feasible point. A set of all the feasible 

points is called a feasible set, i.e.     : , 1,..., ; , 1,...,n

i i j jX x R g x b i p g x b j p m       . 

 

Definition 2.3.  

 

An optimal solution 
*x  to a LP problem is a feasible solution with the smallest objective function 

value for a minimization problem.  

 

Theorem 2.1. (Chong and Zak (2013))   

 

If : nf R R  is differentiable, then the function f  is defined by  
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which is called the gradient of f . If f  is differentiable, then we say that f is twice 

differentiable. We write the derivatives of f  as   
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The matrix ( )H x   is called Hessian matrix of f  at x . Leading principle minors of ( )H x  are as 

follows:     
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Theorem 2.2. (Chong and Zak (2013)).    

 

( )H x  is Hessian matrix of function f  and ( 1,..., )l l n   are the leading principle minors of 

( )H x .  

 ( )H x  is positive definite at x  iff all leading principle minors are positive, i.e. 

 0 1,...,l l n   ,  

 ( )H x  is negative definite at x  iff 1 0    and remaining  2,...,l l n   alternate in sign,  

 ( )H x  is indefinite if it is neither positive definite nor negative definite.  

 

Definition 2.4.  

 

A point x  in the feasible set X  is said to be an interior point if X contains some neighborhood of 

x . 

 

Theorem 2.3.  

 

Let 2f C  be defined on a region in which *x  is an interior point. If  

1.   * 0f x   and 

2. ( )H x  is positive definite at *x , i.e.  * 0H x  , 

then, *x  is called a strict local minimizer of f .  *x  is called a strict local maximizer of f  while 

satisfying the following conditions:   

1.  * 0f x   and 

2. ( )H x  is negative definite at *x , i.e.  * 0H x  . 

 

Definition 2.5.  

 

After converting NLP problem to LP problem, the obtained solution is called a linearization point. 

 

Definition 2.6.  

 

If the following norm is  
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2 2

1 1 1

1 1 ... 0 ,k k k k k k

n nx x x x x x          

 

where k  is number of iterations, the vector  1,..., nx x x  found from the last iteration is the root 

of the function  g x  that satisfies  g x   with a given tolerance 0  .  

 

3. Proposed approach  
 

A new two-phase-successive linearization approach is presented for solving general NLP problems 

having m  nonlinear (or linear) algebraic inequality (or equality or mixed) constraints with 

nonlinear (or linear) objective function in n variables ( m n ).  

 

First phase: 

 

Step 1:  

 

Convert inequality constraints in (1) to equalities by adding new variables and obtain new equality 

constraints as follows:    

 

  1,..., ,..., 0, 1,..., .j n n m p jg x x x b j p m       (2) 

 

Step 2:  

 

Arrange the objective function as 1 1( ,..., , ) ( ,..., )n m p n m pO x x z z f x x      and construct the 

following nonlinear system:    

 

 
 

1

1

( ,..., , ) 0

,..., ,..., 0, 1,..., .

n m p

j n n m p j

O x x z

g x x x b j p m

 

 



   
 (3) 

 

Step 3:  

 

Choose initial arbitrary points satisfying the equations of (3) individually. 

 

Step 4:  

 

Linearize each equation in (3) by expanding Taylor series at the point chosen in First Phase  

Step 3 and obtain the following linear system:    

 

 
 

1

1

( ,..., , ) 0

,..., ,..., 0, 1,..., ,

L n m p

jL n n m p j

O x x z

g x x x b j p m

 

 



   
 (4) 

 

where the subscript L  shows linearization.  
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Step 5:  

 

By virtue of the objective function minimized in (1), construct the following LP problem:    

 

 
 1min ,...,

s.t.

n m pz x x    (5) 

  1,..., ,..., 0, 1,..., ,jL n n m p jg x x x b j p m       

 

where    1 1,..., ,...,n m p L n m pz x x z O x x      and solve the LP problem (5).  

 

Step 6:  

 

Analyze the solution obtained from the LP problem (5) as follows:   

o If (5) has a feasible solution  1,..., n m px x  
% %  and its objective value is z%, then 

linearize each equation in (3) by expanding Taylor series at a linearization point 

consisting of the solution and objective value of (5), i.e.  1,..., ,n m px x z 
% % % .  

o Else, go to First Phase Step 3.  

 

Step 7:  

 

By virtue of the objective function minimized in (1), construct the following LP problem:    

 

 
 1min ,...,

s.t.

n m pz x x  
 (6) 

 
 1,..., ,..., 0, 1,...,

, 1,..., ,

jL n n m p j

j j j j

g x x x b j p m

x x u v j n m p

 

   

   

     %
 

 

where ,j ju v  are nonnegative balancing variables defined as 0 1ju    and 0 1jv   . Solve the 

LP problem (6).  

 

Step 8:  

 

Analyze the solution obtained from (6) as follows:   

o If (6) has a feasible solution  1,..., n m px x    and its objective value is z , then check 

the following condition:    

 If  1,..., n m px x    and  1,..., n m px x  
% %  overlap, then take 

 1,..., n m px x  
% %  and go to Second Phase Step 3.  
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 Else, assign  1,..., ,n m px x z   to  1,..., ,n m px x z 
% % % , respectively. 

Linearize each equation in (3) by expanding Taylor series at the new 

linearization point consisting of the solution and objective value of 

(6), i.e.  1,..., ,n m px x z 
% % %  and go to First Phase Step 7. 

o If (6) has no feasible solution, then the solution is unbounded or infeasible. 

Therefore, take into account last  1,..., n m px x  
% %  and go to Second Phase Step 3. 

 

Second phase:  

  

Step 1:  

 

Construct Hessian matrix of the objective function f .  

 

Step 2:  

 

Determine the leading principal minors of Hessian matrix as  1,...,l l n   to optimize the 

objective function in (1).  

 

Step 3: 

 

By means of the  1,..., n m px x  
% %  solution obtained from First Phase Step 8, generate the following 

new variables:    

 

 , 1,..., ,j j j jx x h t j n m p   
     %  (7) 

 

where jh   and jt   are new nonnegative balancing variables defined as 0 1jh    and 0 1jt   . 

 

Step 4:  

 

Substituting the new variables  1,..., n m px x    generated in (7) to the constraints of (2) and 

considering the leading principal minors, construct the following new nonlinear system:    

 

 
 1,..., ,..., 0, 1,...,

0, 1,..., .

j n n m p j

l

g x x x b j p m

l n

     

  
 (8) 

 

Step 5:  

 

Linearize each equation in (8) by expanding Maclaurin series and construct the following linear 

system:   
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, 0, 1,...,

, 0, 1,..., ; 1,..., .

jL j j j

lL j j

g h t b j p m

h t l n j n m p

 

 

   

     
 (9) 

 

Step 6:  

 

By adding new variables 

 

 , 1,..., 2s sh t s n m p n m p       and , ( 2 1,..., 2 2 )r rh t r n m p n m p       

 

to (9), reconstruct the following LP problem:    

 

 
     

2 2 2

1 1 2 1

min

s.t.

n m p n m p n m p

j j s s r r

j s n m p r n m p

h t h t h t
     

 

        

 
     

 
   (10) 

 
 

 

, 0, 1,..., ; 1,..., 2

, 0, 1,..., ; 1,..., ; 2 1,..., 2 2 .

jL j j j s s

lL j j r r

g h t b h t j p m s n m p n m p

h t h t l n j n m p r n m p n m p

 

 

           

             
 

 

Solve the problem (10) for all  

 

, ( 1,..., )j jh t j n m p 
    , , ( 1,..., 2 )s sh t s n m p n m p       

and  

, ( 2 1,..., 2 2 )r rh t r n m p n m p      . 

 

Step 7:  

 

If all , , ( 1,..., )j jh t j n m p 
     are zero, then determine a solution  1,..., n m px x   , find the 

optimal solution of the general NLP problem (1) and STOP; else, assign  1,..., n m px x    to 

 1,..., n m px x  
% % , respectively, and go to Second Phase Step 3.   

 

Note that applying this approach gives the same solution to the general NLP problem for each 

chosen different initial arbitrary point. Flowchart of proposed approach is presented in  

Figure 1.  

 



 AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 445 

 
Figure 1. Flowchart of two-phase-successive linearization approach  

 

4. Numerical examples  

 
Example 1.  

 

Consider the following NLP problem having two mixed nonlinear constraints and a nonlinear 

objective function in two variables  

 

 
     

2 2

1 2 1 2min , 2 2

s.t.

f x x x x   
 (11) 

 
 

 

2 2

1 1 2 1 2

2

2 1 2 2 1

, 1 0

, 0.

g x x x x

g x x x x

   

  
 

 

First phase:  

 

Steps 1-2.  

 

The arranged nonlinear system is given below:     
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2 2

1 2 3 1 2 3, , , 2 2 0 0O x x x z z x x x        (12) 

 
 

 

2 2

1 1 2 3 1 2

2

2 1 2 3 2 1 3

, , 1 0

, , 0.

g x x x x x

g x x x x x x

   

   
 

 

Step 3.  

 

For  1 2 3, , ,O x x x z ,  1 1 2 3, ,g x x x  and  2 1 2 3, ,g x x x ;  3,3,0, 2 ,  1,0,0  and  2, 2, 2  are 

considered as initial arbitrary points, respectively.  

 

Steps 4-5.  

 

The following LP problem is constructed and solved:    

 

 1 2min 2 2 10

s.t.

z x x  
 (13) 

 
1

1 2 3

2 2 0

4 4 0.

x

x x x

 

    
 

Step 6.  

 

A linearization point is found to be    1 2 3, , , 1,0,5, 8x x x z  % % % %  from (13) and the nonlinear system 

(12) is linearized using the linearization point.  

 

Steps 7-8.  

 1 2min 2 4 7

s.t.

z x x   
 (14) 

 
1

1 3

2 2 0

0

x

x x

 

  
  

 
1 1 1

2 2 2

1 0

0

x u v

x u v

   

  
 

 3 3 3 5 0,x u v     

 

where 1 2 3 1 2 3, , , , ,u u u v v v  are the balancing variables. Because the solution of LP problem 

constructed in (14) is unbounded, the solution obtained in First Phase Step 6 is taken into account, 

i.e.    1 2 3, , 1,0,5x x x % % % .  

 

Second phase:  

 

Steps 1-2.  

 

Hessian matrix is constructed from the objective function of (11) as 
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2 0

0 2
H x

 
  
 

 

 

1 2 0    and 2 4 0   are determined to make the objective function minimum.  

 

Step 3.  

 

The following new variables are generated:    

 

 
1 1 1

2 2 2

1

0

x h t

x h t

  

  
 (15) 

 3 3 35 ,x h t    

 

where 1 2 3 1 2 3, , , , ,h h h t t t  are the new balancing variables.  

 

Step 4.  

 

The new variables generated in (15) are substituted into the constraints of (12) and considering the 

leading principal minors, the following new nonlinear system is constructed:    

 

 
   

     

2 2

1 1 2 2

2

2 2 1 1 3 3

1 0 1 0

0 1 5 0

h t h t

h t h t h t

      

        
 (16) 

 
2 0

4 0.




 

 

Step 5.  

 

Each equation in (16) is expanded to Maclaurin series and the following linear system is 

constructed:     

 

 
     

     

1 1 2 2 3 3

1 1 2 2 3 3

2 0 0 1 1 0

1 0 1 4 0

h t h t h t

h t h t h t

       

      
 (17) 

 
2 0

4 0.




 

 

Step 6.  

 

By adding new variables , ( 4,5); , ( 6,7)s s r rh t s h t r   to (17), the following LP problem is 

obtained and solved:    
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3 5 7

1 4 6

min

s.t.

j j s s r r

j s r

h t h t h t 

  

 
     

 
    (18) 

 
     

     

1 1 2 2 3 3 4 4

1 1 2 2 3 3 5 5

2 0 0 1 1 0

1 0 1 4 0

h t h t h t h t

h t h t h t h t

         

        
 

 
6 6

7 7

2 0

4 0.

h t

h t

  

  
 

 

Step 7.  

 

Go to Second Phase Step 3 with the solution obtained from Second Phase Step 6. In this example, 

all , ( 1,2,3)j jh t j 
   are found zero at the second iteration. Thus, the solution and objective value 

for the NLP problem in (11) are found to be    1 2, 1,0x x   and 5z  , respectively.  

 

Summarized results of Example 1 using the proposed approach is given in Table 1. Basirzadeh 

also solved this problem in Basirzadeh et al. (2002). Comparison of the solutions is presented in 

Table 2.   

 

Table 1. Summarized results of Example 1 

  1 2 3, ,k k k kx x x x  1k kx x   

First Phase   

0k    1,0,5   

1k   Unbounded  

Second Phase   

0k    1,0,5   

1k    1,0,1  4  

2k    1,0,1  0  

 

Table 2. Comparison of approaches for Example 1 

 1x  2x  z  

Basirzadeh’s method 0.7070  0.7070  3.3437  

Proposed Approach 1 0  5  

 

While the obtained results satisfy both (11) and the constructed (12), oversensitively, the equality 

constraint in (11) cannot be satisfied with Basirzadeh’s solution.  

 

 

 

Example 2.  



 AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 449 

 

Consider the following NLP problem having nonlinear inequality constraints and a nonlinear 

objective function in two variables   

 
  3 3

1 2 1 2max , 3 2

s.t.

f x x x x 
 (19) 

 
 

 

2 2

1 1 2 1 2

2 1 2 1 2

, 16 0

, 3 0.

g x x x x

g x x x x

   

   
 

 

The problem (19) is converted to a nonlinear system as follows:     

 

   3 3

1 2 3 4 1 2 3 4, , , , 3 2 0 0 0O x x x x z z x x x x       (20) 

 
 

 

2 2

1 1 2 3 4 1 2 3

2 1 2 3 4 1 2 4

, , , 16 0

, , , 3 0.

g x x x x x x x

g x x x x x x x

    

    
 

 

Considering the chosen initial arbitrary points  3,2,0,0,97 ,  3, 2,3,0  and  3,2,0,2  for 

 1 2 3 4, , , ,O x x x x z ,  1 1 2 3 4, , ,g x x x x  and  2 1 2 3 4, , ,g x x x x , respectively, a solution 

   1 2, 3.8979,0.8979x x   and objective value 179.1175z   are found for (19).  

 

The proposed approach is applied to the problem solved in Chiş and Cret (2005). The approach is 

more efficient than Chiş and Cret (2005) for maximizing (19). Summarized results and comparison 

of the approaches are shown in Table 3 and Table 4, respectively.   

 

Table 3. Summarized results of Example 2 

  1 2 3 4, , ,k k k k kx x x x x  1k kx x   

First Phase   

0k    4.1,1.1,0,0   

1k    3.9058,0.9058,0,0  0.2746  

2k    3.8979,0.8979,0,0  0.0112  

3k    3.8979,0.8979,0,0  0  

Second Phase   

0k    3.8979,0.8979,0,0   

1k    3.8979,0.8979,0,0  0  

 

Table 4. Comparison of approaches for Example 2 

 1x  2x  z  

Chiş’s method 3.8750  0.8750  175.8965  

Proposed approach 3.8979  0.8979  179.1175  
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5.  Conclusion 

 
An efficient approach is presented by solving sequence of nonlinear sub-problems using first order 

Taylor and Maclaurin series expansions having m nonlinear (or linear) algebraic inequality (or 

equality or mixed) constraints with nonlinear (or linear) objective function in n variables  m n

. The proposed approach, based on the optimal solution of LP problems, is effective even if either 

there is no feasible solution for constructed LP problem or the solution of LP problem is 

unbounded. Using balancing variables, we approach to the optimal solution of the NLP problem 

gradually. This approach enhances the performance of the solution while satisfying the nonlinear 

constraints sensitively, and/or making the objective function min (or max). 
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