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Abstract

In this paper, the systems of variable-coefficient coupled Burgers equation are solved by a free
mesh method. The method is based on the collocation points with the modified Gaussian (MGA)
radial basis function (RBF). Dependent parameters and independent parameters and their effect on
the stability are shown. The accuracy and efficiency of the method has been checked by two exam-
ples. The results of numerical experiments are compared with analytical solutions by calculating
errors infinity-norm.
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1. Introduction

In 1971 the multiquadric (MQ) method was presented by Hardy (1971). The importance of shape
parameter in MQ method is shown by Tarwater (1985) and Micchelli (1986) had spoken about
convergence of the RBFs approximation. Kansa (1990) introduced a modified MQ method for the
numerical solution of PDEs. In recent years, Radial Basis Functions as a meshless method is used
for numerical solutions of functional differential equations (Alqezweeni et al. (2018), Dehghan et
al. (2014), Dehghan et al. (2015), Iurlaro et al. (2014), Islam et al. (2009), Kazemi et al. (2013),
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Luan et al. (2018), Madych et al. (1992), Tarwater (1985), Zhong et al. (2014)). The modified
Gaussian radial basis function method (MGA-RBF) is the component of functions that has the best
approximation properties for the numerical solution of partial differential equations (PDEs). The
MGA-RBF method prevents further computation in time, independent of the position of points,
flexible for geometric position, high spectral accuracy and it’s excellent for interpolation of data in
several dimensions.

In this work, we use of the MGA-RBF method for numerical solution of the Burger systems. The
systems of variable coefficient coupled Burgers equation can be written in the following basic
form: {

∂u
∂t

= r1(t)
∂2u
∂x2 + s1(t)u

∂u
∂x

+ p1(t)
∂(uv)
∂x

,
∂v
∂t

= r2(t)
∂2v
∂x2 + s2(t)v

∂v
∂x

+ p2(t)
∂(vu)
∂x

,
x ∈ Ω = (a, b) , t > 0, (1)

where r1(t), r2(t), s1(t), s2(t), p1(t) and p2(t) are arbitrary smooth functions of t.

This paper is organized as follows. In Section 2, the structure of the method was introduced. Sta-
bility of the method is checked by applying the matrix multiplication method in Section 3. To
demonstrate the efficiency of the proposed method, numerical experiments are carried out for two
test problems and results are given in Section 4. In the last Section, we’ll evaluation the perfor-
mance of the proposed method.

2. Structure of the method

We have the basic form of the Burger equations (1) subject to the initial conditions:

u(x, 0) = f(x), v(x, 0) = g(x), x ∈ Ω = [a, b] , (2)

and the boundary conditions:{
u(a, t) = ga(t), u(b, t) = gb(t),
v(a, t) = ha(t), v(b, t) = hb(t),

t ≥ 0. (3)

Discretizing Equation (1) in time, by taking the time weighting factor 0 ≤ θ ≤ 1, we get

un+1 − un

τ
= θr1 (t) (uxx)

n+1 + (1− θ) r1 (t) (uxx)
n

+ θs1 (t) (uux)
n+1 + (1− θ) s1 (t) (uux)

n

+ θp1 (t) (uvx)
n+1+ (1− θ) p1 (t) (uvx)

n

+ θp1 (t) (uxv)n+1 + (1− θ) p1 (t) (uxv)n, (4)
vn+1 − vn

τ
= θr2 (t) (vxx)

n+1 + (1− θ) r2 (t) (vxx)
n

+ θs2 (t) (vvx)
n+1 + (1− θ) s2 (t) (vvx)

n

+ θp2 (t) (vux)
n+1+ (1− θ) p2 (t) (vux)

n

+ θp2 (t) (vxu)n+1 + (1− θ) p2 (t) (vxu)n, n = 0, 1, . . . , K − 1,

in which un and vn are the values of u(x, tn) and v(x, tn) respectively where tn = τn, n =
0, 1, . . . , K, τ = T/K and T is final time and (uux)

n+1, (uvx)
n+1, (uxv)n+1, (vvx)

n+1, (vux)
n+1
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and (vxu)n+1 are the nonlinear term that approximated using the Taylor expansion as follows (Islam
et al. (2009)):

(uux)
n+1 ≈ un+1unx + unun+1

x − ununx, (uvx)
n+1 ≈ un+1vnx + unvn+1

x − unvnx ,
(uxv)n+1 ≈ un+1

x vn + unxv
n+1 − unxvn, (vvx)

n+1 ≈ vn+1vnx + vnvn+1
x − vnvnx , (5)

(vux)
n+1 ≈ vn+1unx + vnun+1

x − vnunx, (vxu)n+1 ≈ vn+1
x un + vnxu

n+1 − vnxun.

By substituting (5) in (4) we have

un+1 − τθr1(t)(uxx)n+1 − θs1(t)τ
(
un+1unx + unun+1

x

)
− τθp1 (t)

(
un+1vnx + unvn+1

x + un+1
x vn + unxv

n+1
)

= un + r1(t)τ (1− θ) (uxx)
n + (1− 2θ) s1(t)τ(ununx)

+ (1− 2θ) p1(t)τ (unvnx + unxv
n) , (6)

vn+1 − τθr2(t)(vxx)n+1 − θs2(t)τ
(
vn+1vnx + vnvn+1

x

)
− τθp2 (t)

(
vn+1unx + vnun+1

x + vn+1
x un + vnxu

n+1
)

= vn + r2(t)τ (1− θ) (vxx)
n + (1− 2θ) s2(t)τ(vnvnx)

+ (1− 2θ) p2(t)τ (vnunx + vnxu
n) .

For approximation un, vn and their derivatives in collocation points {xi}Ni=1 ⊆ Ω where h =
xi+1 − xi, i = 0, 1, . . . , N − 1, we put

u (xi, t
n) =

N∑
j=1

λnj φ (rij),

v (xi, t
n) =

N∑
j=1

knj φ (rij),

(7)

in which λnj , k
n
j are unknown coefficients and φ is the MGA RBF and rij is the corresponding

radius where introduced in Table 1.

Table 1. The MGA RBF and its derivatives on the left and the corresponding radius on the right

φ (rij) = e−ε
2rij + c0 rij = (xi − xj)2 + a

φ′ (rij) = −ε2e−ε2rij + c1 rij = (xi − xj)2 + b

φ′′ (rij) = ε4e−ε
2rij + c2 rij = (xi − xj)2 + d

Also from Equations (7), we get the following equation for the boundary points,
N∑
j=1

λnj φ (rij) = gk(tn),

N∑
j=1

knj φ (rij) = hk(tn),

(8)

where k = 1, 2 for i = 1, N , respectively.

In Table 1 the derivatives of MGA RBF and radius related to each of them also given, where ε and
c0, c1, c2, a, b, d are shape parameter and arbitrary parameters, respectively.
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The matrix form of equation (7) is as follows:{
Un = Aλn,

V n = AKn,
(9)

where λn = [λn1 , ..., λ
n
N ]T , Kn = [kn1 , ..., k

n
N ]T and A = [φ(rij)]

N
i,j=1.

The matrix A can be split into two matrices Ad and Ab corresponding to N − 2 interior points and
two boundary points in the following form:

A = Ad + Ab,

where

Ad = [φ(rij) : i = 2, .., N − 1, j = 1, ..., N and 0 else where]N×N ,

Ab = [φ(rij) : i = 1, N, j = 1, ..., N and 0 else where]N×N .

Now from Equations (6), (8) and (9) we obtain

(A− τθr1(t)C − τθs1(t) (unx ∗ Ad + un ∗B)

−τθp1 (t) (vnx ∗ Ad + un ∗ B+ vn ∗ B + unx ∗ Ad))λn+1

= (Ad + r1(t)τ (1− θ)C + (1− 2θ) s1(t)τ(unx ∗ Ad)
+ (1− 2θ) p1(t)τ (vnx ∗ Ad + unx ∗ Ad))λn +Gn+1, (10)

(A− τθr2(t)C − τθs2(t) (vnx ∗ Ad + vn ∗B)

−τθp2 (t) (unx ∗ Ad + vn ∗ B+ un ∗ B + vnx ∗ Ad)Kn+1

= (Ad + r2(t)τ (1− θ)C + (1− 2θ) s2(t)τ(vnx ∗ Ad)
+ (1− 2θ) p2(t)τ (vnx ∗ Ad + unx ∗ Ad))Kn + Hn+1,

where

Gn+1 = [ga(tn+1) , 0, . . . , 0, gb(tn+1)]
T , Hn+1 = [ha(tn+1) , 0, . . . , 0 , hb(tn+1)]

T ,

B =
[
φ′ (rij) = −ε2e−ε2rij + c1 : i = 2, .., N − 1, j = 1, ..., N and 0 else where

]
N×N

,

C =
[
φ′′(rij) = ε4e−ε

2rij + c2 : i = 2, .., N − 1, j = 1, ..., N and 0 else where
]
N×N

,

and vnx = BKn, unx = Bλn.

The symbol "∗" means that the multiplication is componentwise.

Equation (10) can be rewritten as{
λn+1 = M−1

1 Q1λ
n +M−1

1 Gn+1,

Kn+1 = M−1
2 Q2K

n +M−1
2 Hn+1,

(11)
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where

M1 =
(
A− τθr1(t)C − θs1(t)τ(unx ∗ Ad + un ∗B)

− τθp1(t)(vnx ∗ Ad + un ∗B + vn ∗B + unx ∗ Ad)
)
,

Q1 =
(
Ad + r1(t)τ (1− θ)C + (1− 2θ) s1(t)τ(unx ∗ Ad)

+ (1− 2θ)p1(t)τ(vnx ∗ Ad + unx ∗ Ad)
)
,

M2 = (A− τθr2(t)C − θs2(t)τ (vnx ∗ Ad + vn ∗B)

− τθp2 (t) (unx ∗ Ad + vn ∗ B + un ∗ B + vnx ∗ Ad)) ,
Q2 =

(
Ad + r2(t)τ(1− θ)C + (1− 2θ)s2(t)τ(vnx ∗ Ad)

+ p2(t)(1− 2θ)τ(unx ∗ Ad + vnx ∗ Ad)
)
.

By multiplying the matrix A on both sides of equations (11) and considering to equations (9), we
arrive at the following equations:{

Un+1 = AM−1
1 Q1A

−1Un + AM−1
1 Gn+1,

V n+1 = AM−1
2 Q2A

−1V n + AM−1
2 Hn+1.

(12)

The results of this section can be summarized in the following algorithm.

Algorithm of the method:

Step 1. Choose the parameters τ , T and θ such that 0 ≤ θ ≤ 1.

Step 2. Choose n collocation points in Ω.

Step 3. Set n = 0.

Step 4. Calculate the initial solution u0, v0 from equations (2).

Step 5. Using equations (9) to find λn = A−1Un, Kn = A−1V n.

Step 6. Calculate matrices M1,M2 and vectors Q1λ
n +Gn+1, Q2K

n +Hn+1.

Step 7. The unknown vectors λn+1, Kn+1 are calculated from equations (11).

Step 8. Calculate the approximate solutions Un+1, V n+1 from step 7 and equations (9).

3. Stability analysis

In this section, the stability of equations (10) is checked by applying the matrix multiplication
method. Now, we can write the error vectors at the time levels n and n+ 1 as following:

en1 = unexact − unapp,
en2 = vnexact − vnapp,

where vnapp, u
n
app and vnexact, u

n
exact are numerical and exact solutions at the time levels n, respec-

tively.
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The error equations for the equations (10) can be written as:{
[I + Z1] e

n+1
1 = [I +H1] e

n
1 ,

[I + Z2] e
n+1
2 = [I +H2] e

n
2 ,

(13)

where

Z1 = (−τθr1(t)C − θs1(t)τ (unx ∗ Ad + un ∗B)

−τθp1 (t) (vnx ∗ Ad + un ∗ B + vn ∗ B + unx ∗ Ad))A−1,
H1 = (r1(t)τ (1− θ)C + (1− 2θ) s1(t)τ(unx ∗ Ad)

+ (1− 2θ) p1(t)τ (vnx ∗ Ad + unx ∗ Ad))A−1,
Z2 = (−τθr2(t)C − θs2(t)τ (vnx ∗ Ad + vn ∗B)

− τθp2 (t) (unx ∗ Ad + vn ∗ B + un ∗ B + vnx ∗ Ad))A−1,
H2 = (r2(t)τ (1− θ)C + (1− 2θ) s2(t)τ(vnx ∗ Ad)

+p2(t) (1− 2θ) τ (vnx ∗ Ad + unx ∗ Ad))A−1.

From (12) we have {
en+1
1 = Een1 ,

en+1
2 = Pen2 ,

(14)

where E = [I + Z1]
−1 [I +H1], P = [I + Z2]

−1 [I +H2]. Let ηH1
, ηH2

, ηZ1
, ηZ2

be the eigenval-
ues of the matrices H1, H2, Z1, Z2, respectively. It can be seen that∥∥∥∥1 + ηH1

1 + ηZ1

∥∥∥∥ < 1,

∥∥∥∥1 + ηH2

1 + ηZ2

∥∥∥∥ < 1, (15)

or ρ(E) < 1, ρ(P ) < 1, where ρ(.) denotes the spectral radius of a matrix. If θ = 0 in the equations
(14), we’ll arrive at the following equations:

‖1 + ηH1
‖ < 1, ‖1 + ηH2

‖ < 1.

Hence, the scheme (10) is stable.

The error bound of the proposed method with the fixed nodes is as follows (Madych et al. (1992)):

‖uexact − uapproximat‖∞ = e−K(εθ),

where K(εθ) is dependent on the parameters ε and θ.

4. Numerical results

In this section, two examples of the systems of the variable-coefficient coupled Burgers equation
are considered and will be solved using proposed method. The versatility and the accuracy of the
proposed method are measured using absolute errors.
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Example 4.1.

Consider the following coupled Burgers Equation:

∂u

∂t
=
∂2u

∂x2
+ 2u

∂u

∂x
− ∂(uv)

∂x
,

∂v

∂t
=
∂2v

∂x2
+ 2v

∂v

∂x
− ∂(uv)

∂x
,

subject to the boundary conditions:

u(0, t) = 0,u(1, t) = e−t sin(1),

v(0, t) = 0,v(1, t) = e−t sin(1),

and the initial conditions

u(x, 0) = v(x, 0) = sin(x).

The exact solutions of the equation are u (x, t) = v (x, t) = e−t sinx.

We take c0 = 0.96, c1 = 5000, c2 = 0, a = 2.9, b = d = 2, θ = 0.5, T = 1, τ = 0.25, ε = 0.2
and h = 0.1. The exact and numerical solutions and absolute errors, are reported for u and v, in
Table 2 and Table 3. The space-time graphs of the exact and numerical solution for u are shown in
Figures 1.

Table 2. Numerical results of Example 4.1 for u

x uexact uapproximate Absolute error

0.0 0 0.000000379513949 3.795× 10−7

0.1 0.036726661526271 0.036727142054588 4.805× 10−7

0.2 0.073086362390792 0.073086904361844 5.419× 10−7

0.3 0.108715808481443 0.108716357965022 5.494× 10−7

0.4 0.143259002150416 0.143259536940604 5.347× 10−7

0.5 0.176370799225032 0.176371328998357 5.297× 10−7

0.6 0.207720357574227 0.207720902282745 5.447× 10−7

0.7 0.236994442773761 0.236995002254844 5.594× 10−7

0.8 0.263900557841047 0.263901113532484 5.556× 10−7

0.9 0.288169865768312 0.288170400541276 5.347× 10−7

1.0 0.309559875653112 0.309560436755419 5.611× 10−7
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Table 3. Numerical results of Example 4.1 for v

x vexact vapproximate Absolute error

0.0 0 0.000000379513949 3.795× 10−7

0.1 0.036726661526271 0.036727142054588 4.805× 10−7

0.2 0.073086362390792 0.073086904361844 5.419× 10−7

0.3 0.108715808481443 0.108716357965022 5.494× 10−7

0.4 0.143259002150416 0.143259536940604 5.347× 10−7

0.5 0.176370799225032 0.176371328998357 5.297× 10−7

0.6 0.207720357574227 0.207720902282745 5.447× 10−7

0.7 0.236994442773761 0.236995002254844 5.594× 10−7

0.8 0.263900557841047 0.263901113532484 5.556× 10−7

0.9 0.288169865768312 0.288170400541276 5.347× 10−7

1.0 0.309559875653112 0.309560436755419 5.611× 10−7
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Figure 1. The exact and numerical answers of u example 4.1 for x = 0 : 0.1 : 1 and t = 0 : 0.25 : 2.5

Example 4.2.

Consider the following coupled Burgers equation:

∂u

∂t
=

t

1− t
∂2u

∂x2
− u∂u

∂x
+

1 + t

1− t
∂(uv)

∂x
,

∂v

∂t
=

t

1 + t

∂2v

∂x2
+ v

∂v

∂x
− 1− t

1 + t

∂(uv)

∂x
,
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subject to the boundary conditions:

u(0, t) = 0, u(1, t) =
1

1− t
,

v(0, t) = 0, v(1, t) =
1

1 + t
,

and the initial conditions

u(x, 0) = x, v(x, 0) = x.

The exact solutions of the equation are

u (x, t) =
x

1− t
, v (x, t) =

x

1 + t
.

We take c0 = 3, c1 = 5000, c2 = 0, a = 0.01, b = 1.6, d = 2, θ = 0.5393, T = 3.5, τ = 0.25,
ε = 0.00039 and h = 0.1. In Table 4 and Table 5 the exact and numerical solutions and absolute
errors, are reported for u and v, respectively. The space-time graphs of the exact and numerical
solution for u are shown in Figures 2. In Figure 3, the exact and numerical solutions are also
depicted for v.

Table 4. Numerical results of Example 4.2 for u

x uexact uapproximate Absolute error

0.0 0 −0.000000014901161 1.49× 10−8

0.1 −0.04 −0.039999999105930 8.94× 10−10

0.2 −0.08 −0.079999983310699 1.67× 10−8

0.3 −0.12 −0.119999982416630 1.76× 10−8

0.4 −0.16 −0.159999970346689 2.96× 10−8

0.5 −0.20 −0.199999980628490 1.94× 10−8

0.6 −0.24 −0.239999983459711 1.65× 10−8

0.7 −0.28 −0.279999975115061 2.49× 10−8

0.8 −0.32 −0.319999989122152 1.09× 10−8

0.9 −0.36 −0.359999999403954 5.96× 10−10

1.0 −0.40 −0.400000013411045 1.34× 10−8
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Table 5. Numerical results of Example 4.2 for v

x vexact vapproximate Absolute error

0.0 0 0.000000039115548 3.91× 10−8

0.1 0.022222222222222 0.022222245112062 2.29× 10−8

0.2 0.044444444444444 0.044444456696510 1.22× 10−8

0.3 0.066666666666667 0.066666670143604 3.48× 10−9

0.4 0.088888888888889 0.088888887315989 1.57× 10−9

0.5 0.111111111111111 0.111111108213663 2.90× 10−9

0.6 0.133333333333333 0.133333329111338 4.22× 10−9

0.7 0.155555555555556 0.155555550009012 5.55× 10−9

0.8 0.177777777777778 0.177777769044042 8.73× 10−9

0.9 0.200000000000000 0.199999995529652 4.47× 10−9

1.0 0.222222222222222 0.222222222015262 2.07× 10−10
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Figure 2. The exact and numerical answers of u example 4.2 for x = 0 : 0.1 : 1 and t = 2 : 0.25 : 4.5

5. Conclusion

In this paper, we presented a MGA-RBF method for solving two special variants of nonlinear
Burgers systems. The results show that this scheme is an efficient approach for the solution of such
type of nonlinear equations. Stability analysis is performed by the matrix method. In the proposed
method when the optimal parameters are determined, we don’t need to change them at the next
levels of time and has low computational cost at all levels. Further work is required to find opti-
mum value of the parameters, theoretically.
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Figure 3. The exact and numerical answers of v example 4.2 for x = 0 : 0.1 : 1 and t = 2 : 0.25 : 4.5
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