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Abstract

In this paper, we attempt to study spatially homogeneous Bianchi type-I cosmological models in
f(R) theory of gravity. The exact solutions of the Einstein’s field equations (EFEs) have been ob-
tained by assuming that the expansion θ is proportional to the shear σ and by using a special form
of Hubble parameter (HP). Here we find two exact solutions by using the variation law of H based
on two different values of n. The physical and geometrical properties of these models have been
discussed and the function f(R) of the Ricci scalar R is obtained for each case.
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1. Introduction

Einstein’s theory of general relativity is one of the most beautiful structures of theoretical physics.
As there are several theories of gravitation among them, general relativity has been designated
as the most successful one. It is basically formulated in terms of geometry. Einstein’s theory of
gravitation is characterized by mathematical elegance and outstanding formal beauty using tolls of
Riemannian geometry. It is also realized that it leads to gravitational action Cotsakis et al. (2002).
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At a terminological level, cosmology is the science of the universe. More precisely, it is the study of
the origin, structure evolution, and the universe as a whole, based on interpretations of astronomical
observations at different wave-lengths through laws of physics Wainwright et al. (2005). In a more
refined manner, cosmology is described as the study of the formation and ultimate fate of structures
and galaxies throughout the universe and it is a dominant field of astrophysics today. Cosmological
models are described as the exact solutions of the EFEs that help in understanding the important
features of our universe, of known or possible cosmological model that may at first seem surprising
Ellis et al. (2012).

As an extension, f(R) theory is one of the examples of generalized theory of gravity. This theory is
a generalized version of teleparallel gravity in which the Weitzenbock connection is used instead of
Levi- Civita connection. Myrzakulov (2011) has shown that the acceleration of the universe is un-
derstood by f(R) gravity model. In reality, f(R) theory is an extension of standard Einstein-Hilbert
action involving a function of the Ricci scalar R either linear or non-linear in standard Einstein-
Hilbert Lagrangian. Copeland et al. (2006) have given us a complete review of f(R) theory. The
gravitational field equations of f(R) theory are obtained from the Einstein-Hilbert type variational
principle.

Bianchi type-I cosmological model is actually an important in the sense that it is homogeneous
and anisotropic in which a process of isotropization of universe is studied through the passage
of time. Bianchi Type-I cosmological model, being the generalization of flat Friedmann Lemaitre
Robertson-Walker (FLRW) model, is one of the simplest models of the anisotropic universe Wain-
wright et al. (2005). Therefore, it seems interesting to explore Bianchi type model in the context
of f(R) theory of gravity. The EFEs in a homogeneous and isotropic space-time give rise to the
Friedmann equations that describe the evolution of the universe.

In this paper, an attempt has been made to investigate the exact solutions of Bianchi type-I cosmo-
logical model in the framework of f(R) theory of gravity with the assumption that the expansion θ
is proportional to the shear scalar σ. We present some basics of f(R) theory of gravity. Moreover,
the physical behavior of such a model has also been discussed.

2. f(R) Theory of Gravity

The f(R) theory is a modification of the general theory of relativity (GR). The field equations
of f(R) theory are derived from the Hilbert-Einstein type variational principle. The action for
modified f(R) theory of gravity is given by

S =
1

16π

∫
f(R)

√
−gd4x+

∫
Sm
√
−gd4x, (1)

where f(R) is the general function of Ricci scalar R and Sm is the matter Lagrangian density. The
matter energy-momentum tensor Tij from the Lagrangian Sm is defined as Landau (2013),

Tij =
−2√
−g

∂(
√
−gSm)

∂gij
, (2)

by varying the action S and using the properties

∂(
√
−g) = −1

2

√
−g gij∂gij , (3)
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∂(R) = ∂(gijRij) = Rij∂g
ij + gij∇k∇k∂gij −∇i∇j∂gij . (4)

The field equations of f(R) theory are given by

F (R)Rij −
1

2
f(R)gij −∇i∇jF (R) + gij∇k∇kF (R) = 8πTij , i, j, k = 1, 2, 3, 4, (5)

where

F (R) ≡ df(R)

dR
, (6)

and ∇i is the covariant derivative. Now contracting the field Equations (5), we get

F (R)R− 2f(R) + 3∇k∇kF (R) = 8πT. (7)

In vacuum, we have Tij = 0 =⇒ T = gijT
ij = 0, so we get of Equation (7) as

F (R)R− 2f(R) + 3∇k∇kF (R) = 0⇒ f(R) =
1

2

[
3∇k∇kF (R) + F (R)R

]
. (8)

It is clear that Equation (8) will be used to simplify the field equations and to evaluate f(R), which
gives an important relationship between f(R) and F (R). Now subsisting Equation (8) in Equation
(5), we get

F (R)Rij −∇i∇jF (R)

gij
=

1

4

[
F (R)R−∇k∇kF (R)

]
. (9)

Since the right side does not depend on the index i, the field equation can be expressed as

Ki =
F (R)Rii −∇i∇iF (R)

gii
. (10)

Hence, Ki −Kj = 0, for all i and j.

3. Bianchi Type-I Cosmological Model

The spatially homogeneous and anisotropic Bianchi type-I metric is given by

ds2 = dt2 −
3∑
i=1

A2
i (t)dx

2
i , (11)

where Ai, i = 1, 2, 3 are functions of time t which are called cosmic scale factors Yadav et al.
(2013). The computations of the Ricci tensor Rij and its spur using Mathematica by Hasmani
(2010) and Hasmani (2007); the non-vanishing components are,

R11 =
−A1Ȧ1Ȧ2

A2
− A1Ȧ1Ȧ3

A3
−A1Ä1 (12)

R22 =
−A2Ȧ1Ȧ2

A1
− A2Ȧ2Ȧ3

A3
−A2Ä2 (13)

R33 =
−Ȧ1A3Ȧ3

A1
− A3Ȧ2Ȧ3

A2
−A3Ä3 (14)

R44 =
Ä1

A1
+
Ä2

A2
+
Ä3

A3
. (15)
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The corresponding Ricci scalar R is given by

R = 2

[
Ä1

A1
+
Ä2

A2
+
Ä3

A3
+
Ȧ1Ȧ2

A1A2
+
Ȧ1Ȧ3

A1A3
+
Ȧ2Ȧ3

A2A3

]
, (16)

where an overhead dot denotes derivative with respect to time t. The energy-momentum tensor for
a perfect fluid is given by

Tij = (ρ+ p)uiuj + pgij , (17)

where ρ is the proper energy density, p is the isotropic pressure and ui is 4-velocity of the fluid
particles.

The EFEs are given by

Rij −
1

2
Rgij = −8πTij . (18)

The field Equations (18) with (17) for the metric (11) subsequently lead to the following system of
equations:

Ä1

A1
+
Ä2

A2
+
Ȧ1Ȧ2

A1A2
= −8πp, (19)

Ä2

A2
+
Ä3

A3
+
Ȧ2Ȧ3

A2A3
= −8πp, (20)

Ä1

A1
+
Ä3

A3
+
Ȧ1Ȧ3

A1A3
= −8πp, (21)

Ȧ1Ȧ2

A1A2
+
Ȧ2Ȧ3

A2A3
+
Ȧ1Ȧ3

A1A3
= 8πρ. (22)

4. Exact Solution of Bianchi Type-I in f(R) Theory of Gravity

The field Equations in f(R) theory of gravity for the metric (11) are obtained using Equation (10).
The only independent equations are as follows,
for K4 −K1 = 0 gives

F̈

F
+
Ä2

A2
+
Ä3

A3
− Ȧ1Ȧ2

A1A2
− Ȧ1Ȧ3

A1A3
− Ȧ1Ḟ

A1F
= 0, (23)

for K4 −K2 = 0 gives

F̈

F
+
Ä1

A1
+
Ä3

A3
− Ȧ1Ȧ2

A1A2
− Ȧ2Ȧ3

A2A3
− Ȧ2Ḟ

A2F
= 0, (24)

for K4 −K3 = 0 gives

F̈

F
+
Ä1

A1
+
Ä2

A2
− Ȧ2Ȧ3

A2A3
− Ȧ1Ȧ3

A1A3
− Ȧ3Ḟ

A3F
= 0. (25)

So we get three non-linear differential equations with four unknowns namely A1, A2, A3 and F .
Subtracting Equation (24) from Equation (23), Equation (25) from Equation (24), and Equation
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(25) from Equation (23), we get respectively

Ä1

A1
− Ä2

A2
+
Ȧ3

A3

(
Ȧ1

A1
− Ȧ2

A2

)
+
Ḟ

F

(
Ȧ1

A1
− Ȧ2

A2

)
= 0, (26)

Ä2

A2
− Ä3

A3
+
Ȧ1

A1

(
Ȧ2

A2
− Ȧ3

A3

)
+
Ḟ

F

(
Ȧ2

A2
− Ȧ3

A3

)
= 0, (27)

Ä1

A1
− Ä3

A3
+
Ȧ2

A2

(
Ȧ1

A1
− Ȧ3

A3

)
+
Ḟ

F

(
Ȧ1

A1
− Ȧ3

A3

)
= 0. (28)

These equations give solutions,
A1

A2
= m1 e[c1

∫
dt

a3F ], (29)

A2

A3
= m2 e[c2

∫
dt

a3F ], (30)

A1

A3
= m3 e[c3

∫
dt

a3F ], (31)

where c1, c2, c3; and m1,m2,m3 are constants of integration which satisfy the relation

c1 + c2 + c3 = 0, m1m2m3 = 1. (32)

Using Equations (29), (30) and (31), we can write the metric functions explicitly as

Ai = api e[qi
∫

dt

a3F ], i = 1, 2, 3 (no sum), (33)

where

p1 = 3

√
m−2

1 m−1
2 , p2 = 3

√
m1m

−1
2 , p3 = 3

√
m1m2

2, (34)

and

q1 = −2c1 + c2
3

, q2 =
c1 − c2

3
, q3 =

c1 + 2c2
3

. (35)

Notice that p1, p2, p3; and q1, q2, q3 also satisfy the relations

p1p2p3 = 1, q1 + q2 + q3 = 0. (36)

To solve an integral part in the aforementioned equation, we may refer to the power law assump-
tion. Many kinds of researchs have used the power law relation. For instance, Johri et al. (1994)
in the context of Robertson Walker Brans-Dicke model, have already used the power-law rela-
tion between scale factor and scalar field. However, in a recent paper Uddinet et al. (1994) have
established a result in the context of f(R) gravity which shows that

F ∝ am, (37)

where m is an arbitrary constant. Thus using the power-law relation between F and a, we have

F = kam, (38)

where k is the constant of proportionality and m is an integer. We also use a well-known relation
Berman(1983) between the HP and average scale factor a, given as

H = la−n, for all n, (39)
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where l > 0. This is an important relation because it gives the constant value of the deceleration
parameter (DP), of Equation (39), we get

ȧ = la1−n. (40)

Integrating Equation (40), it follows that

a =

k1 elt, for n = 0,

(nlt+ k2)
1

n , for n 6= 0,
(41)

where k1 and k2 are constants of integration. Thus we obtain two values of the average scale factor
that correspond to two different models of the universe.

4.1. Case-I, n = 0

The model of the universe when n = 0, i.e., a = k1 elt. In this case, F becomes

F = kam = k km1 emlt. (42)

Using this value of F in Equation (33), the metric coefficients A1, A2 and A3 turn out to be

Ai = pik1 elte

[
−qie

−(3+m)lt

lk(m+3)k
m+3
1

]
, i = 1, 2, 3 (no sum). (43)

The metric (11) can be written as

ds2 = dt2 −
3∑
i=1

(
pik1 elte

[
−qie

−(3+m)lt

lk(m+3)k
m+3
1

])2

dx2i , i = 1, 2, 3. (44)

This represents Bianchi type-I in f(R) theory of gravity.

4.1.1. Physical and Geometrical Properties of the Model for n = 0

In this subsection, we will compute relevant physical and geometrical properties of the space-time.
The necessary computations were done using Mathematica, necessary programming was done by
us. Equation (44) represents Bianchi type-I cosmological model in f(R) theory of gravity. The
spatial volume V and the average scale factor a(t) are given by

V =
√
−g = a3 =

3∏
i=1

Ai = k31e3lt. (45)

Mean HP, and DP take the form,

H =
ȧ

a
= l, q =

−ä
aH2

= −1. (46)

The DP is q = −1 and Ḣ = 0, which implies the greatest values of the HP and the fastest rate of
expansion of the universe. Thus, this model may represent the inflationary era in the early universe
and the very late time of the universe. The directional HPs in the direction of x1, x2 and x3 are
obtained as

Hi =
Ȧi
Ai

= l +
qi

kkm+3
1

e−(m+3)lt, i = 1, 2, 3 (no sum). (47)
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The scalar expansion θ is

θ = 3l. (48)

The shear scalar σ2, and the average anisotropy parameter Ā, which are defined as

σ2 =
1

2

[
3∑
i=1

H2
i − 3H2

]
=

(q21 + q22 + q23)e−2(m+3)lt

2k2k
2(m+3)
1

, (49)

Ā =
1

3

[
3∑
i=1

(
Hi −H
H

)2
]

=
1

3

[
q21 + q22 + q23

l2k2k
2(m+3)
1

e−2lt(m+3)

]
6= 0. (50)

From Equation (50), Ā 6= 0, implies that the model is anisotropic. The shear parameter is given by

Σ2 =
σ2

3H2
=

(q21 + q22 + q23)e−2(m+3)lt

6l2k2k
2(m+3)
1

. (51)

The expression for isotropic pressure p in the model is given by

p = − 1

8π

l(2 + l) +
e−2l(m+3)tk

−2(m+3)
1

(
q1q2 + el(m+3)tk(1 + l)km+3

1 (q1 + q2)
)

k2

 . (52)

The energy density ρ in the model is given by

ρ =
1

8π

[
3l2 +

e−2l(m+3)tk
−2(m+3)
1 (q2q3 + q1(q2 + q3))

k2

]
. (53)

The equation of state (EoS) parameter ω = p/ρ of the model is given by

ω =

− 1
8π

[
l(2 + l) +

e−2l(m+3)tk
−2(m+3)
1 (q1q2+el(m+3)tk(1+l)km+3

1 (q1+q2))
k2

]
1
8π

[
3l2 + e−2l(m+3)tk

−2(m+3)
1 (q2q3+q1(q2+q3))

k2

] . (54)

The density parameter Ω is given by

Ω = 1− Σ2 −K ≥ 0,

= 1− (q21 + q22 + q23)e−2(m+3)lt

6l2k2k
2(m+3)
1

. (55)

Alternatively, we get the form

Ω +K + Σ2 = 1. (56)
The Ricci scalar R for Bianchi type-I cosmological model is given by Equation (16), and it is
follows when n = 0 as

R = 12l2 +
e−2l(3+m)tk

−2(m+3)
1

(
q21 + q22 + q23 + q2q3 + q1(q2 + q3)

)
k2

. (57)

The function f(R) of Ricci scalar R, can be found using Equation (8)

f(R) =
1

2
kkm1 emlt(R+ 3m2l2). (58)

This gives f(R) only as a function of R. In this case, we take l = 1, m = 2, k1 = 2, q1 = −2
3 ,

q2 = q3 = 1
3 and k = 1 (see Appendix Figures 1 to 11).
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4.2. Case-II, n 6= 0

The model of the universe when n 6= 0, i.e., a = (nlt+ k2)
1

n . In this case, F becomes

F = kam = k(nlt+ k2)
m

n . (59)

Using this value of F in Equation (33), the metric coefficients A1, A2 and A3 turn out to be

Ai = pi(nlt+ k2)
1

n e

[
qi(nlt+k2)

n−m−3
n

kl(n−m−3)

]
, i = 1, 2, 3 (no sum). (60)

The metric (11) can be written as

ds2 = dt2 −
3∑
i=1

pi(nlt+ k2)
1

n e

[
qi(nlt+k2)

n−m−3
n

kl(n−m−3)

]
2

dx2i , i = 1, 2, 3. (61)

This represents Bianchi type-I in f(R) theory of gravity.

4.2.1. Physical and Geometrical Properties of the Model for n 6= 0

In this subsection, we will compute relevant physical and geometrical properties of the space-time.
The necessary computations were done using Mathematica, necessary programming was done by
us. Equation (61) represents Bianchi type-I cosmological model in f(R) theory of gravity. The
spatial volume V and the average scale factor a(t) are given by

V =
√
−g = a3 =

3∏
i=1

Ai = (nlt+ k2)
3

n . (62)

Mean HP and DP take the form,

H =
ȧ

a
=

l

nlt+ k2
, q =

−ä
aH2

= n− 1. (63)

The DP is q = n − 1, which leads to the accelerating universe model for 0 < n < 1, the model
represents decelerating phase of the universe for n > 1 (q > 0) and expanding with constant
velocity for n = 1. The directional HPs in the direction of x1, x2 and x3 are obtained by

Hi =
Ȧi
Ai

=
l

nlt+ k2
+

qi

k(nlt+ k2)
m+3

n

, i = 1, 2, 3 (no sum). (64)

The scalar expansion θ is

θ =
3l

nlt+ k2
. (65)

The shear scalar σ2, and the average anisotropy parameter Ā, which are defined as

σ2 =
1

2

[
3∑

i=1

H2
i − 3H2

]
=

q21 + q22 + q23

2k(nlt+ k2)
2(m+3)

n

, (66)

Ā =
1

3

[
3∑

i=1

(
Hi −H
H

)2
]

=
q21 + q22 + q23

3l2k2
(nlt+ k2)

2(n−m−3)
n 6= 0. (67)
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From Equation (67), since Ā 6= 0, the model is anisotropic. The shear parameter is given by

Σ2 =
σ2

3H2
=

q21 + q22 + q23

6kl2(nlt+ k2)
m+3−n

n

. (68)

The expressions for isotropic pressure p in the model is given by

p = − l

8π

[
2k2 + l + 2lnt

(k2 + nlt)2
+
l(k2 + nlt)−

2(3+m)
n q1q2

kl2

+
(k2 + nlt)−

2(3+m+n)
n (k2 + nlt+ l)(q1 + q2)

kl

]
.

(69)

The energy density ρ in the model is obtained as

ρ =
l2

8π

[
3

(k2 + nlt)2
+

(k2 + nlt)−
2(3+m)

n (q2q3 + q1(q2 + q3))

kl2

]
. (70)

The EoS parameter of the model is given by

ω =
− 2k2+l+2lnt

(k2+nlt)2
− l(k2+nlt)−

2(3+m)
n q1q2

kl2
− (k2+nlt)−

2(3+m+n)
n (k2+nlt+l)(q1+q2)

kl

l

[
3

(k2+nlt)2
+

(k2+nlt)−
2(3+m)

n (q2q3+q1(q2+q3))
kl2

] . (71)

The density parameter Ω is given by

Ω = 1− Σ2 −K ≥ 0,

= 1− q21 + q22 + q23

6kl2(nlt+ k2)
m+3−n

n

. (72)

Alternatively, we get the form

Ω +K + Σ2 = 1. (73)
The Ricci scalar R for Bianchi type I cosmological model is given by Equation (16), and it is
follows when n 6= 0 as

R =
−6l2(−2 + n)

(k2 + nlt)2
+

2(k2 + nlt)
−2(m+3)

n (q21 + q22 + q23 + q2q3 + q1(q2 + q3))

k
. (74)

The function f(R) of Ricci scalar R, can be found using Equation (8)

f(R) =
k

2
(nlt+ k2)

m

n

[
R+ 3l2m(m− n)(nlt+ k2)

−2
]
. (75)

This gives f(R) only as a function of R. In this case, we take l = 1, m = 2, k2 = 2, q1 = −2
3 , q2 =

q3 = 1
3 and k = 1 (see Appendix Figures 12 to 20).

5. Conclusion

In this paper, we have explored some extended study of exact solutions of EFEs for Bianchi type-I
space-times in f(R) theory of gravity and obtained two exact solutions corresponding to two cases
as (namely n = 0 and n 6= 0). Also, we assume the power-law relation between a and F (R).

In case-I, when n = 0 with a = k1 elt, the model has no singularity point. The volume V is
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finite (Figure 1), and blows to infinite at t → ∞. The generalized HP is constant (Figure 2), and
accordingly expansion scalar θ is constant (Figure 5). The HPs Hi, i = 1, 2, 3 are finite for all finite
values of t (Figure 10). The shear scalar σ2 and shear parameter Σ2 are zero as t → ∞ (Figures 3,
4). The isotropic pressure p, energy density ρ, density parameter Ω and Ricci scalar R are constant
as t → ∞ (Figures 7, 8, 9, 6 ). The function f(R) of the Ricci scalar R is infinite (Figure 11), at
non-singularity, the metric functions Ai, i = 1, 2, 3 do not vanish for this model.

In case-II, when n 6= 0 with a = (nlt + k2)
1

n , the model has a singularity point taken as, t = −k2
nl .

From Equation (62), it is observed that the spatial volume V → ∞ (Figure 12) as t → ∞, and the
volume scaler factor vanishes at the singularity point. The generalized HP is finite (Figure 13), at
the singularity. The expansion scalar θ → 0 as t → ∞ (Figure 16), as well as it is observed that θ
starts with infinite value at t = 0 and then, rapidly becomes constant after some finite time. The
direction HPs Hi, i = 1, 2, 3 are finite (Figure 22), at the singularity point. The shear scalar σ2 and
shear parameter Σ2 are zero as t → ∞ (Figures 15, 14). The isotropic pressure p, energy density
ρ and Ricci scalar R are zero t → ∞ (Figures 17, 18, 21). The density parameter Ω is constant as
t→∞ (Figure 19). The function f(R) of the Ricci scalar R is finite at singularity (Figure 20), the
metric functions Ai, i = 1, 2, 3 vanish when a = 0.

The expansion of the model decreases with the increase in time for l > 0. As the mean anisotropy
parameter is constant, which is a measure of deviation from isotropic expansion, the universe does
not represent an isotropic model. However, for l = 1, one can obtain the isotropic behavior of the
model.
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Appendix: Graphs

Figure 1. The plot of volume V versus
cosmic time t

Figure 2. The plot of Hubble parameter
H versus cosmic time t

Figure 3. The plot of the shear scalar σ2

versus cosmic time t
Figure 4. The plot of shear parameter∑2 versus cosmic time t

Figure 5. The plot of Scalar expansion θ
versus cosmic time t

Figure 6. The plot of Ricci scalar R ver-
sus cosmic time t
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Figure 7. The plot of pressure p versus
cosmic time t

Figure 8. The plot of energy density ρ
versus cosmic time t

Figure 9. The plot of density parameter
Ω versus cosmic time t

Figure 10. The plot of directional Hub-
ble parametersHi versus cos-
mic time t

Figure 11. The plot of the function f(R)
versus cosmic time t

Figure 12. The behavior of volume V
versus n and cosmic time t

Figure 13. The behavior of Hubble pa-
rameter H versus n and cos-
mic time t

Figure 14. The behavior of shear param-
eter

∑2 versus n and cosmic
time t
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Figure 15. The behavior of the shear
scalar σ2 versus n and cosmic
time t

Figure 16. The behavior of scalar expan-
sion θ versus n and cosmic
time t

Figure 17. The behavior of pressure p
versus n and cosmic time t

Figure 18. The behavior of energy den-
sity ρ versus n and cosmic
time t

Figure 19. The behavior of density pa-
rameter Ω versus n and cos-
mic time t

Figure 20. The behavior of the function
f(R) versus n and cosmic
time t
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Figure 21. The behavior of Ricci scalar
R versus n and cosmic time t

Figure 22. The behavior of directional
Hubble parameters Hi ver-
sus n and cosmic time t, the
brown color when q1 = −2

3
and the blue color when q2 =
q3 = 1

3


