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Abstract

In this paper, an M /M /1 queue with working vacation and vacation interruption is investigated.
The server is supposed to interrupt the vacation and return back to the normal working period,
if there are at least N customers waiting in the system at a service completion instant during the
working vacation period. Otherwise, the server continues the vacation until the system is non-
empty after a vacation ends or there are at least N customers after a service ends. In terms of the
quasi birth and death process and matrix-geometric solution method, we obtain the distributions
for the stationary queue length. Moreover, we demonstrate stochastic decomposition structures of
the queue length and waiting time, and obtain the distributions of the additional queue length and
additional delay for the case N = 2 . Finally, numerical examples are presented.
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1. Introduction

During the last three decades, researchers have extensively analyzed the vacation queuing models
and successfully utilized in numerous applied problems. In the classical vacation queuing models,
the server completely ceases service during a vacation and such a policy may lead to the dissat-
isfaction of the customers and ultimately to the loss of costumer base. However, there are many
situations where the server does not remain completely inactive during a vacation. But provides
service to the customers at a lower rate. This idea was first introduced by Servi and Finn (2002).
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Servi and Finn (2002) introduced a class of semi vacation policy, where the server does not com-
pletely stops working during a vacation, but it will render service at a lower rate to the queuing
system. This type of vacation is called a working vacation (WV). Servi and Finn (2002) analyzed an
M /M /1 queue with multiple working vacation policy and derived the probability generating func-
tion for the number of customers in the system and LST for waiting time distribution, and utilized
the results to analyze the system performance of gateway router in fiber communication networks.
Subsequently, working vacation queues have received considerable attention in literature, Baba
(2005), Wu and Takagi (2006), Liu et al. (2007). Recently, Majid and Manoharan (2017a, 2017b)
derived the steady state solution of M /M /c queue with WV by utilizing PGF method.

Generally, in a WV policy, the server returns back to regular service period only if there are cus-
tomers waiting in the system at the end of a vacation. Definitely such assumption seems to be
much more limited in real world situations. To overcome such restrictions, the concept of vacation
interruption in an M /M /1 queue with WV was introduced by Li and Tain (2007). In this vaca-
tion policy, if the server at the instant of service completion during the vacation period finds that
there are customers waiting in the system, the sever ends his vacation and returns back to regular
service period, otherwise the server continues the WV until the queuing system is non empty after
a service or a WV ends. Due to its strong application in the stochastic service models, various
productive theoretical results are presented in this area. Li et al. (2008), Baba (2010), Zhang and
Hou (2011), Gao and Liu (2013), and Lee and Kim (2015) are those who have contributed in this
area. Majid and Manoharan (2017c) extended the work of Li and Tain (2007) with single work-
ing vacation. Goswami (2014) analyzed the M /M /1 queue with impatient customers with multiple
working vacations and Bernoulli-schedule vacation interruption. Laxmi amd Jyothsna (2015) stud-
ied the impatient customers in an M /M /1 queue with single and multiple working vacation policy
under Bernoulli schedule vacation interruption. Recently, Majid and Manoharan (2019) analyzed
impatient customers in an M /M /1 Queue with vacation interruptions under Bernoulli schedule
vacation.

Although, in Li and Tian (2007) service discipline, only the first arrival during a vacation period
gets lower service rate. When the server switches from the lower service to the normal service rate
during his vacation, the switching cost is incurred. The system has to face more additional cost
if the service is mostly interrupted. Therefore, in practical application, the vacation interruption
policy introduced by Li and Tian (2007) has some limitations. In this paper, a modified vacation
interruption policy is presented to reduce the switching cost of the system. Under the modified
vacation interruption policy, the server ends his vacation and resumes regular service rate as soon
as at least N customers accumulate in the system upon the completion of a service in the vacation
period. Otherwise, the server continues the vacation until the system is non-empty after a vacation
ends or there are at least N customers waiting after a service ends.

Neuts (1981) has developed a new approach called matrix-geometric method which expands and
enhances the earlier transform methods and presented efficient and stable algorithms involving
only real arithmetic. This technique is applicable to both continuous and discrete-time Markov pro-
cesses. Matrix-geometric method is a effective technique to study and examine complex queuing
systems. This method manages the block matrices of the states of the system and transitions within
the states despite of engaging with individual states or transition probabilities. This technique of



AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 21

solving queuing model makes the expressions in matrix form simpler than the corresponding ex-
pressions given in terms of eigenvalues. Also the basic matrices have direct probabilistic eval-
uation, while the eigenvalues do not. This method establishes a geometric relationship between
vectors of the stationary probability distribution and enables one to find a closed-form derivations
for the calculation of different performance measures such as the mean queue length, mean waiting
time and busy cycle. One of the practical advantages of this method is that these elementary ma-
trix operations can easily be programmed for a high-speed computer. The use of PH-distributions
in the representation of system elements and the matrix-geometric method in their analysis has
significantly expanded the scope of queuing systems.

The rest of the paper is structured as follows. In Section 2, we discuss the model as a quasi birth
and death process and obtain the stationary distribution of the queue length. In Section 3, we
investigate this model for the case N = 2 and derive the stochastic decomposition structures of the
number of customers in the system and waiting time, and obtain the distributions of the additional
queue length and additional delay. In Section 4, numerical illustrations are presented followed by
conclusions in Section 5.

2. Model Description

We consider a multiple working vacation policy in an M /M /1 queuing model under vacation inter-
ruption, where the server provides service to the customers at a reduced rate rather than stopping
the service completely during his vacation period. The customers arrive according to a Poisson
process with parameter λ. The server serves the customers at an exponential rate µ during a regular
busy period and service discipline is first come first served (FCFS). The server begins a working
vacation as soon as the system becomes empty. The arriving customers during working vacation
period are served at a rate lower than the regular service rate. The service times during the working
vacation and vacation times are also assumed to be exponentially distributed with rates η and θ,
respectively. The server is supposed to interrupt the vacation and return back to the normal busy
period, if there are at least N customers waiting in the system at a service completion instant during
a working vacation period. Otherwise, he continues the vacation until the system is non-empty af-
ter a vacation ends or there are at least N customers after a service ends. Furthermore, if the server
does not find any customer waiting in the system after completing a working vacation he will take
another working vacation, else he will resume his regular busy period instantly. The inter-arrival
times, the service times, and the working vacation times all are taken to be mutually independent.

Let Q(t) be the number of customers in the system at time t and J (t) be the status of the server,
which is defined as follows,

J(t) =

{
0, when the server stays in a WV period at time t,

1, when the server stays in non vacation period at time t,

then the stochastic process {(Q(t), J (t)), t ≥ 0} is a quasi birth-and-death (QBD) process with the
state space

S = {(0, 0)}
⋃
{(k, j), k ≥ 1, j = 0, 1} ,
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where state (k , 0) represents that the system is in WV period and there are k(k ≥ 0) customers in
the system; state (k , 1) represents that the system is in normal working level and there are k(k ≥ 1)

customers in the system.

Using the lexicographical order for the states, the infinitesimal generator for the QBD process is

Q =



A00 A01

B10 A C

B2 A C

B3 A C
. . . . . . . . .

BN A C

B A C

B A C
. . . . . . . . .


, (1)

where

A00 = −λ, A01 = (λ, 0), B10 = (η, µ)T ,

A =

(
−(λ+ η + θ) θ

0 −(λ+ µ)

)
, C =

(
λ 0

0 λ

)
,

B =

(
0 η

0 µ

)
, Bi =

(
η 0

0 µ

)
, i = 2, 3, ....

Lemma 2.1.

If the system workload λ
µ < 1, the following matrix quadratic equation

R2B +RA+ C = 0

has a minimal non-negative solution

R =

(
r r(λ+θ)

µ

0 ρ

)
, (2)

where

r =
λ

λ+ θ + η
, 0 < r < 1. (3)

Proof:

Since A, B and C in are all upper triangular matrices, therefore we can consider that the solution
matrix R has the same structure as

R =

(
r11 r12
0 r22

)
.
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Substituting the matrix value R into R2B + RA + C = 0, we obtain

−(λ+ θ + η)r11 + λ = 0,

µr222 − (λ+ µ)r22 + λ = 0,

ηr211 + µr12(r11 + r22) + θr11 − (λ+ µ)r12 = 0.

Solving the above equations, we can obtain R. �

Lemma 2.2.

The QBD process (Q(t), J (t)) is positive recurrent if and only if ρ < 1.

Proof:

Based on Theorem 3.1.1 in Neuts (1981), the QBD process {(Q(t), J (t)), t ≥ 0} is positive recur-
rent (ergodic) iff the spectral radius SP(R) of the rate matrix R satisfies SP(R) < 1 and the linear
system of equations xB [R] = 0 have positive solution, where x is 2N + 1-dimensional row vector
and B[R] is a 2N + 1-order matrix given by

B[R] =



A00 A01

B10 A C

B2 A C

B3 A C
. . . . . . . . .

BN A C

B RB +A


.

B [R] is an irreducible and aperiodic generator with finite state. Therefore, xB [R] = 0 has a positive
solution. Thus, the process (Q(t), J (t)) is positive recurrent if and only if

SP (R) = max(r, ρ) < 1.

Note that 0 < r < 1, the above relation means that ρ < 1. �

2.1. Stationary Distribution of Queue Length

If ρ < 1, let (Q , J ) be the stationary limit of the QBD process {(Q(t), J (t)), t ≥ 0} and define

Πk = (πk0, πk1), k ≥ 1,

x = (π00,Π1,Π2, ...,ΠN ),

πkj = P {Q = k, J = j} = lim
t→∞
{(Q(t) = k, J(t) = j} , (k, j) ∈ S.

In order to derive the stationary distribution of (Q , J ), define a series of numbers as
β0 = 1,

βk = 1− ηr
λ + η

λβk−1 + θ
λ

k−1∑
v=0

βN , 1 ≤ k ≤ N − 1.
(4)
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Theorem 2.3.

If ρ < 1 , the joint probability distribution of (Q , J ) is

πk0 =

{
KβN−1−k, 0 ≤ k ≤ N − 1,

K, k = N,
(5)

πk1 =



K
(
λ
µβN−1 −

η
µβN−2

)
, k = 1,

K

{
(λµ)k−1

(
λ
µβN−1 −

η
µβN−2

)
+ r(λ+θ)

λ

k−1∑
j=1

(λµ)j

+ θ
λ

k−1∑
j=1

(λµ)j
N−1∑

v=k+1−j
βN−1−v

}
, 2 ≤ k ≤ N

and 
πk0 = πN0r

k−N , k > N,

πk1 = πN1ρ
k−N + r(λ+θ)

µ +
k−N−1∑
v=0

rvρk−N−1−v, k > N,
(6)

where the constant K can be determined by the normalization condition
∞∑
k=0

πk,0 +

∞∑
k=1

πk,1 = 1.

Proof:

The linear system of equations xB[R] = 0 can be written as

−λπ00 + ηπ10 + µπ11 = 0, (7)
θπ10 − (λ+ µ)π11 + µπ21 = 0, (8)

λπk−1,0 − (λ+ θ + η)πk0 + ηπk+1,0 = 0, 1 ≤ k ≤ N − 1, (9)
λπk−1,1 + θπk0 − (λ+ µ)πk1 + µπk+1,1 = 0, 2 ≤ k ≤ N − 1, (10)

λπN−1,0 −
λ

r
πN0 = 0, (11)

λπN−1,1 + (λ+ θ)πN0 − µπN1 = 0. (12)

From (11), we have

πN,0 = rπN−1,0. (13)

Substituting (13) into (9), we recursively obtain

πk,0 = πN−1,0 βN−1−k, 0 ≤ k ≤ N − 1.

Denoting πN−1,0 = K , then (5) is derived.

From (12), we have

µπN1 − λπN−1,1 = (λ+ θ)πN0. (14)
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Using (14) and (10), we recursively obtain

µπk1 = λπk−1,1 + (λ+ θ)πN0 + θ

N−1∑
v=k

πv0, 2 ≤ k ≤ N − 1.

After manipulating, we recursively achieved

πk1 =

(
λ

µ

)k−1
π1,1 +

(λ+ θ)

λ
πN0

k−1∑
j=1

(
λ

µ

)j
+
θ

λ

k−1∑
j=1

(
λ

µ

)j N−1∑
v=k+1−j

πv0, 2 ≤ k ≤ N. (15)

Applying (5) in (7), we get

π11 = K

[
λ

µ
βN−1 −

η

µ
βN−2

]
. (16)

Substituting (16) and (5) into (15), we have

πk1 = K

{(
λ

µ

)k−1(λ
µ
βN−1 −

η

µ
βN−2

)
+
r(λ+ θ)

λ

k−1∑
j=1

(
λ

µ

)j

+
θ

λ

k−1∑
j=1

(
λ

µ

)j N−1∑
v=k+1−j

βN−1−v

}
, 2 ≤ k ≤ N.

Furthermore, using the matrix geometric solution method (Neuts (1981)), we obtain

Πk = ΠNR
k−N = (πN,0, πN,1)R

k−N , k > N.

From (2), we get

Rk =

rk r(λ+θ)
µ

k−1∑
j=0

rjρk−1−j

0 ρk

 .

Hence, the theorem is proved. �

Remark 2.4.

The results are the same as those of Li and Tian (2007) when N = 1. Therefore, the model is a
generalization of Li and Tian (2007).

3. A Special Case of N = 2

It is difficult to obtain the stochastic decomposition structures of the mean queue length and mean
waiting time at a steady state of this model as the distribution expressions of these indices are very
complicated and hard to operate. Hence, we analyze the stochastic decomposition structure of the
steady state indices in a special case N = 2.
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Suppose that N = 2, then the system of equations (7) to (12) take the form

−λπ00 + ηπ10 + µπ11 = 0,

θπ10 − (λ+ µ)π11 + µπ21 = 0,

λπ0,0 − (λ+ θ + η)π10 + ηπ2,0 = 0,

λπ1,0 −
λ

r
π20 = 0,

λπ1,1 + (λ+ θ)π20 − µπ21 = 0.

Assume that π0,0 = K , then we obtain

Π1 = K

(
λ

λ+ θ + (1− r)η
,
ρ(λ+ θ + rη)

λ+ θ + (1− r)η

)
,

Π2 = K

(
ρλ

λ+ θ + (1− r)η
,
ρ(ρ(λ+ θ + rη) + r(λ+ θ))

λ+ θ + (1− r)η

)
.

Using the matrix geometric solution method (Neuts (1981)), we obtain

(πk0, πk1) = (π20, π21)R
k−2,

thus, we have

πk0 = K
λ

λ+ θ + (1− r)η
rk−1, k ≥ 2,

πk1 = K

 ρ(λ+ θ)

λ+ θ + (1− r)η

k−1∑
j=2

rjρk−1−j + ρk−1
ρ(λ+ θ + rη) + r(λ+ θ)

λ+ θ + (1− r)η

 , k ≥ 2, (17)

where K can be determined by the normalization condition as

K =

{
1 +

λ

(1− r)(λ+ θ + (1− r)η)
+

ρr(λ+ θ)

(1− r)(1− ρ)(λ+ θ + (1− r)η)
(18)

+
ρ(λ+ θ − rµv)

(1− ρ)(λ+ θ + (1− r)η)

}−1
.

From (17), the probabilities that the system is in a working vacation period and in a regular busy
period are as follows, respectively

P (J = 0) =

∞∑
k=0

πk0 = K

[
1 +

λ

(1− r)(λ+ θ + (1− r)η)

]
,

P (J = 1) =

∞∑
k=1

πk1 = K

[
ρr(λ+ θ)

(1− r)(1− ρ)(λ+ θ + (1− r)η)
+

ρ(λ+ θ − rµv)
(1− ρ)(λ+ θ + (1− r)η)

]
.

Theorem 3.1.

If ρ < 1 and µ > η, the stationary queue length L in system can be decomposed into a sum of
two independent random variables: Q = Q0 + Qd, where Q0 is the stationary queue length of the
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classical M /M /1 queue without vacation and follows a geometric distribution with parameter 1-
ρ and the additional queue length Qd has a modified geometric distribution

P{Qd=k} =


K∗φ1, K = 0,

K∗φ2, K = 1,

K∗φ3(1− r)rk−1, K ≥ 2,

(19)

where φ1 = 1− r , φ2 =
(µ− η)(1− r)ρ

λ+ θ + (1− r)η
, φ3 =

(µ− η)ρ

λ+ θ + (1− r)η
,

K∗ =

[
(1− r)(1− ρ) +

λ(1− ρ)

(λ+ θ + (1− r)η)
+

ρr(λ+ θ)

(λ+ θ + (1− r)η)
+
ρ(1− r)(λ+ θ − rη)

(λ+ θ + (1− r)η)

]−1
.

Proof:

Using (17), the PGF of Q can be expressed as follows

Q(z) =

∞∑
k=0

πk0z
k +

∞∑
k=1

πk1z
k

= K

{
1 +

λ

λ+ θ + η(1− r)
z

1− rz
+

ρ(λ+ θ − ηr)z
λ+ θ + η(1− r)

+
ρ(λ+ θ)

λ+ θ + η(1− r)
r2z3

(1− rz)(1− ρz)

+
ρ(λ+ θ − ηr) + ρ(λ+ θ)

λ+ θ + η(1− r)
z2

(1− ρz)

}

=
1− ρ
1− ρz

K∗

{
(1− r)(1− ρz) +

λ

λ+ θ + η(1− r)

(
(1− r)z + (r − ρ)

(1− r)z2

1− rz

)

+
ρ(λ+ θ − ηr)z
λ+ θ + η(1− r)

+
ρ(λ+ θ)

λ+ θ + η(1− r)
r(1− r)z2 +

ρ(λ+ θ)

λ+ θ + η(1− r)
r2(1− r)z3

(1− rz)

}

=
1− ρ
1− ρz

K∗
[
φ1 + φ2z + φ3

r(1− r)
1− rz

z2
]

=
1− ρ
1− ρz

Qd(z).

It is easy to verify that φ1 + φ2 + rφ3 = (K ∗)−1, therefore, Qd (z ) is a PGF. Expanding Qd(z) in
power series of z, we get the distribution of additional number of customers Qd. With the stochastic
decomposition structure in Theorem 3.1, we can easily get the means

E (Qd ) = K ∗
[
φ2 +

r(2− r)
1− r

φ3

]
, E (Q) =

ρ

1− ρ
+ E (Qd ). �

Theorem 3.2.

If ρ < 1 and µ > η, the waiting time W of an arrival can be decomposed into the sum of two
independent variables:W = W0+Wd, whereW0 is the waiting time of an arrival in a corresponding
classical M /M /1 queue and is exponentially distributed with parameter µ(1 − ρ) and Wd is the
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additional delay with the LST given by

W ∗d (s) = K∗
{
ψ1 + ψ1

α

α+ s

}
, (20)

where

α =
λ(1− r)

r
, ψ1 = φ1 + φ2 − φ3

1− r2

r
, ψ2 =

φ3
r
.

Proof:

The classical relationship between the PGF of Q and the LST of waiting time W is

Q(z) = W ∗(λ(1− z)).

From Theorem 3.1, we get

Q(z) =
1− ρ
1− ρz

K∗
[
φ1 + φ2z + φ3

r(1− r)
1− rz

z2
]
. (21)

Taking z = 1− s

λ
in (21) and denoting

λ(1− r)
r

= α, we get

W ∗(s) =
µ(1− ρ)

µ(1− ρ) + s
K∗

{
φ1 + φ2(1−

s

λ
) + φ3

(1− r)
λ

[
λ
r

α+ s
− (2λ+ α) + s

]}

=
µ(1− ρ)

µ(1− ρ) + s
K∗
[
ψ1 + ψ2

α

α+ s

]
=

µ(1− ρ)

µ(1− ρ) + s
W ∗d (s).

It is easy to verify that ψ1 + ψ2 = φ1 + φ2 + rφ3 = (K ∗)−1. Therefore, W ∗
d (s) is a LST. �

The result of Theorem 3.2 indicates that additional delay Wd equals zero with probability K ∗ψ1

and follows an exponential distribution with parameter α. It is easy to obtain

E (Wd ) = K ∗ψ2

1

α
=

1

λ
E (Qd ), E (W ) =

1

µ(1− ρ)
+ E (Wd ).

4. Numerical Results

In this section, we illustrate the influence of the system parameters on the performance measures
by presenting some numerical examples. Figures 1 and 2 depict the expected queue length E (Q)

against the vacation service rate η for different values of θ and ρ respectively. In Figure 3, we
present the state probability of the server for the change of η and different vacation rate θ . Figure 4
gives the comparison of our model (M/M/1/MWV + V I) with M /M /1/MWV (Liu et al.(2007))
in terms of mean queue length. Figure 5 shows how the mean waiting time E (W ) changes with
the mean vacation time and presents the comparison of the mean waiting time in our model with
two different vacation policies i.e the multiple vacation (MV ) and the multiple working vacation
(MWV ). The main findings in this study are itemized as follows.
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Figure 1. The effect of η on E(Q) for different values of θ.

• As explained in Figures 1 and 2, with the increase in vacation service rate η, the mean queue
length E (Q) apparently decreases. Meanwhile, when the vacation service rate η tends to µ = 2,
E (Q) will approach to a constant value and the model reduces to the corresponding queue without
vacation, regardless of the length of vacation times. Furthermore, when we increase the values of
θ and ρ, the expected number of customers in the queue decreases and increases respectively.

• From Figure 3, the probability that the server stays in working vacation P(J = 0), evidently
increases and the probability that the server remains in normal working level P(J = 1) decreases
with an increase in vacation service rate η . Hence, the utilization level of the system idle time
becomes larger. Moreover, the state probability of the server is also affected by the vacation rate
θ . For example, when θ = 1.5, P(J = 0) are evidently lesser than those for θ = 0.5 .

• From Figure 4, M /M /1/MWV (Liu et al. (2007)) yields higher mean queue length E (Q) when
compared to our model M /M /1/MWV + VI for fixed η and hence in the former case more cus-
tomers wait in the queue. Therefore, the vacation interruption policy is appreciably more desirable
in terms of E (Q). Thus, we can provide a better service, if we consider vacation interruptions un-
der working vacation policy so that we can make use of server productively and consequently
decrease the waiting time of customers.

• As illustrated in Figure 5, increase in θ−1 leads to an increase in E (W ) and when θ−1 advances
towards 0, E (W ) will approach to a constant value i.e. our model becomes a classical M/M/1

queue. Moreover, MWV + VI policy performs better than the MV policy and the MWV policy,
as the server will return back to a regular busy level more frequently if the mean vacation time is
longer. Consequently, more customers are served at a higher rate.
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Figure 2. The effect of η on E(Q) for different values of ρ.

Figure 3. The state probability of the server with the change of η

.5. Conclusion

In this paper, we have carried out the analysis of M /M /1 queue with working vacation and va-
cation interruption. Using the QBD process and matrix-geometric solution technique, we obtained
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Figure 4. The comparison of models without and with vacation interruption.

Figure 5. Comparisons among different models.

the stationary probability distribution of the number of customers in the system. Furthermore, we
also derived the conditional stochastic decomposition structures and some performance measures
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for N = 2. We find that MWV + VI policy outperforms both the MV policy and MWV policy.
Therefore, the vacation interruption policy is appreciably more desirable in terms of mean queue
length and mean waiting time. Hence, we can achieve a better service, if we consider vacation
interruptions under working vacation policy so that we can make use of server effectively and con-
sequently decrease the waiting time of customers. For future research, one can consider a M /M /1

queue with working vacations and vacation interruption under N policy.
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