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Abstract

The main objective of the present article is to design a sequence of Chlodowsky Szasz-Kantorovich
operators based on Dunkl analogue for the purpose to achieve faster rate of convergence in terms
of two positive and unbounded real number sequences and the basic results are estimated. Further,
the uniform approximation by means of Korovkin theorem using test functions e;(t) = t',i =
0, 1,2 is investigated. Moreover, the local and global approximation results are discussed for these
sequences of linear positive operators.
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1. Introduction

Recently, Sucu[2014] constructed Szasz type operators as follows:

Ll ()b (k4 2u0y B
Solgiu) = ) kz:% %(k)g( - ) neN={1,23.1}, (1)

using generalized exponential function (see Rosenblum (1994)) given by

e (t) = —tE [07 OO), (2)
8 kzzo Vu(k)

where the coefficient 7, () are defined as follows for v € Ny = {0} | JN and po > —1/2
(20) 22Ul (v + p+ 1/2) 22 Il (v + p + 3/2)
V) = 3
Tn T(p+ 1/2) T(u+1/2)

CYu(2r+1) =
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and the recursive relation for v, is defined as
Y +1) =W+ 14+2ub,11)7.(v), v € Ny, 3)

with 6, is defined to be 0 if » € 2N and 1 if v € 2N 4 1. Many research papers about the gen-
eralizations of the operators defined by (1) have been published to discuss the better approxima-
tion results in various functional spaces by several mathematicians such as Wafi and Rao [(2018),
(2019),(2018)], Karaisa et al.[2016] and Icoz et al.[2015] Motivated by the above, the purpose of
this manuscript is to construct the Chlodowsky Szasz Kantorovich type operators to approximate
the Lebesgue integrable functions as follows:

0o k+200,+1
b

k
by Z (an) ﬁ”ugn f(t)dte, “4)

en(2) 2= 7, (k)

* . Pp—
where a,, and b,, are unbounded and positive real numbers increasing sequences defined as

lim a, = lim bn:ooandZ—nzl—l——.

n—oo n—oo n bn

In subsequence sections, we investigate the convergence of the operators defined in (4) with the
aid of Kantorovich theorem and an asymptotic approximation result is studied to approximate the
second order differentiable functions. The order of approximation is deduced with the help of
second order modulus of continuity and Peetre’s K-functional for the operators (4). In the last,
weighted and statistical approximation results are obtained.

2. Preliminaries
Lemma 2.1.

Lete;(t) =t',i = 0,1, 2 be the test functions. Then, for the operators K, we have

K (eos ) = 1,
Kifein) = 5o+ o
o2 a eu(—anx) 1
K* . —na2 T 2+ 2put—~ T
o3 9 eu(—ant)\ a,
F* (e ) = 03 Z gy ) Tn g2
n<€3,$) bix T (2 a ey(anx) > b%x
7 e (—a 17) a 1
" (2 Ao eu(anl‘) ) by, ! by
o eu(—anx) al
K* ‘ _ Oy 4 4 KN Tn) ) Tn 3
w(eq; ) bﬁx + (7+ H eu(an) ) b?lzx
, eu(—anz) ap
+ (124 4" = 10p—"—= ) o 2w
e#(anﬂﬂ) bn

eu(—anx) eu(—anx)\ ay 1
6 4 16p% 4 12 —""2 4 g3 2 ) 2 —.
+( T () T eu{a) ) R
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Proof:
Forv =0,

00 k4206, +1

k o
K (e 2) = K (fr) o= —on 3 ont) / d,

eulan®) =t Yu(k) Jrszwo

P i(af;)k(%)

eru (anx) k=0 ’yﬂ

For: =1,

k420641
bn

by = (apx)*
KT*L ;) = tdt,
(e1; ) eu(anx) kZ:O Yu(k) ka2u0y

bn — (an@)¥ (k4206 +1)* (K + 2u6;)”
2e,(an) kZ:O Vulk) ( ) 7

0 A

S el (1204 20)
Zen(an®) 2= 7, (k) 7

by = (ann)t (k—i—Zu@k) 1

b2 2b,,

For: = 2,

(o)

K (e9:7) = b, Z (anx)

eu(ant) =0 Yu(k) b2y

_ bn 2 (anx)® (K +2ub; +1)° B (k + 2uby)?
= 3e,(an) ;0 Yu(k) < ) )

k420641
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n

t2dt,

oy by
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 eu(ane) — Yu(k) by,
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In the same manner, the rest part of this Lemma 2.1 can be proved easily. n
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Lemma 2.2.

Let ' (t) = (t —x)",i = 0, 1, 2 be the central moments. Then, for the operators defined by (4), we
have

Kr(dz) =1,

1
Kiwkio) = (1) et g

2 a €,— 0T\ a x
K* ()2 = _9™™ 11 2 2 4 2u—t—" =2 =
n( m’m) (b2 bn + >$ + (( + u€u<anx)) bn ) bn’

Kyt x) =0 (—) (P +2°+2+1).

Proof:
We can prove Lemma 2.2 using Lemma 2.1 and linearity property as
K (os 1) = Kt 0) — 2K (15 )
K (Vi) = K (8% ) — 20K (t o) + 2” K (1; )
K, (Vg 2) = K (th o) — 40 (8% @) + 62° K (1% 0) — 42 K (t0) + 2 K (Liz). m

3. Rate of convergence

Definition 3.1.

For f € (0, 00), where C[0, c0) is the set of all continuous functions on [0, o), the modulus of
continuity for a uniformly continuous function f is

w(f;0) = sup |f(t) = f(y)l, t,y € [0,00).

[t—y|<é

Let f € C[0, 00) be a uniformly continuous function and § > 0. Then, one has

=9\ .
56~ F)l < (1+ 552 ot 50). )
Theorem 3.2.
For the operators K given in (4) and for each f € C[0,00) (| F, K = f on each compact subset
of [0, 00) where £ := { f:x >0, ﬁ—?g is convergent as x — o0 } and = denotes the uniform

convergence.
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Proof:

From the Korovkin-type property (vi) of Theorem 4.1.4 in Altomare and Campiti[1994], it is suf-
ficient to show that

K (e;;x) — ei(x), fori=0,1,2.

Using Lemma 2.1, it is obvious K (eg; ) — eg(x) as n — oo and fori = 1

1
lim K (ej;z) = lim ((a_n — 1) T+ —) = ey (z).

Similarly, we can prove for i = 2, K*(es; x) — e5 which proves Theorem 3.2. n

4. Local approximation results

Let Cp[0,00) be the space of real valued continuous and bounded functions endowed with the

norm || f|| = sup |f(x)|. Then, for any f € Cg[0,00) and 6 > 0, we have Peetre’s K-functional
0<z<oo

is defined as

Ky(f.0) = inf{l|lf —gll +3llg"ll : g € C5[0,00)},

where C%[0,00) = {g € Cp[0,00) : ¢,¢" € Cy[0,00)}. By DeVore and Lorentz[1993], there
exits an absolute constant C' > 0 such that

K>(f;6) < Cws(f; V5), (6)
where wy( f; d) is the second order modulus of continuity is defined as

wo(f; V) = sup  sup |f(z+2h) —2f(x+h)+ f(z)].

0<h<+/6 €[0,00)

Now, for f € Cp[0,00), x > 0 and n > 1, we consider the auxiliary operator [A(,’; as follows

Ri(fi2) = KA(fia) + fl2) — f (“—"w i) . @

Lemma 4.1.

For g € C% [0, 00) and, for all z > 0, we have

|55 (g:2) = g()] < &al)]g”

where

alr) = K2 (W2 ) + (K (0h o).
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Proof:

In view of the definition of auxiliary operators defined by (7), we have

Ki(2) =1, Ki (s x) = 0 and |K(f;2)] < 3| f]- 8)

From Taylor’s series expansion for g € C3[0, cc), we get

t

g(t) = gla) + (t — 2)g'(2) + / (t — 0)g" (v)dv. ©)

T

Operating fn on both the sides, one has

t

Ralgi )~ 9(0) = @)Kt = ) + B [0 o) (0)oi).

T

From (7) and (8), we have

t

Rt (g:) = gla) = B [ (¢~ o) ()i o)

T

t e
W1
= KZ(/(t - U)gl/(v)dv;ﬂf") - / <Z—IE + b v) g"(v)dv.
: ot
[Ka(g: ) = g(x)] < KZ(/(t - v)g”(v)dv;:c> + / (Z—x + - v> g"(v)dv
(10)
Since,
t
[t - o] < @@ 1" (1)
Then,
T
Qn 1 " Ay, 1 2 "
Tl CACLU N St e B A (12)
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Using (11) and (12) in (10), we deduce

2
/\* * 1
Ri(g:0) — glo)| < {Kn«t —2)%0)+ (b—“ —- ) }ng"n
= &) llg"]l-
Hence, Lemma 4.1 is proved. n

Theorem 4.2.

Let f € C%[0, 00). Then, there exists a constant C' > 0 such that

| K:(fi2) — f(2) |< Cwa(f3 V/&nl(@)) + wif; K (Yas ),

where £, () is defined in Lemma 4.1.

Proof:
For g € C3[0,00) and f € C[0, 00) and by the definition of K,,, we have

K (f2) — f(2)] < Ku(f — gi2)| + |(f — 9)(@)| + | Ku(g; ) — g(2))]

In view of Lemma 4.1 and relations in (8), one get

3 (fi2) — F@)] < 41T — gl + 1 Ralgi ) — ()| + | £+ ) = fla)

by by,

<Af = gl + &al@)g"ll + w(F: Kilni 0).
By the definition of Peetre’s K-functional, we have

K (fi2) = f(2)] < Cwa(f5 Vén(a)) + wlfs K (a3 @),

which is a required result. n

For two fixed real values (31, 52 > 0, we consider the Lipschitz type space as

|t — |

(t+ Brx + Baa?)?

Liphy™(3) i= {1 € Cul0,00) : |f (1) = f()] < M o, € (0,00) .

where M is a positive constant and 0 < v < 1.
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Theorem 4.3.
Let f € Lip;” () and x € (0, 00). Then, for the operators defined by (4), we have

where v € (0,1] and n,,(z) = K} (v%; x).

Proof:

For v = 1and = € (0, 00), we have

[K(f5 ) = f)] < KL (1) = fa)]; )

77 o g —
(t + Brz + Pox?)2

It is obvious that t+,81x1+62x2 < ,31964362302 for all z € (0, 00), one has
Kifi) = f@)] £ —— (3 ((6 — ) 2)}
(fix) = fo)]| < ————— (KL ((t — )% x))2
(Brz + Box?)2
<M _m@) :
N bz + Bo?

Thus, the Theorem 4.3 holds for v = 1. Now, for v € (0, 00) and in the light of Holder’s inequality
with p = % and ¢ = %, we have

w2

K (f52) = )] < (B F(0) = f(a)]7:))

A =2 VY
= M<Kn<(t+51x+52x2)’x)> '

for all x € (0, 00), we have

: 1 1
Since, TN < e

)

\Kﬁﬁ@—f@H§M< T A

Bz + Bo?
This completes the proof of the Theorem 4.3. n

Kﬂﬁ—ﬂ%@>2

Now, we introduce local approximation in terms of 7" order Lipschitz-type maximal function
given by Lenze(1988) as
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‘:Ur(f;l') _ sup ’f(t) — f(x)l

, x € [0,00) and r € (0, 1]. (14)
t#x,te(0,00) ’t - x’T

Then, we get the next result

Theorem 4.4.
Let f € Cp[0,00) and r € (0, 1]. Then, for all € [0, c0), we have

Ki(f50) = F@) <@ (70 (m(@)

Proof:

We know that

K5 (f;2) = f(@)] < Ko(1f(t) = f2)];2).

From equation (14), we have

K (fr2) — f(2)] < @, (fi2) K ([t — 2|75 ).
From Holder’s inequality with p = % and ¢ = Z—ET we have

KL(f32) — f(2)] <O (f;2) (KLt — 2% 2)) %,

which proves the desired result. n
5. Global approximation
Here, we recall some notation from Gadziev(1976) to prove next result. Let By ,2[0,00) =

{f(x) : |f(z)] < My(1+ 2*),1 + 2? is weight function, M} is a constant depending on f
and = € [0,00)}, C1442[0,00) is the space of continuous function in By ,2[0, 00) with the norm

I f(2)|[14e2 = sup ‘ﬁ—ﬁ' and CF, 2[0,00) = {f € Chja2 : ‘1|im ﬁ?? = k, where k is a constant
z€[0,00) x|—o00

depending on f}.

Theorem S.1.

If the operators K defined by (4) from CY, . [0, 00) to By,2[0, 00) satisfying the conditions

lim [|[K(ei;2) — 2%l 1402 =0, i = 0,1,2.
n—oo
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Then, for each C} . [0, 00)

lim [K3(f5) = fllere = 0.

Proof:

To prove Theorem 5.1, it is enough to show that

lim ||K (e ) — 21402 =0, i = 0,1, 2.
n—oo

From Lemma 2.1, we have

! | K (15 2) — 1 .
HKn(eo; 1‘) - 330“1—&-902 = m:BI;o) T =0for: = 0.
Fori =1,
522 + 5 — @l
KZ e1; ) — 1‘1 2= Sup by by
H ( ' ) H1+ z€[0,00) 14 x2

<an 1) x N 1 1
=(—- sup —— + — sup :
by, z€[0,00) 1+ 22 bn, x€(0,00) 1+ 22

This implies that | K*(e1; ) — 21122 — 0 ann — oo. Fori = 2,

‘ (8 -1)a+8 (2+ 22 0+

K*(eg; 1) — 221402 = su
K5 er2) —a¥lhae = sy —

CL2 LEQ
— (% _4
(bi )mes[g;;) 1+ 22

an e (—anr) x
+ =2+ 2/1“—) sup
by ( 6u(anx) zef0,00) 1 + 72

n 1 1
—F Su o a—
3b% xG[O,lZO) 1422

Which shows that || K*(e2; ) — 22||1422 — 0 ann — oo. -

Next, we discuss a result to approximate each function belongs to C}, ..[0, c0). Similar result is
investigated by Gadziev(1976) for locally integrable functions.
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Theorem 5.2.

Let f € Cf,,.[0,00) and v > 0. Then we have,
K (f3 )| — f(2)

li =0.
nl—>nolo $s[13£o) (1 + .T2)1+7
Proof:
For any fixed real number xy > 0, one has
K*(f: _ K* . _ K* . _
wp SO @) (0= ) VG0 S @)
z€[0,00) (1 +x ) t z<xo (1 + ) + T>xo (1 + ) +
<Ky (f;2)] = f(2)llcpo.m
[Kn(1 4+ 12 2))] |f ()]
+ 11 f ll14a ESE) (1+22)1+ o>ay (1 + 22)147
=J1 4+ Jo + J3, say. (15)

Since | f(z)| < ||f]l14e2 (1 + %), we have
_ |/ ()]
SAETaL

2
o W42 _ Wl
>0 (l"i"fLQ)H_W (14"552)W

Let € > 0 be arbitrary real number. Then, from Theorem 3.2 there exists n; € N such that

1
Jo < _Hf|‘1+x2<1—|—x2—|— for all n; > n,

(i +a2)

M%—i—%forallnl > n.

)
T

<

This implies that

S ll14a2 €
<2———+ =
Jo + J3 (1_{_3:2)7-#3

||fH1+12
(14=22)”

Next, let for a large value of x(, we have <

&
2€
Jo+ J3 < 3 for all ny > n. (16)
From Theorem 5.1, there exists ny > n in such a way
€
Jv = K (f) = fllcioe < 3 for all ny > n. (17)
Let ng = max(ny,ns). Then, combining (15), (16) and (17), we have

|G (5 2)| = f()
< €.
x:g};’o) 1+ 22) €

Hence, the proof of Theorem 5.2 is completed. n
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6. Conclusion

The goal of this article is to give a better error estimation of convergence by modification of Szész
Kantorovich operators via Dunkl analogue. We have defined a Szasz-Kantorovich-Chlodowsky
based on Dunkl analogue with the aid of two unbounded and increasing real numbers sequences
{a,} and {b, }. This type of modification enables better error estimation for a certain function in
comparison to the Szdsz-Kantorovich operators based on Dunkl analogue. We investigated some
approximation results by means of the well-known Korovkin-type theorem. We have also calcu-
lated the rate of convergence of operators by means of Peetre’s K-functional and second order
modulus of continuity. Lastly, we studied the global approximation results.
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