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Abstract

Over the last decade, there has been significant and rapid development of the theory of copulas.
Much of the work has been motivated by their applications to stochastic processes, economics,
risk management, finance, insurance, the environment (hydrology, climate, etc.), survival analysis,
and medical sciences. In many statistical models. The copula approach is a way to solve the diffi-
cult problem of finding the whole bivariate or multivariate distribution. In this paper, we give the
asymptotic normality of the copulas function in a regression model.
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1. Introduction

The study of copulas is a growing field. The construction and properties of copulas have been
studied rather extensively during the last 15 years or so. Hutchinson et al. (1990) were among
the early authors who popularized the study of copulas. Nelsen (1999) presented a comprehensive
treatment of bivariate copulas, while Joe (1997) devoted a chapter of his book to multivariate
copulas. Further authoritative updates on copulas are given in Nelsen (2006). Copula methods
have many important applications in insurance and finance Cherubini et al. (2004) and Embrechts
et al. (2003).

Briefly speaking, copulas are functions that join or "couple" multivariate distributions to their one-
dimensional marginal distribution functions. Equivalently, copulas are multivariate distributions
whose marginals are uniform on the interval (0, 1). In this chapter, we restrict our attention to bi-
variate copulas. Fisher (1997) gave two major reasons as to why copulas are of interest to statisti-
cians: "Firstly, as a way of studying scale-free measures of dependence; and secondly, as a starting
point for constructing families of bivariate distributions." Specifically, copulas are an important
part of the study of dependence between two variables since they allow us to separate the effect of
dependence from the effects of the marginal distributions. This feature is analogous to the bivari-
ate normal distribution where the mean vectors are unlinked to the covariance matrix and jointly
determine the distribution. Many authors have studied constructions of bivariate distributions with
given marginals: this may be viewed as constructing a copula.

There is a fast-growing industry for copulas. They have useful applications in econometrics, risk
management, finance, insurance, etc. The commercial statistics software SPLUS provides a module
in fin metrics that include copula fitting written by Carmona (2004). One can also get copula
modules in other major software packages such as R, Mathematica, Matlab, etc. The International
Actuarial Association (2004) in a paper on Solvency II, recommends using copulas for modeling
dependence in insurance portfolios. Moody’s uses a Gaussian copula for modeling credit risk and
provides software for it that is used by many financial institutions. Basle II2 copulas are now
standard tools in credit risk management. There are many other applications of copulas, especially
the Gaussian copula, the extreme-value copulas, and the Archimedean copula. We now classify
these applications into several categories.

Nonparametric estimators of copula densities have been suggested by Gijbels et al. (1990) and
Fermanian et al. (2005), who used kernel methods, Sancetta (2003) and Sancetta et al. (2004), who
used techniques based on Bernstein polynomials. Biau et al. (2006) proposed estimating the copula
density through a minimum distance criterion. Faugeras (2008) in his thesis studied the quantile
copula approach to conditional density estimation.

The aim of this paper is devoted to the estimation of a regression model via a copulae function,
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the rest of the paper is organized as follows; at first we will introduce the model, then to state our
result, we will have to make some regularity assumptions on the kernels and the densities which,
although far from being minimal, are somehow customary in kernel density estimation, so we give
some notations and give some assumptions and define the sklar’s theorem, the main result and its
proof is given in the third part of this paper.

2. The model

Let ((Xi;Yi); i = 1, . . . , n) be an independent identically distributed sample from real-valued ran-
dom variables (X, Y ) sitting on a given probability space. For predicting the response Y of the
input variable X at a given location x, it is of great interest to estimate not only the conditional
mean or regression function E(Y |X = x), but the full conditional density f(y|x). Indeed, estimat-
ing the conditional density is much more informative, since it allows not only to recalculate from
the density the conditional expected value E(Y |X), but also many other characteristics of the dis-
tribution such as the conditional variance. In particular, having knowledge of the general shape of
the conditional density, is especially important for multi-modal or skewed densities, which often
arise from nonlinear or non- Gaussian phenomena, where the expected value might be nowhere
near a mode, i.e., the most likely value to appear.

A natural approach to estimate the conditional density f(y|x) of Y given X = x would be to
exploit the identity

f(y|x) =
fXY (x, y)

fX(x)
, fX(x) 6= 0, (1)

where fXY and fX denote the joint density of (X, Y ) and X, respectively.

By introducing Parzen (1962), Pickands (1975) kernel estimators of these densities, namely,

f̂n,XY (x, y) =
1

n

n∑
i=1

K ′h′(Xi − x)Kh(Yi − y),

f̂n,X(x) =
1

n

n∑
i=1

K ′h′(Xi − x),

where Kh(·) = 1/hK(·/h) and K ′h′(·) = 1/h′K ′(·/h′) are (rescaled) kernels with their associated
sequence of bandwidth h = hn and h′ = h′n going to zero as n→ 1, one can construct the quotient

f̂n(y|x) =
f̂n,XY (x, y)

f̂n,X(x)
,

and obtain an estimator of the conditional density.

Formally, Sklar’s theorem below elucidates the role that copulas play in the relationship between
bivariate distribution functions and their univariate marginals (see Sklar (1959)).

Theorem 2.1.

For any bivariate cumulative distribution function FX,Y on R2, with marginal cumulative distri-
bution functions F of X and G of Y, there exists some function C : [0, 1]2 → [0, 1], called the
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dependence or copula function, such as

FX,Y (x, y) = C(F (x), G(y)), −∞ ≤ x, y ≤ +∞. (2)

If F andG are continuous, this representation is unique with respect to (F,G). The copula function
C is itself a cumulative distribution function on [0, 1]2 with uniform marginals.

It is Sklar’s Theorem (Sklar (1959)) that gives a representation of the bivariate c.d.f. as a function of
each univariate c.d.f. In other words, the copula function captures the dependence structure among
the componentsX and Y of the vector (X, Y ), irrespectively of the marginal distribution F andG.
Simply put, it allows to deal with the randomness of the dependence structure and the randomness
of the marginal separately.

Copulas appear to be naturally linked with the quantile transform: in the case F and G are
continuous, formula (2) is simply obtained by defining the copula function as C(u, v) =
FX,Y (F−1(u), G−1(v)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. For more details regarding copulas and their
properties, one can consult for example the book of Joe (1997). Copulas have witnessed a renewed
interest in statistics, especially in finance, since the pioneering work of Rüschendorf (1976) and
Deheuvels (1979), who introduced the empirical copula pro- cess. Weak convergence of the em-
pirical copula process was investigated by Deheuvels et al. (1981), Van der Vaart et al. (1996),
Fermanian et al. (2004). For the estimation of the copula density, refer to Gijbels et al. (1990),
Fermanian (2005) and Fermanian et al. (2003).

From now on, we assume that the copula function C(u, v) has a density c(u, v) with respect to the
Lebesgue measure on [0, 1]2 and that F and G are strictly increasing and differentiable with densi-
ties f and g. C(u, v) and c(u, v) are then the cumulative distribution function (c.d.f.) and density
respectively of the transformed variables (U, V ) = (F (x), G(y)). By differentiating formula (2),
we get for the joint density,

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
=
∂2C(F (x);G(y))

∂F (x)∂G(y)

∂F (x)

∂x

∂G(y)

∂y
= f(x)g(y)c(F (x), G(y)),

where c(u, v) := ∂2C(u,v)
∂u∂v

is the above mentioned copula density. Eventually, we can obtain the
following explicit formula of the conditional density

f(y|x) =
fXY (x, y)

f(x)
= g(y)c(F (x), G(y)), f(x) 6= 0. (3)

Concerning the copula density c(u, v), we noted that c(u, v) is the joint density of the transformed
variables (U, V ) := (F (x), G(y)). Therefore, c(u, v) can be estimated by the bivariate Parzen-
Rosenblatt kernel type non parametric density (pseudo) estimator,

cn(u, v) :=
1

nhnbn

n∑
i=1

K

(
u− Ui
hn

,
v − Vi
bn

)
, (4)

where K is a bivariate kernel and hn, bn its associated bandwidth. For simplicity, we restrict our-
selves to product kernels, i.e., K(u, v) = K1(u)K2(v) with the same bandwidths hn = bn.
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Nonetheless, since F and G are unknown, the random variables (Ui, Vi) are not observable, i.e., cn
is not a true statistic. Therefore, we approximate the pseudo-sample (Ui, Vi), i = 1, . . . , n by its
empirical counterpart (Fn(Xi), Gn(Yi)), i = 1, . . . , n. We therefore obtain a genuine estimator of
c(u, v).

ĉn(u, v) :=
1

nh2n

n∑
i=1

K1

(
u− Fn(Xi)

hn

)
K2

(
v −Gn(Yi)

bn

)
, (5)

the empirical distribution functions Fn(x) and Gn(y) for F (x) and G(y) respectively,

Fn(x) =
n∑
j=1

1Xj≤x and Gn(y) =
n∑
j=1

1Yj≤y.

Our estimated model is given as follows: the regression function r(x) is estimated by a function
r̂n(x)

r(x) = E(Y |X = x) =

∫
yf(y|x)dy =

∫
yg(y)c(F (x), G(y))dy = E(Y c(F (x), G(y))).

This regression function r(x) is estimated by a function r̂n(x) =
∫
yf̂n(y|x)dy.

To state our result, we will have to make some regularity assumptions on the kernels and the densi-
ties which, although far from being minimal, are somehow customary in kernel density estimation.

3. Notations and Assumptions

We note the ith moment of a generic kernel (possibly multivariate) K as

mi(K) :=

∫
uiK(u)du,

and the Lp norm of a function h by ‖s‖p :=
∫
sp. We use the sign ' to denote the order of the

bandwidths. Set (u, v) fixed point in the interior of supp(c). The support of the densitie function c is
noted by supp(c) = {(u, v) ∈ R2; c(u, v) > 0}, where Ā stands for the closure of a set A. Finally,
OP(·) and Op(·) (respectively oa.s(·) and Oa.s(·)) will stands for convergence and boundedness in
probability (respectively almost surely).

3.1. Assumptions

(1) The c.d.f F of x and G of Y are strictly increasing and differentiable.
(2) The density c is twice continuously differentiable with bounded second derivatives on its

support.
(3) The density c is uniformly continuous and non-vanishing almost everywhere on a compact set

D ⊂ (0, 1)× (0, 1) included in the interior of supp(c).
(4) K is of bounded support and of bounded variation.
(5) 0 ≤ K ≤ α and 0 ≤ K0 ≤ α for some constant α.
(6) K is second order kernels, m0(K) = 1,m1(K) = 0 and m2(K) < +∞.



AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 81

(7) K it is twice differentiable with bounded second partial derivatives.

Recall that cn(u, v) is the kernel copula (pseudo) density estimator from the unobservable, but
fixed with respect to n, pseudo data (F (Xi), G(Yi)), and that ĉn(u, v) is its analogue made from
the approximate data (Fn(Xi), Gn(Yi). The heuristic of the reason why our estimator works is that
the n−1/2 in probability rate of convergence in uniform norm of Fn and Gn to F and G is faster
than the 1/

√
na2n rate of the non parametric kernel estimator cn of the copula density c. Therefore,

the approximation step of the unknown transformations F and G by their empirical counterparts
Fn and Gn does not have any impact asymptotically on the estimation step of c by cn. Put in
another way, one can approximate ĉn(Fn(x), Gn(y)) by cn(F (x), G(y)) at a faster rate than the
convergence rate of cn(F (x), G(y)) to c(F (x), G(y)).

3.2. Main Result

This part of the paper is devoted to the asymptotic study the convergence in probability and almost
surely of our estimators introduced above. But at first let us present the rate convergence of the
estimator.

Theorem 3.1.

Let the regularity assumptions (1)-(7) on the densitie and the kernel be satisfied, if hn tends to zero
as n→∞ in such a way that

nh4n →∞,
√

ln lnn

nh3n
→ 0,

then

r̂n(x) = r(x) +OP

(
h2n +

1√
nh2n

+
1

nh4n
+

√
ln lnn

nh3n

)

The main ingredient of the proof follows from the fact that

r̂n(x)− r(x) = Y (ĉn(Fn(x), Gn(y))− cn(F (x), G(y))).

On the one hand, convergence results for the kernel density estimators of what will follow entail
that,

cn(F (x), G(y))− c(F (x), G(y)) = OP(h2n + 1/
√
nh2n).

Thus, by lemmas Lemma 3.13 of Faugeras (2008) and Lemma 3.5 respectively.

Corollary 3.2.

we get the rate of convergence, by choosing the bandwidth which balance the bias and variance
trade-off: for an optimal choice of hn ' n−1/6, we get

r̂n(x) = r(x) +OP(n−1/3)
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Therefore, our estimator is rate optimal in the sense that it reaches the minimax rate n−1/3 of
convergence.

Almost sure results can be proved in the same way: we have the following strong consistency
result,

Theorem 3.3.

Let the regularity assumptions (1)-(7) on the densitie and the kernel be satisfied.If the bandwidth
hn tends to zero as n→∞ in such a way that

√
lnn ln lnn

nh3n
→ 0,

ln lnn

nh4n
→ 0,

then

r̂n(x) = r(x) +Oa.s

(
h2n +

√
ln lnn

nh2n
+

ln lnn

nh4n
+

√
lnn ln lnn

nh3n

)

Proof:

For the proof of this theorem, It is sufficient to follow the same lines as the preceding theorem ,
but uses the a.s. results of the consistency of the kernel density estimators of lemmas Lemma 3.13
of Faugeras (2008) and Lemma 3.5 and of the approximation propositions Proposition 3.6 and
Proposition 3.7. It is therefore similar and omitted. �

Corollary 3.4.

For hn ' (ln lnn/n)1/6 which is the optimal trade-off between the bias and the stochastic term,
one gets the optimal rate

r̂n(x) = r(x) +Oa.s
(

ln lnn

n

)1/3

Let r̂n(x) = Y ĉn(Fn(x), Gn(x)), to demonstrate that r̂n(x) converge to r(x) it is sufficient to prove
that ĉn(u, v)→ cn(u, v).

Recall a preliminary result that will be needed for the main result.

For (Xi, i = 1, . . . , n) an i.i.d. sample of a real random variable X with common c.d.f. F , the
Kolmogorov-Smirnov statistic is defined as Dn := ‖Fn − F‖∞. Glivenko-Cantelli, Kolmogorov
and Smirnov, Chung, Donsker among others have studied its convergence properties in increasing
generality (See e.g. Shorack et al. (1986) and Van der Vaart et al. (1996) for recent accounts). For
our purpose, we only need to formulate these results given in the Lemma 3.13 Faugeras (2008):

|F (Xi)− Fn(Xi)| ≤ sup
x∈R
|F (x)− Fn(x)| = ‖Fn − F‖∞ a.s.

Apply this result to the estimator cn, and for this let us introduce the following result Lemma 3.15
page 82 given in Faugeras (2008).
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Lemma 3.5.

With the previous assumptions, for (u, v) ∈ (0, 1)2, we have,

(1) For a bandwidth chosen such as hn ' n−1/6,

|cn(u, v)− c(u, v)| = OP(n−1/3).

(2) For a point (u, v) where c(u, v) > 0, and hn = o(n−1/6),

√
nh2n

(
cn(u, v)− c(u, v)√

cn(u, v)‖K‖22

)
 N (0, 1).

(3) For a bandwidth chosen of hn ' (ln lnn/n)1/6,

|cn(u, v)− c(u, v)| = Oa.s

((
ln lnn

n

)1/3
)
.

Proof:

The proof is given in Faugeras (2008). �

Now, we need two proposed approximation ĉn by cn.

Proposition 3.6.

Let (u, v) ∈ (0, 1)2. If the kernel K(u, v) = K1(u)K2(v) is twice differentiable with bounded
second derivative, then

|ĉn(u, v)− cn(u, v)| = OP

(
1√
n

+

√
ln lnn

nh3n
+

1

nh4n

)
,

|ĉn(u, v)− cn(u, v)| = Oa.s

(√
ln lnn

n
+

√
lnn
√

ln lnn

nh3n
+

ln lnn

nh4n

)
.

Proof:

The proof is given in Faugeras (2008). �

Proposition 3.7.

With the same assumptions as in the previous proposal was

(1) If hn → 0, nh3n →∞

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = OP

(
1√
n

+
1

nh4n

)
.
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(2) If hn → 0, nh3n/ ln lnn→∞

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = Oa.s

(√
ln lnn

n
+

ln lnn

nh4n

)
.

Proof:

The proof is given in Faugeras (2008). �

4. Asymptotic Bias, Variance and Mean square error

When we want to work out the expectation and variance of the Nadaraya- Watson estimator, we
face the difficulty that the numerator and denominator of this statistic are both random variables.
Thus, let us do the analysis for the numerator and denominator separately. Define

r(x) =

∫
yf(y|x)dy =

∫
yf(x, y)dy = m(x)f(x).

Indeed, let’s recall a well-known connection between the double-kernel estimator of the conditional
density and the Nadaraya-Watson estimator of the regression function. Remember that the double
kernel estimator of the conditional density writes

f̂(y|x) =

∑n
i=1 h

−2
n K

(
x−Xi

hn

)
K(y−Yi

hn
)∑n

i=1 h
−1
n K

(
x−Xi

hn

) .

A natural plug-in approach to estimate the regression function r(x) would be to integrate the double
kernel estimator and define r̂(x) as

r̂(x) =

∫
yf̂(y|x)dy =

∑n
i=1 h

−2
n K

(
x−Xi

hn

) ∫ +∞
i∞ yK

(
y−Yi

hn

)
dy∑n

i=1 h
−1
n K

(
x−Xi

hn

) .

By the change of variable formula, the above integral is equal to

hn

∫ +∞

−∞
(Yi + thn)K(t)dt = hnYi,

by the properties of a symmetric kernel K. Therefore, the plug-in estimator reduces to

r̂(x) =

∑n
i=1 YiK

(
x−Xi

hn

)
∑n

i=1K
(
x−Xi

hn

) ,

which is the classical Nadaraya-Watson estimator of the regression function.

The regression curve estimate is thus given by

m̂n(x) =
r̂n(x)

f̂n(x)
,
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with

r̂n(x) =
1

n

n∑
i=1

YiK

(
x−Xi

hn

)
.

E(r̂n(x)) = E

[
1

n

n∑
i=1

YiK

(
x−Xi

hn

)]

= E
[
Y K

(
x−X
hn

)]
=

∫ ∫
yK

(
x− u
hn

)
f(y|u)f(u)dydu

=

∫
K

(
x− u
hn

)
f(u)

∫
(yf(y|u)dy) du

=

∫
K

(
x− u
hn

)
f(u)(E(Y |X = u))du

=

∫
K

(
x− u
hn

)
f(u)m(u)du

=

∫
K

(
x− u
hn

)
r(u)du. (6)

We note that if r ∈ C2 and hn → 0

B0 = E(r̂n(x))− r(x) =
h2

2
r

′′
(x)µ2(K) + o(h2n).

Hence, rn(x) is asymptotically unbiased for (hn → 0).

To compute the variance of rn(x) let S2(x) = E[y2|X = x]. Thus, for nhn →∞, we have:

V ar(r̂n(x)) = V ar

[
1

n

n∑
i=1

YiK

(
x−Xi

hn

)]

=
1

n
V ar

[
Y K

(
x−X
hn

)]
=

1

n

[∫
K2

(
x− u
hn

)
s2(u)f(u)du−

(∫
K

(
x− u
hn

)
r(u)du

)2
]

=
1

nhn

∫
K2

(
x− u
hn

)
s2(x+ uh)f(x+ uhn)du+ o

(
1

nhn

)
= =

1

nhn
f(x)s2(x)‖K‖22 + o

(
1

nhn

)
. (7)

When we combine (6) and (7) we obtain the formula for the Mean squared error of r̂n(x) for
h→ 0, nh→∞

MSE[r̂n(x)] =
1

nh
f(x)s2(x)‖K‖22 +

h4n
4

(r
′′
(x)µ2(K))2 + o(h4n) + o(

1

nhn
).
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Hence, if we let h→ 0 such that nh→∞, we have

MSE[r̂n(x)]→ 0.

We have noted the difficulties in computing the MSE of m̂(x) directly. In order to get more insight
into how m̂(x) behaves, we linearize the estimator as follows:

m̂(x)−m(x) =

(
r̂n(x)

f̂n(x)
−m(x)

)(
f̂n(x)

f(x)
+ (1− f̂n(x)

f(x)
)

)

=
r̂n(x)−m(x)f̂n(x)

f(x)
+ (m̂(x)−m(x))

f(x)− f̂n(x)

f(x)
. (8)

By the above consistency property of m̂(x), we see that we can choose hn ∼ n−1/5(We will see
later that this is the bandwidth speed that balances variance and squared bias.) Using this bandwidth
we can state

r̂n(x)−m(x)f̂n(x) = (r̂n(x)− r(x))−m(x)(f̂n(x)− f(x))
= OP(n−2/5) +m(x)OP(n−2/5)
= OP(n−2/5),

(m̂(x)−m(x))(f(x)− f̂n(x)) = oP(1) +OP(n−2/5)
= OP(n−2/5).

Hence, in Equation (8) the leading term in the distribution of m̂(x)−m(x) is r̂n(x)−m(x)f̂n(x)
f(x)

, since
the second term in (8) is for (n → ∞) of smaller order in probability. The MSE of this leading
term is as follows:

1

f 2(x)
E[(r̂n(x)−m(x)f̂n(x))2] =

1

(nhf(x))2
E

( n∑
i=1

K

(
x−Xi

hn

)
(Yi −m(x))

)2


=
1

nh2nf
2(x)

V ar

[
K

(
x−X
hn

)
(Y −m(x))

]
+

1

h2f 2(x)
E2

[
K(

x−X
hn

)(Y −m(x))

]
.

After some calculations very similar to those we did for density estimation we arrive at the follow-
ing approximation: for h→ 0, nh→∞

MSE[m̂(x)] =
1

nhn

σ2(x)

f(x)
‖K‖22+

h4n
4

(
m

′′
(x) + 2

m
′
(x)f

′
(x)

f(x)

)2

µ2
2(K)+o(nh−1n )+o(h4n). (9)

Note the following points:

(1) The MSE is order O(n−4/5), when we choose hn ∼ n−1/5.
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(2) The first summand of (9) describes the asymptotic variance of m̂(x). This formula for the
variance is a function of the marginal density f(x) and the conditional variance σ2(x) and
agrees with the intuitive assumption that the regression curve is more stable in those areas
where we have plenty of observations.

(3) The second summand corresponds to the squared bias of m̂(x) and is either dominated by
the second derivative m′′

(x), when we are near to a local extremum of m(x) or by the first
derivative m′

(x), when we are near to a deflection point of m(x).

4.1. Asymptotic Nomality

The asymptotic distribution of m̂(x) is stated in the following theorem.

Theorem 4.1.

Suppose that

•
∫
|K(u)|2+ηdu <∞ for some η > O.

• hn ∼ n−1/5.
• m and f are twice differentiable.
• The distinct points x1, . . . , xk are continuity points of σ2(x) and of E[|Y |2+η|X = x] and
f(xj) > 0, for j = 1, 2, . . . , k.

Then, the Nadaraya-Watson kernel smoother m̂(xj) at the k different locations x1, . . . , xk con-
verges in distribution to a multivariate normal random vector with mean B and identity covariance
matrix, √nhm̂(xj)−m(xj)√

σ2(xj)‖K‖22
f(xj)


k

j=1

 N (B, I),

where

B =

{
µ2(K)[

m
′′
(xj) + 2m

′
(xj)f

′
(xj)

f(xj)
]

}n
j=1

.

Proof:

The proof is given in Ferraty et al. (2003). �

Theorem 4.2.

Let the regularity assumptions (1)-(7) on the density and the kernel be satisfied, if hn ' (lnn/n)1/6

then

sup
x∈R
|r̂n(x)− r(x)| = OP

((
lnn

n

)1/3
)
,
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and

sup
x∈R
|r̂n(x)− r(x)| = Oa.s

((
lnn

n

)1/3
)
.

Proof:

The proof is identical to the ones of theorems Theorem 3.1 and Theorem 3.3, but uses propositions
Proposition 4.3 and 4.4 below instead of propositions Proposition 3.6 and 3.7.

Proposition 4.3.

Let the regularity assumptions (1)-(7) on the density and the kernel be satisfied, then for a compact
set D ⊂ (0, 1)2 and hn ' (lnn/n)1/6, one has

sup
(u,v)∈D

|ĉn(u, v)− cn(u, v)| = OP

((
lnn

n

)1/3
)

= Oa.s

((
lnn

n

)1/3
)
.

Proposition 4.4.

Let the regularity assumptions (1)-(7) on the density and the kernel be satisfied, then for a compact
set D ⊂ (0, 1)2, hn → 0 and nh3n/ lnn→∞ entails

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = OP

(
1

nh4n
+

lnn√
n

)
,

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = Oa.s

(
lnn
√

ln lnn√
n

+
ln lnn

nh4n

)
.

�

Remark 4.5.

Since the copula density c has a compact support [0, 1]2, our estimator may suffer from bias issues
on the boundaries, i.e., in the tails of X and Y . To correct these issues, one could apply one of the
several known techniques to reduce the bias of the kernel estimator on the edges (see e.g Fan et al.
(1996) Chapter 5.5, boundary kernels, reflection, transformation and local polynomial fitting). In
the tail of the distribution of X , this bias issue in the copula density estimator is balanced by the
improved variance, as shown below.

(1) Variance
The variance of our estimator involves a product of the density g(y) of Y by the conditional
density f(y|x),

na2nV ar(f̂(y|x) ≈ g(y)f(y|x) = g2(y)c(F (x), G(y)),
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where = V ar(f̂(y|x)) = 1/(na
)
ng(y)f(y|x)‖|K‖|22 + o(1/(na2n)), whereas competitors in-

volve the ratio of f(y|x) by the density f(x) of X
f(y|x)

f(x)
=
g(y)

f(x)
c(F (x), G(y)).

It is a remarkable feature of the estimator we propose, that its variance does not involve directly
f(x), as is the case for the competitors, but only its contribution to Y , through the copula den-
sity. This reflects the ability announced in the introduction of the copula representation to have
effectively separated the randomness pertaining to Y alone, from the dependence structure of
(X, Y ). Moreover, our estimator also does not suffer from the unstable nature of competitors
who, due to their intrinsic ratio structure, get an explosive variance for small value of the den-
sity f(x), making conditional estimation difficult, e.g. in the tail of the distribution of X .

(2) Bandwidth selection
Performance of nonparametric estimators depends crucially on the bandwidths. For conditional
density, bandwidth selection is a more delicate matter than for density estimation due to the
multidimensional nature of the problem. Moreover, for ratio-type estimators, the difficulty is
increased by the local dependence of the bandwidths hy on hx implied by conditioning near
x. For the copula estimator, a supplemental issue comes from the fact that the pseudo-data
F (Xi),G(Yi) is not directly accessible. Inspection of the AMISE of the copula-based estimator
suggest we can separate the bandwidth choice of h for ĝ(y) from the bandwidth choice of
an the copula density estimator ĉn. A rationale for a data-dependent method is to separately
select h on the Yi data alone (e.g. by cross-validation or plug-in), from the an of the copula
density c based on the approximate data Fn(Xi),Gn(Yi). However, such a bandwidth selection
would require deeper analysis and we leave a detailed study of a practical data-dependent
method for bandwidth selection of the copula-quantile estimator, together with a global and
local comparison of the estimators at their respective optimal bandwidths for further research.

5. Examples

In this part we study ordering properties and bounds for conditional distributions with specific
dependence models (copulas). In the first example, we study the results for a specific Clayton-
Oakes copula.

First, we give the formal definition of distorted distributions.

Definition 5.1.

We say that Fq is a distorted distribution of a distribution function F if

Fq(t) = q(F (t)),

for all t, where q is a distortion function, that is, q : [0, 1] −→ [0, 1] is a continuous increasing
function such that q(0) = 0 and q(1) = 1.

We are going to consider three different conditional distributions. The first one is the distribution
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of the random variable (Y |X ≤ x) which can be written as

P(Y ≤ y|X ≤ x) =
P(Y ≤ y,X ≤ x)

P(X ≤ x)
=
C(F (x), G(y))

F (x)
= q1(G(y)),

where F (x) = P(X ≤ x) and G(y) = P(Y ≤ y) are the (marginal) distribution functions of X
and Y , respectively, and where C is a copula (i.e., C is a restriction of a continuous distribution
function with uniform marginal over the interval (0, 1)). The distortion function is given by

q1(u) =
C(F (x), u)

F (x)
.

Example 5.2.

Let us consider a random vector (X, Y ) with the following Clayton-Oakes (distributional) copula:

C(u, v) =
uv

u+ v − uv
,

for 0 ≤ u, v ≤ 1. Then, the distortion function of (Y |X ≤ x) is

q1(u) =
u

F (x) + u− uF (x)
.

Even more, as

C(F (x), u) =
uF (x)

F (x) + u− uF (x)
,

is concave in u in the interval (0, 1).

In the following example we study the results for all the Farlie-Gumbel-Morgenstern (FGM) bidi-
mensional copulas which include positive and negative (weak) dependence.

Example 5.3.

Let us consider the random vector (X, Y ) with the following FGM distributional copula:

C(u, v) = uv[1 + θ(1− u)(1− v)],

for 0 ≤ u, v ≤ 1 and−1 ≤ θ ≤ 1. In this case, the survival copula coincides with the distributional
copula, that is, C(u, v) = C(u, v).

The survival copula C is determined by the "distributional" copula C (and vice versa) by the
following relationship

C(u, v) = u+ v − 1 + C(1− u, 1− v).

The function

C(F (x), u) = uF (x)[1 + θ(1− u)F (x)], where F (x) = 1− F (x),

is concave (convex) in u in the interval (0, 1) for θ > 0 (θ < 0).



AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 91

Example 5.4.

If the copula C is a strict Archimedean copula then it can be written as

C(u, v) = φ−1(φ(u) + φ(v)),

where φ is a strict generator (see, e.g., Nelsen [28, p. 112]), that is, φ is a strictly decreasing
continuous and convex function from [0, 1] to [0,∞] such that φ(0) =∞ and φ(1) = 0. Then,

φ(C(u, v)) = φ(u) + φ(v),

and, if we assume that φ is differentiable, we have

∂C(u, v)

∂u
=

φ′(u)

φ′(C(u, v))
,

whenever φ′(C(u, v)) < 0.

Example 5.5.

(1) On the asymptotic equivalence with Stute’s smooth k-Nearest Neighbor regression esti-
mator
Now, we explore the connection between the conditional mean predictor and Yang and Stute’s
Yang (1981), Stute (1982) smoothed k-Nearest neighbor estimator of the regression.
Indeed, we recall the different k-Nearest Neighbor estimators of the regression.

• The classical k-NN estimator of the regression has been introduced by Loftsgaar-
den and Queensbury Loftsgaarden et al. (1965). Fix x, and reorder the sample
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) according to the increasing values of |Xi − x| as

(X(1,n)(x), Y(1,n)(x)), (X(2,n)(x), Y(2,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x)).

Then, the estimator is

r̃NN(x) =
1

kn

kn∑
i=1

Y(i,n)(x).

For the density, an estimator is defined analogously as

f̂(x) =
µn[B(x,R(k, x))]

λ[B(x,R(k, x))]
,

where µn stands for the empirical measure, B(x, ε) the ball of radius ε centered at x
and R(k, x) is the distance from x to the knth nearest of X1, X2, . . . , Xn. Stone (1977)
showed its universal consistency. See also Liero (1993). Moore et al. (1977) defined a
generalized version as

f̂(x) =
1

nR(k, x)

n∑
i=1

K

(
x−Xi

R(k, x)

)
.

• Yang (1981) and Stute (1984) smoothed version of the k-NN estimator is defined as

rNN(x) =
1

nan

n∑
i=1

YiK

(
Fn(x)− Fn(Xi)

an

)
.
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The fact that rNN is a smoothed version of the k-NN estimator can be seen with the
kernel K = 1[−1/2,1/2]. In this case, rNN(x0) is the average number of Yi for which,
when Xi ≥ x0 (say), there exists no more than kn := nhn/2 Xj values with x0 ≤ Xj

and such that Xj < Xi.
• with the preceding discussions in sections Section 2 and Section 3 on the asymptotic

deficiency of the empirical c.d.f. with respect to its kernel smoothed version in mind, we
can define the doubly smoothed Nearest-Neighbour estimator of the regression function
as

r̂NN(x) =
1

nan

n∑
i=1

YiK

(
F̂n(x)− F̂n(Xi)

an

)
,

where F̂n the kernel smoothed estimator of the c.d.f. F .

(2) On conditional empirical distribution function
A more general way to view the resemblances and dissimilarities between the quantile copula
estimator and Stute’s one, is to have an approach based on conditional empirical process. The
conditional empirical process indexed by the function φ is defined as

G(y|x) =
n∑
i=1

wni(x,X1, . . . , Xn)φ(Yi, y),

where (wni)1≤i≤n is a sequence of weights. In particular, for the class of functions φ = 1Yi≤y,
the conditional distribution function can be written as

F̂ (y|x) =
n∑
i=1

wni(x,X1, . . . , Xn)1Yi≤y.

• With the Nadara-Watson weights defined as

wni =
K
(
x−Xi

hn

)
∑n

i=1K
(
x−Xi

hn

) ,
the Nadaraya-Watson regression and double kernel conditional density estimators are
defined respectively as

f̂DK(y|x) =

∫
Kh(y − t)dF̂ (t|x)

and r̂DK(y|x) =

∫
tdF̂ (t/x).

• In Stute’s nearest neighbour approach, the weights are different,

w′ni =
1

an
K

(
Fn(x)− Fn(Xi)

an

)
,

and the estimators are defined analogously, as

f̂(y|x) =

∫
Ka(y − t)dF̂ (t/x)

and r̂(y|x) =

∫
tdF̂ (t|x).
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Notice that the Nadaraya-Watson weights sum to 1, whereas the nearest neighbour
weights asymptotically sum up to 1.

• In the quantile copula approach, the weights are also w′ni as Stute’s approach, but the
density and regression estimators are defined in a slightly different manner, as

f̂(y|x) =

∫
ĝ(y)Ka(Gn(y)−Gn(t))dF̂ (t|x)

and r̂(y|x) =

∫
yĝ(y)dF̂ (y|x).

(3) Local Polynomial estimators
Another approach would be to estimate the copula density by the Local polynomial method of
Fan et al. (1996). Its extension in the multivariate case has been investigated by Abdous et al.
(2001). See also Abdous et al. (2005). Recall that the local polynomial estimator of the copula
function is defined as the minimiser of the following score,

Ln(x) =

∫
[0,1]2

KH(u− x)[Cn(u)− P (u− x)]2du,

where Cn(·) = n−1
∑n

i=1 1(Fn(Xi),Gn(Yi))≤· is the empirical cumulative distribution function
based on the approximate observations, KH(u) = |H|−1K(H−1u) a bivariate kernel with
bandwidth matrix H , P is a multivariate polynomial of given degree, and x and u are bivariate
in that context. Note that the polynomial has to be of degree at least one to estimate the copula
density and that one can replace the empirical c.d.f Cn by any smooth estimate converging a.s.
to it.
An alternative approach would be to replace Cn by the empirical measure
µn(·, ·) = n−1

∑n
i=1 δFn(Xi)(·)δGn(Yi)(·) to estimate directly the copula density and its deriva-

tives.

The local polynomial method, when the integral to be minimised is restricted to the support of the
function to be estimated, has the advantage of being free of boundary bias, thus correcting the bias
issue of the kernel method.

Estimation of the conditional cumulative distribution function

The Quantile transform and copula representation approach which lead to the proposed estimator
of the conditional density can also be used to estimate the conditional cumulative distribution
function F (y|x), we have two possible approaches:

(1) Approach by integration of the conditional density
From the estimator of the conditional density, one can integrate to obtain an estimate of the
conditional c.d.f.:

FY |X(x, y) =

∫ y

−∞
fY |X(x, u)du entails F̂Y |X(x, y)

∫ y

−∞
f̂Y |X(x, u)du,

and the latter integral can be computed by numerical integration. One can also get an approxi-
mate explicit formula by noting that,

FY |X(x, y) =

∫ y

−∞
g(t)c(F (x), G(t))dt = E

[
1Y≤yc(F (x), G(Y ))

]
,
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and replacing the expectation by the empirical mean and the unknown c, F , G by their respec-
tive estimators ĉn, F̂n, Ĝn:

F̂Y |X(x, y) =
1

n

n∑
i=1

1Yi≤y ĉn(Fn(x), Gn(Yi)).

(2) Direct approach
From Sklar’s copula formula, one has by a change of variable that

FY |X=x(x, y) =

∫ y

−∞
g(t)c(F (x), G(t))dt

=

∫ G(y)

0

c(F (x), v)dv.

To construct an estimator, one may replace the unknown quantities c, F , G by the respective
estimators ĉn, Fn, Gn to obtain

F̂Y |X=x(x, y) =

∫ Gn(y)

0

ĉn(Fn(x), v)dv

=
1

na2n

n∑
i=1

K

(
Fn(x)− Fn(Xi)

an

)∫ Gn(y)

0

K

(
v −Gn(Yi)

an

)
dv.

By setting K1(t) =
∫ t
−∞K(v)dv, the latter estimator writes, after integration, as

F̂Y |X=x(x, y) =

1

nan

n∑
i=1

K

(
Fn(x)− Fn(Xi)

an

)[
K1

(
Gn(y)−Gn(Yi)

an

)
−K1

(
−Gn(Yi)

an

)]
.

5.1. Finite sample numerical simulation

Although the proposed estimator seems to compare favorably asymptotically, some pitfalls linked
to the copula density estimation may show up in the practical implementation

5.2. Model and comparison results

Many copula densities exhibit infinite values at their corners. Therefore, to avoid that
(Fn(Xi), Gn(Yi)) be equal to (1, 1), we change the empirical distribution functions Fn and Gn

to n/(n+ 1)Fn and n/(n+ 1)Gn respectively.

We simulated a sample of n = 100 variables (Xi, Yi), from the following model: X , Y is
marginally distributed as N (0, 1) and linked via Frank Copula.

C(u, v, θ) =
ln[(θ + θu+v − θu − θv)/(θ − 1)]

ln θ
,

with parameter θ = 100.

We restricted ourselves to simple, fixed for all x, y, rule-of-thumb methods based on Normal ref-
erence rule to get a first picture. For the selection of an of the copula density estimator, we applied
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Scott’s Rule on the data Fn(Xi). We used Epanechnikov kernels for ĝ(y) and the other estima-
tors. We plotted the conditional density along with its estimations on the domain x ∈ [−5, 5] and
y ∈ [−3, 3] on figure 1. A comparison plot at x = 2 is shown on figure 2.

6. Conclusion

In this paper we established the asymptotic properties of a regression model via copula function
approach, and to study the asymptotic normality of such model, it will be interesting in further
work to study the recursive estimation, it is also important to study the asymptotic properties of a
conditional copula model.

In this conclusive section, we would like to sketch some perspectives for further research and
possible applications of the proposed estimator. These are developed in a more or less lengthy
manner, depending on the current degree of advancement of our ongoing research.
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The proposed estimator could be refined by using some more sophisticated methods of estimation
of the copula density.

At last, possible fields of application such as extremes or missing data where we believe the pro-
posed estimator could be an interesting starting.

In the mixing framework, analogues of the Chung-Smirnov property and convergence results of
the kernel density estimator do exist. By coupling arguments as in Rio (2000), one should be able
to extend the estimator in the dependent framework. A case of particular interest is when the X ,
Y variables corresponds to the Xn, Xn+1 of a stationary Markov chain, which gives an estimate of
the transition density. Such an estimate should serve as a building block to make inference, tests
and prediction in fields such as e.g. econometrics.

The method of estimation would be to combine results and method of standard extreme theory
together with this nonparametric approach, and could be briefly sketched as follows:

Such a study could be of practical importance in the following fields.

(1) Environmental applications: For preventing floods, one can be interested in under- standing the
impact of big waves occurring in windstorms on the water level, or the impact of the amount
of rain on the flow of a river. See e.g. Haan et al. (1999).
Other possible applications could be energy production given wind strength for windmills,
electrical consumption of households given temperature, impact of a given factor on pollution,
etc.

(2) Insurance and finance applications: One can imagine this approach could be useful in finance,
e.g. to detect the possibility of bankruptcy of an insurance company from a large claim, occur-
ring with small frequency.

(3) Reliability applications: to assess how the failure of one component would impact the failure
of another one, etc.
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