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Abstract  
 

In this paper, firstly, we define the Lucas difference sequence spaces by the help of Lucas 

sequence and a sequence of modulus function. Besides, we give some inclusion relations and 

examine geometrical properties such as Banach-Saks type p, weak fixed point property. 
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1. Introduction 
 

Let 𝑤 be the space of all real and complex valued sequences. Each linear subspace of 𝑤 is 

called sequence space. Throughout the paper ℓ∞, ℓ𝑝(1 ≤ 𝑝 < ∞), 𝑐 and 𝑐0 denote the spaces 

of all bounded, 𝑝-absolutely summable, convergent and null sequences, respectively. If 𝑋 is a 

complete linear metric space, then a 𝐾-space 𝑋 is called an 𝐹𝐾-space. An 𝐹𝐾-space whose 

topology is normable is called 𝐵𝐾-space. 

 

An infinite matrix is a double sequence 𝐴 = (𝑎𝑛𝑘) of real or complex numbers defined by a 

function 𝐴 from the set ℕ × ℕ into the complex field ℂ (𝑜𝑟 ℝ) where ℕ = {0,1,2, … }. The 

treatment of infinite matrices is absolutely different from finite matrices. There are various 

reasons for this. In some instances, the most general linear operator among two sequence spaces 
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is presented by an infinite matrix. Let 𝑋 and 𝑌 be any two sequence spaces. 𝐴 defines a matrix 

mapping from 𝑋 into  𝑌, if 𝐴𝑥 = {(𝐴𝑥)𝑛} ∈ 𝑌 for every 𝑥 = (𝑥𝑘) ∈ 𝑋 where 

 

                    (𝐴𝑥)𝑛 = ∑ 𝑎𝑛𝑘𝑥𝑘.𝑘                                                            (1) 

 

The class of all matrices 𝐴 such that 𝐴: 𝑋 → 𝑌 is symbolized by (𝑋: 𝑌). In this way, 𝐴 ∈
(𝑋: 𝑌) iff the series on the right hand side of (1) converges for each 𝑛 ∈ ℕ and every 𝑥 ∈ 𝑋, 

and we get 𝐴𝑥 = {(𝐴𝑥)𝑛} ∈ 𝑌  for all 𝑥 ∈ 𝑋.  

The concept of matrix domain is important for our study. For an infinite matrix 𝐴, the matrix 

domain 𝜙𝐴 in a sequence space 𝜙 is defined by  

                   𝜙𝐴 = {𝑥 ∈ 𝜔: 𝐴𝑥 ∈ 𝜙},                                                      (2) 

which is a sequence space [Başar (2011)]. 

Recently, so many authors have made use of the approach of constructing a new sequence space 

using matrix domain for a triangle infinite matrix, e.g., Başar and Altay (2003), Altay and Basar 

(2005), Kirisci and Basar (2010), Mursaleen and Noman (2010), Mursaleen and Noman (2011), 

Kara and Basarir (2012), Kara (2013), (Debnath and Saha 2014), (Debnath et al. 2015), Karakas 

(2015). 

In the literature, the matrix domain 𝜆𝛥 is called the difference sequence space if 𝜆 is a normed 

or paranormed sequence space where ∆ symbolizes the following backward difference matrix 

∆= (∆𝑛𝑘) and ∆′= (∆′𝑛𝑘) symbolizes the following transpoze of the matrix Δ, the forward 

difference matrix. For 𝜆 = ℓp, this space is called as the space of sequences of 𝑝 −bounded 

variation, that is, 𝑏𝑣𝑝. Also, it is clear that 𝑏𝑣𝑝 = (ℓp)∆
. 

 

∆𝑛𝑘= {
(−1)𝑛−𝑘,       (𝑛 − 1 ≤ 𝑘 ≤ 𝑛),
0,   (0 ≤ 𝑘 < 𝑛 − 1 𝑜𝑟 𝑘 > 𝑛),

    and   ∆𝑛𝑘
′ = {

(−1)𝑛−𝑘,       (𝑛 ≤ 𝑘 ≤ 𝑛 + 1),
0,   (0 ≤ 𝑘 < 𝑛 𝑜𝑟 𝑘 > 𝑛 + 1).

 

 

The notion of difference sequence spaces was first defined by Kizmaz (1981) in the form of 

𝑋(∆) = {𝑥 ∈ 𝜔: 𝑥𝑘 − 𝑥𝑘+1 ∈ 𝑋} for 𝑋 = ℓ∞, 𝑐, 𝑐0. These spaces were generalized by Et and 

Çolak (1995) as 𝑋(∆𝑟) = {𝑥 ∈ 𝜔: ∆𝑟𝑥 ∈ 𝑋}, 𝑋 = ℓ∞, 𝑐, 𝑐0 .  
 

The difference sequence space 𝑏𝑣𝑝 which is examined by Altay and Başar (2007) contains 

sequences (𝑥𝑘) such that (𝑥𝑘 − 𝑥𝑘−1)  for 0 < 𝑝 < 1. In the case 1 ≤ 𝑝 ≤ ∞, this space was 

studied by Çolak et al. (2004). Also, many authors analyzed the certain difference sequence 

spaces, see Ahmad (1987), Malkowsky (1989), Et (1993), Mursaleen (1996), Et and Basarir 

(1997), Tripathy (2003), Colak and Et (2005), Başar et al. (2008). 

The main aim of this note is to introduce new sequence spaces ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) and 

ℓ∞(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢)  with the help of sequence of modulus functions, non-zero real numbers 𝑟 

and 𝑠, Lucas difference matrix and its matrix domain. In addition, we investigate some 

topological properties and also find out some inclusion relations concerning with these spaces. 

Finally, we work through geometrical properties of the space ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢). 

2. Material and methods 

In this part of our study, we inform about familiar concepts which are necessary for us later on 

the paper. 
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Definition 2.1.  

A modulus 𝑓 is a function from [0,∞) to [0,∞) such that 𝑓(𝑥) = 0 if and only if 𝑥 = 0; 

𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for 𝑥, 𝑦 ≥ 0; 𝑓 is increasing; 𝑓 is continuous from the right at 0. 

[Nakano (1953)]. 

It follows that 𝑓 must be continuous everywhere on [0,∞). To construct some sequence spaces, 

many authors used a modulus function, see Ruckle (1973), Maddox (2008), Pehlivan and Fisher 

(1994), Altin (2009), Raj et al. (2015). 

Definition 2.2.  

A Banach space 𝑋 possess Banach-Saks property if any bounded sequence in 𝑋 approves a 

subsequence whose arithmetic mean converges in norm. In a similar vein, a Banach space 𝑋 

has weak Banach-Saks property if any weakly null sequence in 𝑋 admits a subsequence whose 

arithmetic mean strongly converges in norm. 

Definition 2.3.  

Let 𝑌 be a Banach space. The coefficient 𝑅(𝑌) was defined by 

 

𝑅(𝑌) = 𝑠𝑢𝑝 ( lim
𝑛→∞

𝑖𝑛𝑓‖𝑦𝑛 + 𝑦‖) 

 

and also a Banach space 𝑌 with 𝑅(𝑌) < 2 holds weak fixed point property. [Garcia-Falset 

(1994)]. 

 

Definition 2.4.  

Let 𝐿𝑛 be the nth term of a sequence such that 𝐿0 = 2, 𝐿1 = 1 and 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2, 𝑛 ≥ 2. 

The resulting sequence 1,3,4,7,11,18,… is called Lucas sequence. 

We can find so many fundamental properties about Lucas sequences in Koshy (2017) and Vajda 

(1989). Some of them are as follows: 

∑𝐿𝑘 

𝑛

𝑘=1

= 𝐿𝑛+2 − 3;  ∑ 𝐿2𝑘−1 

𝑛

𝑘=1

= 𝐿2𝑛−2;   𝑛 ≥ 1, 

∑𝐿𝑘
2  

𝑛

𝑘=1

= 𝐿𝑛𝐿𝑛+1 − 2;  ∑ 𝐿𝑘𝐿𝑘−1 

2𝑛

𝑘=1

= 𝐿2𝑛
2 − 4; 

𝐿𝑛+1𝐿𝑛−1 − 𝐿𝑛
2 = (−5)(−1)𝑛. 

 

It can be easily derived by placing 𝐿𝑛+1 in the last equality that 

 

𝐿𝑛−1
2 + 𝐿𝑛𝐿𝑛−1 − 𝐿𝑛

2 = −5(−1)𝑛. 

 

By using above information, we define the following double band matrix  

 

                                        �̂� = (�̂�𝑛𝑘) =

{
 

 −
𝐿𝑛

𝐿𝑛−1
,   (𝑘 = 𝑛 − 1),

𝐿𝑛−1

𝐿𝑛
,       (𝑘 = 𝑛),

0,            𝑜𝑡ℎ𝑒𝑟,

;    𝑛, 𝑘 ∈ ℕ − {0}.                             (3)                                                         



238     Murat Karakaş et al. 

 

Karakaş and Karakaş (2017). The inverse of this matrix is 

�̂�−1 = {

𝐿𝑛
2

𝐿𝑘−1𝐿𝑘
,   0 < 𝑘 ≤ 𝑛,

0,            𝑜𝑡ℎ𝑒𝑟,

 

 

and the �̂� − transform of a sequence 𝑥 = (𝑥𝑛) is defined by 

 

                              𝑦𝑛 = �̂�𝑛(𝑥) =
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 −

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1;  𝑛 ≥ 1.                            (4) 

 

Later,  the above Lucas matrix was generalized and constructed the matrix 𝐸(𝑟, 𝑠) =

(𝐿𝑛𝑘(𝑟, 𝑠)) for non-zero real numbers 𝑟 and 𝑠 as follows: 

 

�̂�(𝑟, 𝑠) =

{
 
 

 
 𝑠

𝐿𝑛
𝐿𝑛−1

,                    (𝑘 = 𝑛 − 1),

𝑟
𝐿𝑛−1
𝐿𝑛

,                            (𝑘 = 𝑛),

0,   (0 ≤ 𝑘 < 𝑛 − 1 𝑜𝑟 𝑘 > 𝑛),

;    𝑛, 𝑘 ∈ ℕ − {0}. 

 

Now, by using the matrix �̂�(𝑟, 𝑠), we introduce the following Lucas difference sequence spaces: 

 

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) = {𝑥 ∈ 𝑤:∑[𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛

< ∞

𝑛

} 

and 

ℓ∞(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) = {𝑥 ∈ 𝑤: 𝑠𝑢𝑝𝑛 [𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛
< ∞}, 

 

where 𝔉 = (𝐹𝑛) is a sequence of modulus functions, 𝑝 = (𝑝𝑛) is any bounded sequence of 

positive real numbers and 𝑢 = (𝑢𝑛) is a sequence of strictly positive real numbers. Also, for 

the inverse of the matrix �̂�(𝑟, 𝑠) and the �̂�(𝑟, 𝑠)-transform of the sequence 𝑥 = (𝑥𝑛), we’ll use 

the following equalities: 

 

�̂�−1(𝑟, 𝑠) = {
1

𝑟
(−

𝑠

𝑟
)
𝑛−𝑘 𝐿𝑛

2

𝐿𝑘−1𝐿𝑘
,   0 < 𝑘 ≤ 𝑛,

0,                              𝑘 > 𝑛,
   

and 

                                        𝑦𝑛 = �̂�𝑛(𝑟, 𝑠)(𝑥) =  𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1;  𝑛 ≥ 1.                       (5)                      

  In addition, we will require the inequality 

 

                                            |𝑎𝑘 + 𝑏𝑘|
𝑝𝑘 ≤ 𝐶(|𝑎𝑘|

𝑝𝑘 + |𝑏𝑘|
𝑝𝑘),                                              (6) 

 

where 𝐶 = 𝑚𝑎𝑥{1, 2𝐻−1}, 𝐻 = 𝑠𝑢𝑝𝑝𝑘 and 𝑝 = (𝑝𝑘) is a sequence of positive real numbers. 
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3. Results and discussion 
 

The proofs of the following two theorems are easy, so we give them without proof. 

 

Theorem 3.1.  

 

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) and ℓ∞(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) are linear spaces over ℂ. 

 

Theorem 3.2.   
 

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) is a paranormed space for 𝑀 = max(1, 𝐻) , 𝐻 = 𝑠𝑢𝑝𝑝𝑛 with paranorm  

 

ℊ(𝑥) = 𝑠𝑢𝑝𝑛 (∑ [𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]𝑛

𝑝𝑛
)
1/𝑀

. 

 

Theorem 3.3.  

 

Let 𝔉 = (𝐹𝑛) be a sequence of modulus functions, 𝑝 = (𝑝𝑛) and 𝑞 = (𝑞𝑛) be bounded 

sequences of positive real numbers. If 0 ≤ 𝑝𝑛 ≤ 𝑞𝑛 < ∞ for each n, then ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) ⊆

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑞, 𝑢). 

 

Proof:  

 

Let us take 𝑥 ∈ ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢). So, ∑ [𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛
< ∞𝑛 . It means 

that [𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛
≤ 1 for 𝑛 ≥ 𝑛0, that is, sufficiently large values of 𝑛. 

Hence, we obtain 

 

∑ [𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑞𝑛

𝑛≥𝑛0

 

≤ ∑ [𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛
< ∞𝑛≥𝑛0 , 

 

which implies that 𝑥 ∈ ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑞, 𝑢) because of 𝑝𝑛 ≤ 𝑞𝑛 and 𝐹𝑛 is increasing.   

 

Theorem 3.4.  

If 𝔉 = (𝐹𝑛) be a sequence of modulus functions and 𝛼 = lim
𝑞→∞

𝐹𝑛(𝑞)

𝑞
> 0, then 

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) ⊆ ℓ(�̂�(𝑟, 𝑠), 𝑝, 𝑢). 
 

Proof:  

 

The definition of 𝛼 gives us 𝐹𝑛(𝑞) ≥ 𝛼(𝑞), for all 𝑞 > 0. Herefrom, we see that 
1

𝛼
𝐹𝑛(𝑞) ≥ 𝑞, 

for all 𝑞 > 0. Now, for 𝑥 ∈ ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) we have  

 

∑ [𝑢𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛
≤

1

𝛼𝑛 ∑ [𝑢𝑛𝐹𝑛 (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛

𝑛 , 
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which shows that 𝑥 ∈ ℓ(�̂�(𝑟, 𝑠), 𝑝, 𝑢). 

 

Theorem 3.5. 

 

The inclusion ℓ(�̂�(𝑟, 𝑠), 𝔉′, 𝑝, 𝑢) ∩ ℓ(�̂�(𝑟, 𝑠), 𝔉′′, 𝑝, 𝑢) ⊆ ℓ(�̂�(𝑟, 𝑠), 𝔉′ + 𝔉′′, 𝑝, 𝑢) holds for 

sequences of modulus functions 𝔉′ = (𝐹𝑛
′) and 𝔉′′ = (𝐹𝑛

′′) . 
 

Proof:  

 

Let 𝑥 ∈ ℓ(�̂�(𝑟, 𝑠), 𝔉′, 𝑝, 𝑢) ∩ ℓ(�̂�(𝑟, 𝑠), 𝔉′′, 𝑝, 𝑢). Then, it can be easily seen that 

 

∑ [𝑢𝑛𝐹𝑛
′ (|𝑟

𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛
< ∞𝑛 ; 

and 

∑[𝑢𝑛𝐹𝑛
′′ (|𝑟

𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛

< ∞.

𝑛

 

From here, we have 

∑[𝑢𝑛(𝐹𝑛
′ + 𝐹𝑛

′′) (|𝑟
𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛

𝑛

 

≤ 𝑀∑[𝑢𝑛𝐹𝑛
′ (|𝑟

𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛

𝑛

 

+𝑀∑ [𝑢𝑛𝐹𝑛
′′ (|𝑟

𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|)]

𝑝𝑛

𝑛 , 

 

which means that 𝑥 ∈ ℓ(�̂�(𝑟, 𝑠), 𝔉′ + 𝔉′′, 𝑝, 𝑢). 

 

Theorem 3.6. ℓ(�̂�(𝑟, 𝑠), 𝔉′, 𝑝, 𝑢) ⊆ ℓ(�̂�(𝑟, 𝑠), 𝔉 ∘ 𝔉′, 𝑝, 𝑢) 
 

Proof: 

 

Let us take 𝜀 > 0, 0 < 𝛿 < 1 such that 𝐹𝑛(𝑞) < 𝜀, for 0 ≤ 𝑞 ≤ 𝛿. Choose 𝑦𝑛 =

𝑢𝑛𝐹𝑛
′ (|𝑟

𝐿𝑛−1

𝐿𝑛
𝑥𝑛 + 𝑠

𝐿𝑛

𝐿𝑛−1
𝑥𝑛−1|) and consider  

 

∑[𝐹𝑛(𝑦𝑛)]
𝑝𝑛

𝑛

= ∑ [𝐹𝑛(𝑦𝑛)]
𝑝𝑛

𝑦𝑛≤𝛿

+ ∑ [𝐹𝑛(𝑦𝑛)]
𝑝𝑛

𝑦𝑛>𝛿

. 

 

In view of the continuity of 𝐹𝑛, we have 

 

                                                    ∑ [𝐹𝑛(𝑦𝑛)]
𝑝𝑛

𝑦𝑛≤𝛿 < 𝜀𝐻 ,                                                       (7)  

 

and 𝑦𝑛 > 𝛿 ⇒ 𝑦𝑛 <
𝑦𝑛

𝛿
≤ 1 +

𝑦𝑛

𝛿
. For 𝑦𝑛 > 𝛿, we obtain by the definition that  

 

𝐹𝑛(𝑦𝑛) < 2𝐹𝑛(1)
𝑦𝑛

𝛿
   

and so 
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                ∑ [𝐹𝑛(𝑦𝑛)]
𝑝𝑛

𝑦𝑛>𝛿 < 𝑚𝑎𝑥{1, (2𝐹𝑛(1)𝛿
−1)𝐻}∑ [𝑦𝑛]

𝑝𝑛
𝑛 .                               (8) 

 

Equations (7) and (8) give the fact that ℓ(�̂�(𝑟, 𝑠), 𝔉′, 𝑝, 𝑢) ⊆ ℓ(�̂�(𝑟, 𝑠), 𝔉 ∘ 𝔉′, 𝑝, 𝑢). 

 

Theorem 3.7.  

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) and ℓ∞(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) are normed spaces with  

‖𝑥‖ℓ(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢) = (∑ [𝑢𝑘𝐹𝑘(|�̂�𝑛(𝑟, 𝑠)(𝑥)|)]
𝑝𝑘

𝑛 )
1/𝑀

, 

and 

‖𝑥‖ℓ∞(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢) = 𝑠𝑢𝑝𝑛[𝑢𝑘𝐹𝑘(|�̂�𝑛(𝑟, 𝑠)(𝑥)|)]
𝑝𝑘

, 

for 1 ≤ 𝑝𝑘 ≤ 𝐻 ≤ ∞ for all 𝑘 ∈ ℕ. 

Proof: 

It can be proved by standard technic in Raj et al. (2015). 

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) and ℓ∞(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) are sequence spaces of non-absolute type. Indeed, 

 

‖𝑥‖ℓ(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢) ≠ ‖|𝑥|‖ℓ(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢) and ‖𝑥‖ℓ∞(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢) ≠ ‖|𝑥|‖ℓ∞(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢);  

 

which means that the absolute property is not valid on the spaces ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) and 

ℓ∞(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) for at least one sequence 𝑥 = (𝑥𝑘). 

 

Theorem 3.8.  
 

The sequence space ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) of non-absolute type is linearly isomorphic to the space 

ℓ𝑝 for 1 ≤ 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ ℕ, that is, ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) ≅ ℓ𝑝. 

 

Proof:  
 

Let us take into consideration the transformation 𝑍: ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) → ℓ𝑝 defined by 𝑥 →

𝑦 = 𝑍𝑥, with equality (5). Then, for 𝑥 ∈ ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢), we have 𝑍𝑥 = 𝑦 = �̂�(𝑟, 𝑠)𝑥 ∈ ℓ𝑝.  

So, it is obvious that 𝑍 is linear. Also, it can be easily shown that 𝑍𝑥 = 0 ⇒ 𝑥 = 0 and thus 𝑍 

is injective. Now, let us consider 𝑦 = (𝑦𝑘) ∈ ℓ𝑝 and identify the sequence 𝑥 = (𝑥𝑘) for 1 ≤

𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ ℕ as follows: 

 

𝑥𝑘 =
1

𝑟
∑(−

𝑠

𝑟
)
𝑘−𝑗

𝑘

𝑗=1

𝐿𝑘
2

𝐿𝑗−1𝐿𝑗
𝑦𝑗 . 

Hence, we obtain for 1 ≤ 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ ℕ and 𝑝 = ∞, 
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‖𝑥‖ℓ(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢) = (∑[𝑢𝑘𝐹𝑘 (|𝑟
𝐿𝑘−1

𝐿𝑘
𝑥𝑘 + 𝑠

𝐿𝑘

𝐿𝑘−1
𝑥𝑘−1|)]

𝑝𝑘

𝑘

)

1/𝑀

= (∑[𝑢𝑘𝐹𝑘 (|𝑟
𝐿𝑘−1

𝐿𝑘

1

𝑟
∑(−

𝑠

𝑟
)
𝑘−𝑗

𝑘

𝑗=1

𝐿𝑘
2

𝐿𝑗−1𝐿𝑗
𝑦𝑗

𝑘

+ 𝑠
𝐿𝑘

𝐿𝑘−1

1

𝑟
∑(−

𝑠

𝑟
)
𝑘−𝑗

𝑘−1

𝑗=1

𝐿𝑘
2

𝐿𝑗−1𝐿𝑗
𝑦𝑗|)]

𝑝𝑘

)

1/𝑀

  

= ‖𝑦‖ℓ𝑝 < ∞, 

and 

‖𝑥‖ℓ∞(�̂�(𝑟,𝑠),𝔉,𝑝,𝑢) = sup
𝑘
[𝑢𝑘𝐹𝑘(|�̂�𝑘(𝑟, 𝑠)(𝑥)|)]

𝑝𝑘
= ‖𝑦‖ℓ∞ < ∞. 

This gives the fact that 𝑍 is linear bijection and so the proof is completed. Now, we’ll investigate 

the geometric structure of the space ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢), that is, we’ll examine whether the space 

ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) has Banach-Saks property of type 𝑝 and the weak fixed point property or not. 

Theorem 3.9.  

Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ ℕ. The space ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) has Banach-Saks property of 

type 𝑝.  

 

Proof: 

 

It can be demonstrated by standard technic which can be seen in Et et al. (2014). 

Since the space ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) is linearly isomorphic to space ℓ𝑝, we have 

𝑅 (ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢)) = 𝑅(ℓ𝑝) = 21/𝑝. In view of 𝑅 (ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢)) < 2, we can give 

the following theorem with the help of definition 2.3. 

 

Theorem 3.10.  

 

The space ℓ(�̂�(𝑟, 𝑠), 𝔉, 𝑝, 𝑢) has weak fixed point property in the case 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 

𝑘 ∈ ℕ. 

 

4. Conclusion 

 

Geometrical properties of Banach spaces have been studied by many authors. In recent years, 

one of the interesting topics is to examine topological and geometrical properties of difference 

sequence spaces defined by Fibonacci and Lucas numbers. In this paper, we apply the domain 

of infinite triangular matrix established by Lucas numbers and the modulus function to space 

ℓ𝑝. Then, we investigate topological and geometric structure of the obtained space. Since some 

of the geometric properties of Banach spaces play an important role in the fixed point theory, 

our results are interesting. However, the Lucas numbers and its properties can be considered in 

different fields of summability theory such as statistical convergence and its applications. 
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