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Abstract 
 

In this paper, an exponentially fitted non standard finite difference method is proposed to 

solve singularly perturbed differential-difference equations with boundary layer on left 

and right sides of the interval. In this method, the original second order differential 

difference equation is replaced by an asymptotically equivalent singularly perturbed 

problem and in turn the problem is replaced by an asymptotically equivalent first order 

problem. This initial value problem is solve by using exponential fitting with non 

standard finite differences. To validate the applicability of the method, several model 

examples have been solved by taking different values for the delay parameter  , 

advanced parameter   and the perturbation parameter  . Comparison of the results is 

shown to justify the method.  The effect of the small shifts on the boundary layer 

solutions has been investigated and presented in figures. The convergence of the scheme 

has also been investigated.  

          

Keywords:     Singularly perturbed differential-difference equations; Boundary Layer;           
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1. Introduction 

Singularly Perturbed Differential-difference equations (SPDDEs), also called as a class of 

functional differential equations, are mathematical models of a number of real 
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phenomenon. Their applications permeate all branches of contemporary sciences such as 

engineering, physics, economics, biomechanics, and evolutionary biology given in 

Bellman and Cooke (1963), Mackey (1977) and Kolmanovskii and Myshkis (1992). The 

study of bistable devices as in Derstine et al. (1982), the description of human pupil-light 

reflex as in Longtin and Milton (1988), the first exit time problem in the modeling of the 

activation of neuronal variability as in Stein (1965), the study of a variety of models for 

physiological processes or diseases as in Longtin and Milton (1988) and Wazewska  and 

Lasota (1976), the study of dynamic systems with time delays which arise in neural 

networks as in  Tuckwell and Ricther (1978) are some examples involving this type of 

singularly perturbed differential-difference equations.  

 

Lange and Miura (1982, 1985, 1985, 1994, 1994) have made detailed discussion on the 

solutions of SPDDEs exhibiting rapid oscillations, resonance behaviour, turning point 

behaviour and boundary and interior layer behaviour. Kadalbajoo and Sharma (2004) 

have proposed a method consisting the standard upwind finite difference operator on a 

special type of mesh. Sharma and Kaushik (2006) have discussed a linear problem for 

which one cannot construct a parameter uniform scheme based on fitted operator 

approach but for the same problem a parameter uniform numerical scheme based fitted 

mesh approach can be constructed. Kadalbajoo and Sharma (2004, 2005) have described 

a numerical approach based on finite difference method to solve a mathematical model 

arising from a model of neuronal variability. Essam et al. (2013) have proposed a new 

initial value method for solving a class of nonlinear singularly perturbed boundary value 

problems with a boundary layer at one end.  

 

Kadalbajoo  and Reddy (1987) have derived an initial-value technique, which is simple to 

use and easy to implement, for a class of nonlinear, singularly perturbed two-point 

boundary-value problems with a boundary layer on the left end of the underlying interval. 

Kumara et al. (2016) have presented Galerkin method to solve singularly perturbed 

differential-difference equations with delay and advanced shifts using fitting factor. A 

fitting factor in the Galerkin scheme is introduced which takes care of the rapid changes 

that occur in the boundary layer. Mirzaee and Hoseini (2013) have introduced a method 

to solve singularly perturbed differential-difference equations of mixed type,  in terms of 

Fibonacci polynomials. Pratima and Sharma (2011) have presented a numerical study of 

boundary value problems for singularly perturbed linear second-order differential–

difference equations with a turning point. Kadalbajoo and Sharma (2002) have proposed 

a numerical method to solve boundary-value problems for a singularly-perturbed 

differential-difference equation of mixed type. Reddy and Awoke (2013) have described 

an appropach for solving singularly perturbed differential difference equations via fitted 

method.  

 

In this paper, an exponentially fitted non standard finite difference method is proposed to 

solve singularly perturbed differential-difference equations with boundary layer on left 

and right sides of the interval. In this method, the original second order differential 

difference equation is replaced by an asymptotically equivalent singularly perturbed 

problem and in turn the problem is replaced by an asymptotically equivalent first order 

problem. This initial value problem is solve by using exponential fitting with non 

https://www.hindawi.com/56010692/
https://www.tandfonline.com/author/Rai%2C+Pratima
https://www.tandfonline.com/author/Sharma%2C+Kapil+K
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standard finite differences. To validate the applicability of the method, several model 

examples have been solved by taking different values for the delay parameter  , 

advanced parameter   and the perturbation parameter  . Comparison of the results is 

shown to justify the method. The effect of the small shifts on the boundary layer solutions 

has been investigated and presented in figures. The convergence of the scheme has also 

been investigated.  

 

2.1. Numerical scheme 
 

Consider singularly perturbed differential difference equation of the form: 

 

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ); (0,1),y x a x y x b x y x d x y x c x y x h x x              (1)       

 

and subject to the boundary conditions  

 

          ( ) ( )       - 0,y x x on x               (2) 

 

                 ( ) ( )         1 1 ,y x x on x               (3) 

 

where ( ),  ( ),   ( ),    ( ),    ( ),    ( )a x b x c x d x h x x and ( )x  are bounded and continuously 

differentiable functions on (0, 1), 10     is the singular perturbation parameter; and 

  o0  and   o0  are the delay and the advance parameters respectively. In 

general, the solution of problem: Equations (1)-(3) exhibits the boundary layer behavior 

of width  O   for small values of  . 

 

By using Taylor series expansion in the vicinity of the point x, we have, 

 

  ( ) ( ),y x y x y x                (4) 

and 

               ( ) ( ).y x y x y x                (5) 

 

Using Equations (4) and (5) in Equation (1) we get an asymptotically equivalent 

singularly perturbed boundary value problem of the form: 

 

     ( ) ( ) ( ),y x p x y x Q x y x h x               (6) 

with 

                       (0) 0 ,y                                                          (7) 

 

                       (1) 1 ,  y               (8) 

where,                             

      ( ) ,p x a x c x b x              (9) 
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and          

      ( ) .Q x b x c x d x            (10) 

 
The transition from Equations (1)-(3) to Equations (6)-(8) is admitted, because of the 

condition that 10    and  10   are sufficiently small. This replacement is 

significant from the computational point of view.  Further details on the validity of this 

transition can be found in Els'golts and Norkin (1973). Thus, the solution of Equations 

(6)-(8) will provide a good approximation to the solution of Equations (1)-(3).  

 

2.2.  Left End Boundary Layer Problems 
 

We assume that  

     ( ) 0,Q x b x c x d x     

and 

     (    0,)p x a x c x b x M       

 

throughout the interval [0, 1], where M is some constant. Further we assume that 

Equations (6)-(8) has a unique solution  xy  which exhibits a boundary layer of width 

O( ) on the left side of the interval, i.e., at x=0. For convenience, we shall write 

Equation (6) as follows: 

      ( ) ( ) ( ),y x p x y x q x y x h x                                             (11) 

where   

( ) ( ) ( ),q x Q x p x   

with  

                (0) 0 ; (1) 1 . y y                        (12) 

 

The initial value method consists of the following steps: 

 

Step 1: Obtain the reduced problem by setting 0  in Equation (11) and solve it for the 

solution to the appropriate boundary condition. Let 0 ( )y x be the solution of the reduced 

problem of Equation (11), that is, 

 

 0 0( ) ( ) ( ) ( ) ( ),p x y x q x y x h x           (13) 

with 

                                                               0 (1) .y                                                           (14) 

 

Step 2: Set up the approximate equation to the Equation (11) as O( ) as follows: 

 

         0( ) ( ) ( ),y x p x y x q x y x h x             (15) 
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with  

   (0) 0 ; (1) 1 ,y y                    (16) 

 

where the term ( )y x  is replaced by the solution of reduced problem: Equations (13)-(14).  

 

Step 3: Replace the approximated second order problem: Equations (15)-(16) by an 

asymptotically equivalent first order problem as follows. By integrating Equation (15), 

we obtain: 

 

          ( ) ( ) ( ) ,y x p x y x f x K              (17) 

where 

      0( ) ( ) ; ( ) ( ) ( ) ( ),f x H x dx H x h x q x y x          (18) 

 

and K is an integrating constant to be determined. 

 

In order to determine the constant K, we introduce the condition that the reduced 

equation of Equation (17) should satisfy the boundary condition, 

  

(1) ,y   

i.e., 

                        (1) (1) (1) .p y f K   

Therefore,   

          (1) (1).K p f   

             

Thus, we have replaced the original second order problem: Equations (11)-(12), which is 

in turn a good approximation to Equations (1)-(3), with an asymptotically equivalent first 

order problem; Equation (17) with (0)y  . We solve this initial value problem to obtain 

the solutions over the interval 0 1x  .  

 

In order to solve the initial value problems in our numerical experimentation, we have 

used the exponential fitting non standard finite difference technique. We consider the 

exponentially fitted non standard finite difference scheme on Equation (17) given by 

 

1 1
0( ) ,

3

i i i
i i i

y y y
D y p f with y      

   
 

%                   (19) 

where  

21 13 4
( )

2

i i i
i

y y y
D y O h

h

    
 % , 

 

21 1 ( )
3

i i i
i

y y y
y O h  
  , 
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,
h




  

 

and   is a fitting factor which is to be determined in such a way that solves of Equation 

(19) converges uniformly to the solution of Equation (17). The value of   is given by 

 

      
 

 

2 1
( ) .

3 4 3

i i

i i

p p

i

i p p

p e e

e e

 

 


 





 


  
         (20) 

 

Now from Equation (19), we have, 

 

 

                 
1 1

3 4
;

2 3 2 3 2 3

 1,  2,  , 1.

i i i i i i
i i i i

p p p
y y y f

h h

for

h

i N

     
 

  



     
          

  







        (21) 

This is a three term recurrence relation along with the boundary conditions given in the  

Equation (12), hence, can be solved by the Thomas Algorithm. 

2.3.  Right End Boundary Layer Problems                                            

We now extend this technique to the right end boundary layer problems on the underlying 

interval. Consider  Equation (6) rewritten as follows, for convenience: 

          ( ) ( ) ( ),y x p x y x q x y x h x                             (22) 

with 

          (0) 0   and  (1) 1 ,y y                            (23) 

where 

     ( ) ,p x a x c x b x     

( ) ( ) ( ),q x Q x p x   

and 

     ( ) .Q x b x c x d x    

Further, assume that, 

     ( ) <0,p x a x c x b x M      

throughout the interval [0,1], where M is a constant. This assumption implies that the 

boundary layer will be in the neighborhood of .1x   

Step 1. Obtain the reduced problem by setting 0  in Equation (22) and solve it for the 

solution with the appropriate boundary condition. Let 0 ( )y x be the solution of the 

reduced problem of Equation (22), that is, 
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           0 0( ) ( ) ( ) ( ) ( ),p x y x q x y x h x           (24) 

with  

0 (0) .y                      (25) 

 

Step 2. Set up the approximate equation to the Equation (22) as O( ) as follows: 

 

            0( ) ( ) ( ),y x p x y x q x y x h x                         (26) 

with     

 (0) 0 ,y     

and  
 (1) 1 ,  y      

 

where the term ( )y x  is replaced by 0y ( )x , the solution of the reduced problem of       

Equations (22)-(23).  

 

Step 3. Replace the approximated second order problem Equation (26) by an 

asymptotically equivalent first order problem as follows. By integrating Equation (26), 

we obtain: 

 

            ( ) ( ) ( ) ,y x p x y x f x K             (27) 

where 

   0( ) ( ) ; ( ) ( ) ( ) ( ),f x H x dx H x h x q x y x                             (28) 

 

and K is an integrating constant to be determined. In order to determine the constant K, 

we introduce the condition that the reduced equation of Equation (27) should satisfy the 

boundary condition, 

  

(0)y  , 

i.e., 

(0) (0) (0) .p y f K   

Therefore, 

(0) (0).K p f   

                    

Thus, we have replaced the original second order problem (11)-(12), which is in turn a 

good approximation to (1)-(3), with an asymptotically equivalent first order problem 

Equation (27) with (1)y  .  

 

We solve this initial value problem; Equation (27) with (1)y   to obtain the solutions 

over the interval 0 1x  . We consider the exponentially fitted non standard finite 

difference scheme on Equation (27) given by 
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1 1( ) (1) ,
3

 i i i
i i i

y y y
wiy f thD p y      

   
 

%           (29) 

 

where  

21 14 3
( )

2

i i i
i

y y y
D y O h

h

   
 % , 

 

21 1 ( )
3

i i i
i

y y y
y O h  
  , 

,
h




  

 

and   is a fitting factor which is to be determined in such a way that solves of Equation 

(29) converges uniformly to the solution of Equation (27).  

 

The value of   is given by 

 

    
 

 

2 1
( ) .

3 4 3

i i

i i

p p

i

i p p

p e e

e e

 

 


 





 


 
                    (30) 

Now, from Equation (29), we have 

 

               
1 1

 1,  2

4 3
;

2 3 2 3 2

,  , 1.

3

i i i i i i
i i i i

p p p
y y y f

h h

for i

h

N

     
 

     
          

  

 





                (31) 

This is a three term recurrence relation along with the boundary conditions given in the  

Equation (23), hence, can be solved by the Thomas Algorithm. 

 

3. Convergence analysis     

 

Now we consider the convergence analysis of left end boundary layer described in 

section 2.2 for the problem Equations (1)-(2).  Incorporating the boundary conditions we 

obtain the system of equations in the matrix form as  

                                                        

( ) 0,AY Q T h                                  (32)  

 

in which,   

 , ,     1 , 1,i jA m i j N     

 

is a tridiagonal matrix of order N-1, with, 
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, 1

3
,

2 3

i
i i

hp
a





   

 

,

4
,

2 3

i
i i

hp
a


   

, 1 ,
2 3

i
i i

hp
a





   

2; ( ) ( ),i iQ hf T h O h    

  

and 

     1 2 1 1 2 1, ,..., , ( ) , ,..., , 0,0,...,0 ,
T T T

N NY Y Y Y T h T T T O     

 

are associated vectors of Equation (32).  

 

Let  

 1 2 1, ,......, ,
T

Ny y y y Y   

  

which satisfies the equation 

  

                                                             0Ay Q  .                                           (33)             

Let   

 , for  1,2,..., 1,i i ie y Y i N     

be the discretization error so that  

 1 2 1, ,..., .
T

NE e e e y Y    

Subtracting Equation (32) from Equation (33), we get the error equation                                                                     

( ).AE T h                                                         (34)     

Let iS be the sum of the elements of the ith row of the matrix A, then we have   

   
23

 , for  1,
2 3

i
i

hp
S i


         

 

           ,  for  2,3,..., 2,i iS hp i N        

 

                                                   
2

 ,  for 1.
2 3

i
i

hp
S i N


     
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We can choosen h sufficiently small so that the matrix A is irreducible and monotone. It 

follows that 1A  exists. Hence from Equation (34), we have   

    

                                                         
1

   E A T


 .                                                 (35)                 

Also from theory of matrices, we have  

 

                                           
1

1

,
1

. 1 ,  for  1,2,..., 1
N

ki k
k

A S i N






   .                                  (36)   

                                        

Let  
1 1

,  be the ( , )    element of   ,th

i kA i k A   

and  

1 max ( ) .iC p x  

We define  

                        
1

1 1

,1 1 1 1
1

max   and   ( ) max ( ) .
N

ii ki N i N
k

A A T h T h


 

     


                (37)   

        

Hence,  

                                                    
1

,1
1 1

1 3
,

2i
A

S hC


                                               (38)  

                       

                                                
1

, 1
1 1

1 3
,

2i N
N

A
S hC






                                           (39) 

Furthermore,  

    
2

1

,
2 1

2 2

1 1
     ;  2,3,..., 2.

min C

N

i k
k k

k N

A i N
S h





  

                      (40) 

 

By the help of Equations (38) - (40), using Equation (35), we obtain, 

                                                           ( ).E O h                                                            (41)  

 

Hence, the proposed method is first order convergent. Similarly the convergence analysis 

for right end layer can be obtained in the same lines.    

       

4.  Numerical Examples 
 

To demonstrate the applicability of the method we have applied it to six problems of the 

type given by Equations (1) - (3) with left layer.  Our numerical solution is compared 

with the ‘Upwind Method’ which is supposed to be better than classical second oreder 

method. 
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   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).y x a x y x b x y x d x y x c x y x h x           

 

The exact solution of such boundary value problems having constant coefficients         

(i.e. ( ) ,a x a   b x b    ,    c x c   d x d    ,h x h      x  and    x    are 

constants) is given by:  

 

  1 2

1 2 ( / ),
m x m x

y x c e c e h c    

where  

        
   

2 1

1 2 1 2

3 3 3 3

1 2

3 3

e ( ) e ( )
,    

e e e e

m m

m m m m

h c h c h c h c
c c

c c

                 
    
   

,  

 

   
2

3

1

4

2

a b c a b c c

m

    



       
  

 ,
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Example 1.   
 

Numerical results for model problem given by Equations (1)-(3) having boundary layer at 

the left end with            a(x)=1, b 2,   c 0,   d 3,   0,   1,   1x x x h x x x          

and the resulting initial value problem: 
1

( ) ( ) (0) 1,

x

py x py x pe with y



     

 

are presented in Tables 1 and 2. The effect of the small parameters on the boundary layer 

solutions is shown in the Figures 1 and 2. 

 

Example 2.    
 

Numerical results for model problem given by Equations (1)-(3) having boundary layer at 

the left end with              a(x)=1, b 0,   c 2,   d 3,   0,   1,   1x x x h x x x         

and the resulting initial value problem: 
1

( ) ( ) (0) 1,

x

py x py x pe with y



     
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are presented in Tables 3 and 4. The effect of the small parameters on the boundary layer 

solutions is shown in the Figures 3 and 4. 

 

Example 3. 

Numerical results for model problem given by Equations (1)-(3) having boundary layer at 

the left end with            a(x)=1, b 2,   c 1,   d 5,   0,   1,   1x x x h x x x          

and the resulting initial value problem: 

 

6( 1)

( ) ( ) (0) 1,

x

py x py x pe with y



     

 

are presented in Tables 5 to 8. The effect of the small parameters on the boundary layer 

solutions is shown in the Figures 5 and 6. 

 

Example 4.  

 

Numerical results for model problem given by Equations (1)-(3) having boundary layer at 

right end with             a(x)=-1, b 2,   c 0,   d 1,   0,   1,   1x x x h x x x           

and the resulting initial value problem: 

 

   ( ) ( ) (1) 1,

x

py x py x pe with y       

 

are presented in Tables 9 and 10. The effect of the small parameters on the boundary 

layer solutions is shown in the Figures 7 and 8.  

 

Example 5.  
 

Numerical results for model problem given by Equations (1)-(3) having boundary layer at  

right end with             a(x)=-1, b 0,   c 2,   d 1,   0,   1,   1x x x h x x x           

and the resulting initial value problem: 

( ) ( ) (1) 1,

x

py x py x pe with y       

 

are presented in Tables 11 and 12. The effect of the small parameters on the boundary 

layer solutions is shown in the Figures 9 and 10. 

 

Example 6.  
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Numerical results for model problem given by Equations (1)-(3) having boundary layer at  

right end with             a(x)=-1, b 2,   c 2,   d 1,   0,   1,   1x x x h x x x              

and the resulting initial value problem: 

3

( ) ( ) (1) 1,

x

py x py x pe with y       

 

are presented in Tables 13 to 16. The effect of the small parameters on the boundary layer 

solutions is shown in the Figures 11 and 12. 

 

5.  Conclusions 

 
In general, obtaining the numerical solution of a boundary value problem is difficult than 

that of the corresponding initial value problem. Hence, we always prefer to convert the 

second order problem into a first order problem. This technique provides an alternative 

technique to conventional approaches of converting the second order problems into first 

order problems. We have implemented the present method on three examples for left 

layer and three examples for right layer, by taking different values for the delay 

parameter  , advanced parameter   and the perturbation parameter  . To solve these 

initial value problems, we have used the exponentially fitted method to get a three-term 

recurrence relation which can be solved by the Thomas Algorithm. We have tabulated the 

computational results obtained by the proposed technique.  

 

It can be observed from the tables and the figures that the present method approximates 

the exact solution very well. The effect of delay and advanced parameters on the 

solutions of the problem has been investigated and plotted in figures. When the solution 

of the SPDDEs exhibits layer on the left side, it is observed that the effect of delay or 

advanced parameters on the solution in the boundary layer region is negligible, while in 

the outer region is considerable. The change in the advanced term affects the solution in 

the similar manner as the change in delay affects but reversely in (Figures 1-5). Also, 

when the SPDDEs exhibit layer behavior on the right side, the changes in delay or 

advanced parameters affect the solution in boundary layer region as well as outer region. 

The thickness of the layer increases as the size of delay parameter increases while it 

decreases as the size of advanced parameter increases (Figures 6-10). The present method 

is independent of perturbation parameter, also is simple and easy technique for solving 

singularly perturbed differential difference equations. Our method provides an alternative 

technique for solving singularly perturbed differential difference problems. 
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Table 1: Maximum absolute errors of Example 1 for  =10-3 

 

/ h              10-2 

Present                 Upwind 

method                 method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

0.0  0.002853  1.85e+094 0.00067097  0.232912 0.00091355   0.012377 

0.3  0.002853  1.74e+094 0.00067097  0.232753 0.00091355   0.012373 

0.6  0.002853  1.63e+094 0.00067097  0.232594 0.00091355    0.012370 

0.9  0.002853  1.53e+094 0.00067097  0.232436 0.00091355   0.012367 
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Table 2: Maximum absolute errors of Example 1 for  =10-5 

 

/ h   10-3 10-4 10-5 

0.0   0.00028558 2.8573e-05 6.7186e-06 

0.3   0.00028558 2.8573e-05 6.7186e-06 

0.6   0.00028558 2.8573e-05 6.7186e-06 

0.9   0.00028558 2.8573e-05 6.7186e-06 

 

 

Table 3: Maximum absolute errors of Example 2 for  =10-3 

 

/ h              10-2 

Present                 Upwind 

method                 method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

0.0  0.002853   1.86e+094 0.00067097   0.232912 0.00091355   0.012377 

0.3  0.0028513  1.99+094 0.00067013   0.233071 0.00091241   0.012380 

0.6  0.0028496   2.12e+094 0.00066929   0.233229 0.00091128   0.012383 

0.9  0.0028479   2.27e+094 0.00066846   0.233388 0.00091014   0.012387 

 

 

Table 4: Maximum absolute errors of Example 2 for  =10-5: 

  

/ h            10-3    10-4      10-5 

0.0   0.00028558 2.8573e-05 6.7186e-06 

0.3   0.00028558 2.8573e-05 6.7186e-06 

0.6   0.00028558 2.8573e-05 6.7186e-06 

0.9   0.00028558 2.8573e-05 6.7186e-06 

 

 

 

Table 5: Maximum absolute errors of Example 3 for  =0.5  and  =10-3: 

 

/ h              10-2 

  Present                   Upwind 

  method                   method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

 

0.0  

 

0.016966    3.54e+094 

 

0.0039948   0.365172 

 

0.005446    0.017050 

0.3  0.016966    3.22e+094 0.0039948   0.365550 0.005446    0.017064 

0.6  0.016966    3.54e+094 0.0039948   0.365928 0.005446    0.017078 

0.9  0.016966    3.79e+094 0.0039948   0.366306 0.005446    0.017092 
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Table 6: Maximum absolute errors of Example 3 for  =0.5  and  =10-5: 

 

/ h   10-3 10-4 10-5 

0.0   0.0017095 0.00017143 4.0309e-05 

0.3   0.0017095 0.00017143 4.0309e-05 

0.6   0.0017095 0.00017143 4.0309e-05 

0.9   0.0017095 0.00017143 4.0309e-05 

 

Table 7: Maximum absolute errors of Example 3 for  =0.5  and  =10-3: 

 

/ h              10-2 

  Present                   Upwind 

  method                   method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

0.0  0.016975    3.54e+094 0.003999     0.365172 0.0054517  0.017050 

0.3  0.01697      3.22e+094 0.0039965   0.365550 0.0054483  0.017064 

0.6  0.016965    3.54e+094 0.003994     0.365928 0.0054449  0.017078 

0.9  0.016959    3.79e+094 0.0039915   0.366306 0.0054415  0.017092 

 

 

Table 8: Maximum absolute errors of Example 3 for  =0.5  and  =10-5: 

 

/ h   10-3 10-4 10-5 

0.0   0.0017095 0.00017143 4.0309e-05 

0.3   0.0017095 0.00017143 4.0309e-05 

0.6   0.0017095 0.00017143 4.0309e-05 

0.9   0.0017095 0.00017143 4.0309e-05 

 

 

 

Table 9: Maximum absolute errors of Example 4 for  =10-3 

 

/ h              10-2 

  Present                   Upwind 

  method                   method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

0.0  0.002853    3.6323e+095 0.00067097 0.0009995 0.00091355  0.00099905 

0.3  0.0028547  3.3974e+095 0.00067181 0.0010007 0.00091469  0.00100020 

0.6  0.0028564  3.3974e+095 0.00067265 0.0010019 0.00091583  0.00100140 

0.9  0.0028582   2.9718e+095 0.0006735   0.0010031 0.00091698  0.00100265 
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Table 10: Maximum absolute errors of Example 4 for  =10-5 

 

/ h   10-3 10-4 10-5 

0.0   0.00028558 2.8573e-05 6.1482e-06 

0.3   0.00028558 2.8573e-05 6.1482e-06 

0.6   0.00028558 2.8574e-05 6.1483e-06 

0.9   0.00028559 2.8574e-05 6.1484e-06 

 

 

Table 11: Maximum absolute errors of Example 5 for  =10-3 

 

/ h              10-2 

  Present                   Upwind 

  method                   method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

0.0  0.002853    3.6322e+095 0.0006709  0.0009995 0.00091355 0.0009990 

0.3  0.0028513  3.8832e+095 0.0006701  0.0009983 0.00091241 0.0009978 

0.6  0.0028496  4.15113e+095 0.0006692  0.0009971 0.00091128 0.0009966 

0.9  0.0028479  4.4377e+095 0.0006684  0.0009959 0.00091014 0.0009954 

 

 

Table 12: Maximum absolute errors of Example 5 for  =10-5 

  

/ h            10-3    10-4      10-5 

0.0   0.00028558 2.8573e-05 6.1482e-06 

0.3   0.00028558 2.8573e-05 6.1481e-06 

0.6   0.00028558 2.8573e-05 6.148e-06 

0.9   0.00028558 2.8573e-05 6.148e-06 

 

 

 

Table 13: Maximum absolute errors of Example 6 for  =0.5  and  =10-3 

 

/ h              10-2 

  Present                   Upwind 

  method                   method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

0.0  0.0084942   3.1158e+095 0.0018357  0.0029895 0.0027162   0.0029855 

0.3  0.0085166   2.9148e+095 0.0019076  0.0029931 0.0027211   0.0029890 

0.6  0.0085391   2.7266e+095 0.0020628  0.0029967 0.0027563   0.0029926 

0.9  0.0085615   2.5504e+095 0.0022424  0.0030002 0.0028623   0.0029962 
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Table 14: Maximum absolute errors of Example 6 for  =0.5  and  =10-5 

/ h              10-3      10-4     10-5 

0.0   0.00085591 8.5713e-05 1.8444e-05 

0.3   0.00085593 8.5716e-05 1.8444e-05 

0.6   0.00085596 8.5718e-05 1.8445e-05 

0.9   0.00085598 8.572e-05 1.848e-05 

 

Table 15:  Maximum absolute errors of Example 6 for  =0.5  and  =10-3 

/ h              10-2 

  Present                   Upwind 

  method                   method 

            10-3 

   Present                 Upwind 

   method                 method 

              10-4 

    Present                 Upwind 

    method                 method 

0.0  0.008569    2.4942e+095 0.0023055  0.0030014 0.0029073  0.0029974 

0.3  0.0085465  2.6660e+095 0.0021207  0.0029978 0.0027858  0.0029938 

0.6  0.0085241  2.8507e+095 0.0019555  0.0029943 0.0027233  0.0029902 

0.9  0.0085016   3.0473e+095 0.001837    0.0029907 0.0027179  0.0029867 

 

 

Table 16:  Maximum absolute errors of Example 6 for  =0.5  and  =10-5 

/ h              10-3       10-4      10-5 

0.0   0.00085599 8.5721e-05 1.8522e-05 

0.3   0.00085596 8.5719e-05 1.8445e-05 

0.6   0.00085594 8.5716e-05 1.8444e-05 

0.9   0.00085592 8.5714e-05 1.8444e-05 

 

 
Figure 1: Effect of parameter in the Example 1 for  =10-3 
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Figure 2: Effect of parameter in the Example 1 for  =10-5 

 

 
 

Figure 3: Effect of parameter in the Example 2 for  =10-3 
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Figure 4: Effect of parameter in the Example 2 for  =10-5 

. 

 

 
Figure 5: Effect of parameters in the Example 3 for  =0.5  and  =10-3: 
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Figure 6: Effect of parameters in the Example 3 for  =0.5  and  =10-3: 

 

 
 

Figure 7: Effect of parameter in the Example 4 for for  =10-3 
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Figure 8: Effect of parameter in the Example 4 for  =10-5 

 

 
Figure 9: Effect of parameter in the Example 5 for  =10-3 
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Figure 10: Effect of parameter in the Example 5 for  =10-5 

 

 

 

Figure 11: Effect of parameters in the Example 6 for  =0.5  and  =10-3. 
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Figure 12: Effect of parameters in the Example 6 for  =0.5  and  =10-3 

 

 

 


