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Abstract

Periodic and soliton solutions are derived for the (1+1)-dimensional van der Waals gas system
in the viscosity-capillarity regularization form. The system is handled via the e−ϕ(ξ)-expansion
method. The obtained solutions have been articulated by the hyperbolic, trigonometric, exponential
and rational functions with arbitrary constants. Mathematical analysis and numerical graphs are
provided for some solitons, periodic and kink solitary wave solutions to visualize the dynamics of
equations. Obtained results reveal that the method is very influential and effective tool for solving
nonlinear partial differential equations in applied mathematics.
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1. Introduction

Because of the vital role in describing a wide variety of nonlinear wave phenomena in fluid dy-
namics and mechanics, considerable efforts have been devoted to find exact solutions to the conser-
vation laws modeled by nonlinear partial differential equations (NPDEs). Exact solutions help to
understand the complexity of the phenomena, validate the results of numerical analysis and analyze
the stability of these equations. Mixed-type systems of conservation laws have been used to model
diverse range of physical phenomena from traffic flow to three-phase flow in porous media. For
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example, the systems model the dynamical phase transitions in the propagating phase boundaries
in solids and the van der Waals fluid (Benzoni-Gavage (1998)).

The purpose of this contribution is to construct an exact solution for the best known mixed
hyperbolic-elliptic system of conservation laws, namely the van der Waals gas equations in the
viscosity-capillarity regularization form (Jin (1995))

∂tu+ ∂xp(v) = η ∂2xu− ω η2∂3xu, ∂tv − ∂xu = 0, (1)

where ∂qx denotes the qth partial derivative with respect to x , u (x, t) and v (x, t) are the velocity
and the volume respectively, while p (v) represents the pressure of gas. The viscosity constant η
and ω are assumed to be positive, where ω η2 denotes the coefficient of interfacial capillarity.

The p-system in Equation (1), as is also known, describes the one dimensional longitudinal isother-
mal motion in elastic bars or fluids. The corresponding eigenvalues are ±

√
−p(v). For some mate-

rial models, the system is of mixed hyperbolic-elliptic type since the constitutive pressure function
may not be monotone.

Because of the possibility of shocks in the elliptic region, the well-posedness theory of mixed
systems did not develop yet as in the case of hyperbolic systems (Lax (1973)). Theoretically,
Berres et al. (2009), Keyfitz (2001), Marchesin and Ploh (2001), Fitt (2009), and Holden et al.
(1990) discussed mixed-systems and their applications. Recently, many numeric-analytic schemes
have been employed to construct approximate solutions to mixed-type models. Some of these
attempts were carried out in (Yildirim and Balci (2011), Kumar et al. (2012), Az-Zo’bi (2014), Az-
Zo’bi and Al Dawoud (2014), Al-Khaled (2014), Az-Zo’bi (2015a), Az-Zo’bi (2015b), Az-Zo’bi
(2015c), Az-Zo’bi et al. (2015), Az-Zo’bi (2018a), Az-Zo’bi (2018b), Az-Zo’bi et al. (2019)). See
also the references included therein.

In this paper, the e−ϕ(ξ)-expansion method (Zhao and Li (2008)) is considered to obtain some exact
traveling wave solutions of the system in Equation (1). This method has been successfully applied
for treating the Fitzhugh-Nagumo equation and Modified Liouville equation (Abdelrahman and
Khater (2015)), 1D classical Boussinesq equations (Harun-Or-Roshid and Azizur-Rahman (2014)),
the combined KdV-mKdV equation (Rayhanul-Islam et al. (2015), Khater (2015)), and nonlinear
evolution equations (Abdus-Salam and Umme Habiba (2017), Abdelrahman et al. (2015)).

The outline of this paper is as follows. Methodology of the e−ϕ(ξ)-expansion method is described
in Section 2. Exact solutions to the van der Waals gas equations, via the proposed Algorithm,
are derived in Section 3. Section 4 provides graphical representation of some obtained solutions.
Finally, conclusions are included in Section 5.

2. The e−ϕ(ξ)-expansion method

In the current part, an explanation of the e−ϕ(ξ)-expansion scheme will be discussed. For this pur-
pose, consider the following (1+1)-nonlinear evolution equation

F (v, ∂tv, ∂xv, ∂ttv, ∂xtv, ∂xxv, . . .) = 0, (2)
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where F is a polynomial in v (x, t) and its partial derivatives, in which the highest order derivative
and nonlinear terms are involved. In what follows, the main steps of the method are listed.

Step 1. Combine the real variables x and t by the wave-variable ξ = x± α t , where α is the speed
of traveling wave. Equation (2) will be reduced to the formal ordinary differential equation (ODE)
in v (ξ) and its total derivatives v′, v′′, . . .,

P
(
v, v′, v′′, v′′′, . . .

)
= 0. (3)

Integrate Equation (3) as many times as is applicable and set the constants of integration to be
zeros.

Step 2. Assume that the solution of Equation (3) can be expressed in the following form

v (ξ) =

m∑
i=0

Aie
− i ϕ(ξ), Am 6= 0, (4)

where Ai′s are constants to be determined. The positive integer m can be obtained by considering
the homogeneous balance between the highest order derivative term and nonlinear term in Equa-
tion (3). Moreover, given deg (v (ξ)) = m, where deg (.) denotes the degree, implies the following
degrees for the other expressions:

deg

(
dnv

dξn

)
= m+ n, deg

(
vp
(
dnv

dξn

)q)
= mp+ q (n+m) .

If m is fraction or negative integer, the following transformations are useful:
1. When m = a

b , b 6= 0 , is a fraction in lowest term, let v (ξ) = u(ξ)
a

b .
2. When m = −k, k is a positive integer, let v (ξ) = u(ξ)−k.

Now, the function ϕ (ξ) in Equation (4) satisfies the following ODE,

ϕ′ (ξ) = e−ϕ(ξ) + µ eϕ(ξ) + λ, (5)

where λ and µ are parameters to be determined. Replacing eϕ(ξ) by ψ (ξ), we get the Riccati equa-
tion whose related method is developed by Ma and Fuchssteine (1996). Later, this method is con-
sidered as a special case of the transformed rational function method (Ma and Lee (2009)) and the
multiple exponential function method (Ma et al. (2010)).

It is well-known that Equation (5) possess the following classes of solution.

Case I (Rational function solution): When λ2 − 4µ = 0, µ = λ = 0, then

ϕ (ξ) = ln (ξ + C) . (6)

Case II (Rational function solution): When λ2 − 4µ = 0, µ 6= 0, and λ 6= 0, then

ϕ (ξ) = ln

(
−2 (λ (ξ + C) + 2)

λ2 (ξ + C)

)
. (7)

Case III (Exponential function solution): When λ2 − 4µ > 0, µ = 0, and λ 6= 0, then

ϕ (ξ) = − ln

(
λ

eλ(ξ+C) − 1

)
. (8)
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Case IV (Hyperbolic function solution): When λ2 − 4µ > 0, µ = 0, then

ϕ (ξ) = ln

−√λ2 − 4µ tanh
(√

λ2−4µ
2 (ξ + C)

)
− λ

2µ

 , (9)

and,

ϕ (ξ) = ln

−√λ2 − 4µ coth
(√

λ2−4µ
2 (ξ + C)

)
− λ

2µ

 . (10)

Case V (Trigonometric function solution): When λ2 − 4µ < 0, µ = 0, then

ϕ (ξ) = ln

√4µ− λ2 tan
(√

4µ−λ2

2 (ξ + C)
)
− λ

2µ

 , (11)

and,

ϕ (ξ) = ln

−√4µ− λ2µ cot
(√

4µ−λ2

2 (ξ + C)
)
− λ

2µ

 . (12)

Step 3. Along with Equation (5), substituting Equation (4) into Equation (3) results a polynomial of
e−ϕ(ξ). Collect all the terms of same order and equate each coefficient to zero, a system of algebraic
equations would be obtained. With the aid of some symbolic computation software, determine the
possible values of parameters α, µ, λ and the Ai′s.

Step 4. Substitute the obtained values into Equation (4) along with Equations (6)-(12) will com-
plete determining the exact solutions of Equation (2).

An extended technique for the e−ϕ(ξ)-expansion scheme was presented by Khater (2015) to ob-
tain exact traveling wave solutions for the generalized Hirota-Satsuma couple KdV system. This
method assumes the solution of Equation (2) in the form:

v (ξ) =

m∑
i=−m

Aie
− ϕ(ξ), (Am or A−m 6= 0) . (13)

The rest steps of this extension run as in the case of e−ϕ(ξ)-expansion method.

3. Exact solutions for the van der Waals equations

Exertion of the e−ϕ(ξ)-expansion method to construct exact analytic solutions for the (1+1)-
dimensional van der Waals gas system Equation (1), with constitutive function p(v) = v − v3,
will be achieved in this section.

Utilizing the traveling wave variable ξ = x + α t, Equation (1) is carried into following ordinary
differential system:

αu′ +
(
v − v3

)′
= η u′′ − ω η2u′′′, α v′ − u′ = 0. (14)
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Integrating Equation (14) with respect to ξ once, and equating the integration constants to zero
yields,

αu+
(
v − v3

)
= η u′ − ω η2u′′, α v − u = 0. (15)

Balancing the highest order derivative and nonlinear term appear in u′′ and u3, as well as for v′′ and
v3, implies the formal solutions:

u (ξ) = A0 +A1e
−ϕ(ξ), v (ξ) = B0 +B1e

−ϕ(ξ). (16)

Substituting Equation (16) and its derivative into Equation (15), and equating the coefficients, with
the same power of −ϕ (ξ), to zero results the following set of simultaneous algebraic equations:

A1 − ωB1 = 0,

2α2βω −B2
1 = 0,

2αω + 12α2βλω − 6B0B1 − 3λB2
1 = 0,

µ
(
1 + αλω + α2βλ2ω + 2α2βµω + ω2 − 3B2

0

)
= 0,

− 1− 3αλω − 7α2βλ2ω − 8α2βµω − ω2 + 3B2
0 + 6λB0B1 + 3µB2

1 = 0,

λ+ αλ2ω + α2βλ3ω + 2αµω + 8α2βλµω + λω2 − 3λB2
0 − 6µB0B1 = 0.

Solving this system using Mathematica, two clusters of solutions as obtained as following:

B1 = ±
√

2αω η,A1 = αB1, B0 =
1

2ω

(
1

3 η
+ λω

)
B1, α =

γ1 ±
√
γ21 − 144ω2

12ω
,

where A0 is an arbitrary, γ1 = 1 + 3 η2ω2γ2 and γ2 = λ2 − 4µ. Therefore, exact solutions following
the cases in Section 2, with integration constant C, are listed to be the following.

Case I:

u (x, t) = A0 +
A1

x+ α t+ C
, v (x, t) = B0 +

B1

x+ α t+ C
. (17)

Case II:

u (x, t) = A0 −A1
λ2 (x+ α t+ C)

2 (λ (x+ α t+ C) + 2)
, v (x, t) = B0 −B1

λ2 (x+ α t+ C)

2 (λ (x+ α t+ C) + 2)
. (18)

Case III:

u (x, t) = A0 +A1
λ

eλ(x+α t+C) − 1
, u (x, t) = B0 +B1

λ

eλ(x+α t+C) − 1
. (19)

Case IV:
u (x, t) = A0 −A1

2µ
√
γ2 tanh(

√
γ2
2

(x+α t+C))+λ
,

v (x, t) = B0 −B1
2µ

√
γ2 tanh(

√
γ2
2

(x+α t+C))+λ
.

(20)

Case IV:
u (x, t) = A0 +A1

2µ
√
−γ2 tan

(√
−γ2
2

(x+α t+C)

)
−λ
,

v (x, t) = B0 +B1
2µ

√
−γ2 tan

(√
−γ2
2

(x+α t+C)

)
−λ
.

(21)
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Figure 1. Singular kink-shaped soliton profile of the rational velocity u (x, t) in Equation (18).

Figure 2. Kink-shaped soliton profile of the exponential velocity u (x, t) in Equation (19).

As an alternative procedure, the proposed scheme can be successfully implemented by introducing
the following transformation,

v (x, t) = a u (x, t) + b, (22)

where a and b are constants to be determined, will reduce the p-system in Equation (1) to the
NPDE, (

2− 3(a+ b u)2
)
∂tu = η ∂xxu− ω η2∂xxxu. (23)

Proceeding as before, the same exact solutions in Equations (17)-(21) are obtained.

Also, components of the van der Waals p-system Equation (1) can be merged to get

∂2t v +
(
1− 3v2

)
∂2xv − 6 v(∂xv)2 = η ∂2x∂tv − ω η2∂4xv. (24)

Following the solution steps of the e−ϕ(ξ)-expansion algorithm for v (x, t), taking into account that
u (x, t) = ∂−1x ∂tv (x, t), where ∂−1x (.) =

∫
(.) dx, would present the same results as before.
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Figure 3. Kink-shaped soliton profile of the hyperbolic velocity u (x, t) in Equation (20).

Figure 4. Periodic solution profile of velocity u (x, t) in Equation (21).

4. Illustration of some exact solutions

As a helping tool, the Mathematica 11 software package is used to illustrate three-dimensional plots
for some of investigated solutions. Different profiles of solitons, singular solitons, and periodic
solutions to the velocity of gas u (x, t) are shown to visualize the underlying dynamics of the van
der Waals system. With ω = 0.08, η = 0.1, and unity for the other nonzero free parameters, Figure
1 shows the obtained solution in Equation (18). Kink-type solutions derived in Equations (19)
and (20) are plotted in Figures 2 and 3 respectively. The trigonometric solution in Equation (21) is
represented in Figure 4. Graphs of the volume v (x, t) can be obtained by stretching or compressing,
and shifting the obtained figures of the velocity as a result of the linearity in Equation (22).

5. Conclusion

In this work, some new solitary wave solutions of the 1D van der Waals gas equations are success-
fully derived via the e−ϕ(ξ)-expansion method. We have obtained four types of explicit function
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solutions, namely rational, exponential, trigonometric and hyperbolic function solutions. All so-
lutions have been checked by putting them back into the original equations. It can be concluded
that the proposed method reduces the size of computational work compared to other existing tech-
niques. This method is practically suitable for wide range of nonlinear evolution equations that
arise in mathematical physics and engineering fields.
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