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Abstract  
 

In this paper, the problem of thermal radiation and chemical reaction effects on electrical MHD 

Jeffrey fluid flow over a stretching surface through a porous medium with the heat source is 

presented. We obtained the approximate analytical solution of the nonlinear differential equations 

governing the problem using the Optimal Homotopy Asymptotic Method (OHAM). Comparison 

of results has been made with the numerical solutions from the literature, and a very good 

agreement has been observed. Subsequently, effects of governing parameters of the velocity, 

temperature and concentration profiles are presented graphically and discussed. 
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1. Introduction 
 

The flow of non-Newtonian fluid over a stretching sheet has caught researchers’ interest in the last 

few years because of its significant practical applications, mainly in manufacturing and industry 

processes. Many researchers attracted towards the Jeffery fluid, which is one type of Non-

Newtonian fluid, for its simplicity. These flows are occurring in metal and polymer extrusion, 

cable coating, drawing of plastic sheets, textiles and paper industries, etc. An Industrial application 
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includes fibers spinning, hot rolling, continuous casting, and glass blowing. In industrial 

applications and natural process, a number of transportation processes occur where the transfer of 

heat and mass takes place at the same time as a result of diffusion of chemical species and thermal 

diffusion. 

Sakadis (1961) introduced the study of the boundary layer flow over a stretching surface and 

formulated boundary layer equations. Crane (1970) examined the boundary layer flow and heat 

transfer over the stretching plate. The problem considered by Crane was further extended and 

developed to heat and mass transfer with the effect of blowing or suction by  Gupta and Gupta 

(1977). The problem of boundary layer flow of a viscous fluid by a stretching sheet was studied 

by Ariel (2009). A few numbers of research papers deal with on the characteristics of Newtonian 

fluid flow are accessible in the open literature which can be found in (Dessie and Kishan (2014); 

Ishak et al. (2009); Madaki et al. (2017); Pal (2009); Zheng et al. (2013)). 

All the above-mentioned researchers are limited to Newtonian fluid flows. Non-Newtonian fluids 

are fluids which do not follow Newton's law of motion. Many researchers studied the 

characteristics of Jeffrey fluid (Non-Newtonian fluid) in different conditions because of its 

versatile in nature (Akram & Nadeem (2013); Hayat et al. (2011); Hayat et al. (2016); Malik et al. 

(2012); Nadeem et al. (2010); Qasim (2013); Sahoo (2010); Sandeep et al. (2016)). The resistance 

force produced by the internal friction between the pore structure(in the porous medium) and fluid 

is characterized by Darcy’s semi-empirical law established by Darcy, see  Bear (1972). 

In the literature, the following analytical methods are accessible for the solution of nonlinear 

problems. Most of the methods like Adomian Decomposition Method (ADM) Huda and  

Abdelhalim (2018), Variational Iteration Method (VIM)(Xu and Eric, 2013), Differential 

Transform Method (DTM)(Usman et al. 2017), Radial basis function (Ganji, 2006), Homotopy 

Perturbation Method (HPM)(Jhankal, 2014), Laplace Transform Method (LTM)(Maqbool et al. 

2017), Fourier Transform Method (FTM) Maqbool et al. (2016), Fractional Homotopy Analysis 

Transform Method (FHATM)(Arshad et al. 2017), are used for solution of weakly nonlinear 

coupled problems. However, only some methods are used for strongly nonlinear coupled problems.  

Researchers studied the perturbation methods to obtain the solution of strongly nonlinear 

simultaneous problems. These methods collect and group small parameters which cannot be found 

easily. The methods like Artificial Parameters Method(Liu, 1997), Homotopy Analysis Method 

(HAM) (Hayat et al. 2015) and Homotopy Perturbation Method (HPM)(He, 1999) were introduced 

for the small parameter. The above analytic methods joined the homotopy with the perturbation 

techniques.  

OHAM is a semi-analytical technique that is directed forward to apply on different type of 

problems and the existence of any small or large parameters are not significant. Marinca et al. 

(2009) were initially introduced the basic concept of this method in 2008. OHAM reduces the 

extent of the computational domain. It is a reliable analytical technique and has already been 

successfully applied to various nonlinear coupled differential equations occurring in science, 

engineering and other fields of studies. Many researchers applied OHAM to study the fluid flow 

problems (Abdel-Wahed et al. (2015); Mabood et al. (2013); Gossaye and Kishan (2018); Mustafa 

(2016); Ullah et al. (2015)). 
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Jeffrey fluid is a kind of non-Newtonian fluid that uses a relatively simpler linear model using time 

derivatives, which are used by many fluid models. Lately, this model fluid has motivated 

researchers for active discussion on it. Many studies on this fact can be found in(Ahmad and Ishak 

(2017); Eldabe et al. (2018); Kirani et al. (2017); Odelu et al. (2017); Selvi et al. (2017)). In view 

of the above discussion, the aim of this paper is to survey the effects of thermal radiation and 

chemical reaction on electrical MHD Jeffrey fluid flow surrounded in a porous medium over a 

stretching surface with a heat source and viscous dissipation using OHAM.  

2.  Basic Concept of Optimal Homotopy Asymptotic Method (OHAM) 

Let us  apply the analytic method OHAM to the following differential equation(Marinca and 

Herisanu (2015)) 

𝐿(𝑢(𝜂)) + 𝑁(𝑢(𝜂)) + 𝑔(𝜂) = 0,     𝐵(𝑢) = 0,                                                                             (1) 

where 𝐿 is a linear operator, 𝜂 represents the independent variable, 𝑢(𝜂) is an unknown function 

(a function to be obtained), 𝑔(𝜂)  is a known function, 𝑁  is a nonlinear operator and 𝐵  is a 

boundary operator. First, we have to build a family of an equation using OHAM: 

[𝐿(∅(𝜂, 𝑝)) + 𝑔(𝜂)](1 − 𝑝) 

−𝐻(𝑝)[𝐿(∅(𝜂, 𝑝)) + 𝑔(𝜂) + 𝑁(∅(𝜂, 𝑝))] = 0,    𝐵(∅(𝜂, 𝑝)) = 0,                                            (2) 

where 𝑝 ∈ [0,1] is an embedding parameter, 𝐻(𝑝) is a nonzero auxiliary function (𝐻(𝑝) ≠ 0)  for 

𝑝 ≠ 0 and 𝐻(𝑝) = 0  for 𝑝 = 0, ∅(𝜂, 𝑝) is an unknown function. Clearly, when 𝑝 = 0 and 𝑝 = 1, 

it holds that: 

∅(𝜂, 0) = 𝑢0(𝜂),      ∅(𝜂, 1) = 𝑢(𝜂).                                                                                     (3) 

Thus, as 𝑝 increases from 0 to 1, the solution ∅(𝜂, 𝑝) changes from 𝑢0(𝜂) to the solution 𝑢(𝜂), 
where 𝑢0(𝜂) is obtained from Equation (2) for 𝑝 = 0: 

𝐿(𝑢0(𝜂)) + 𝑔(𝜂) = 0,   𝐵(𝑢0) = 0.                                                                                                     (4) 

We choose auxiliary function 𝐻(𝑝) in the form   

𝐻(𝑝) = 𝑝𝐶1 + 𝑝
2𝐶2,                                                                                                                            (5) 

where  𝐶1 and 𝐶2 are constants (convergence parameters) which can be determined later. 

Expanding  ∅(𝜂, 𝑝) in a series form with respect to 𝑝, we have 

 

∅(𝜂, 𝑝, 𝐶𝑖) = 𝑢0(𝜂) +∑𝑢𝑘(𝜂, 𝐶𝑖)

𝑘≥1

𝑝𝑘, 𝑖 = 1,2.                                                                   (6) 

Now substituting Equation (6) into Equation (2) and equating the coefficients of like powers of 𝑝, 

and equating each coefficient of 𝑝 equal to zero, we obtain set of the differential equation with 

boundary conditions. In general, the solution of Equation (1) can be obtained approximately in the 

form of 
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𝑢̃(𝑚) = 𝑢0(𝜂) +∑𝑢𝑘(𝜂, 𝐶𝑖)

𝑚

𝑘=1

.                                                                                                          (7) 

 Substituting Equation (7) into Equation (1), we obtain the residual given below 

𝑅(𝜂, 𝐶𝑖) = 𝐿 (𝑢̃(𝑚)(𝜂, 𝐶𝑖)) + 𝑁 (𝑢̃
(𝑚)(𝜂, 𝐶𝑖)) + 𝑔(𝜂).                                                               (8) 

If 𝑅(𝜂, 𝐶𝑖) = 0, then 𝑢̃(𝑚)(𝜂, 𝐶𝑖) is much closer to the exact solution. To reduce the occurred error 

for nonlinear problems, we have the following relation  

𝐽(𝐶1, 𝐶2) = ∫𝑅
2(𝜂,

𝑑

𝑐

𝐶1, 𝐶2)𝑑𝜂,                                                                                                          (9) 

where 𝑐 and 𝑑 are the constant values which are depended on the given nonlinear problem. The 

unknown constants (convergence of parameters) 𝐶𝑖(𝑖 = 1,2) can be obtained from the conditions: 

𝜕𝐽

𝜕𝐶1
=
𝜕𝐽

𝜕𝐶2
= 0.                                                                                                                                  (10) 

With these known convergence parameters, the solution of Equation (7) will be determined. 

3.  Formulation of the Problem 

Let us consider the constitutive equations for a steady, incompressible Jeffrey fluid flow which is 

given by (Sharmaa et al. 2017) 

 𝜏 = −𝑝𝐼 + 𝑆,                                                                                                                                                     (11) 

𝑆 =
𝜇

1 + 𝜆
[𝑅1 + 𝑅1𝜆1 (

𝜕𝑅1
𝜕𝑡

+ 𝑉. ∇)],                                                                                          (12) 

where 𝜏 is the Cauchy stress tensor, 𝑆  is the extra stress tensor,  𝑝 is the pressure, 𝐼  represents a 

unit tensor, 𝜇 is the dynamic viscosity, 𝜆 is the ratio of relaxation to retardation times, 𝜆1 is the 

retardation time of the fluid and 𝑅1 is the Rivlin-Ericksen tensor defined by 𝑅1 = ∇𝑉 + (∇𝑉)𝑡. 

The steady two-dimensional incompressible flow of an electrically conducting Jeffrey fluid over 

a stretching surface in the presence of electric field and thermal radiation has been considered. The 

effect of surface temperature and viscous dissipation has been also considered in the study. The 

stretching of the surface from a slot through two equal and opposite forces causes the Jeffrey fluid 

flow. Magnetic field 𝐵0 and electric field 𝐸0 are both applied normal to the Jeffrey fluid flow field.  

The sheet 𝑥𝑧 − plane is stretched in the 𝑥-direction, such that the velocity components in the 𝑥-

direction changes linearly along it (Figure 1). 
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                                    Figure 1.  Physical model and co-ordinate system 

The two-dimensional electrical MHD boundary layer flow equations of an incompressible 

Jeffrey fluid are given as:                                                                                                     

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0,                                                                                                                                      (13) 

𝜈

1 + 𝜆
(
𝜕2𝑢

𝜕𝑦2
+ 𝜆1 (𝑢

𝜕3𝑢

𝜕𝑦2𝜕𝑥
+ 𝑣

𝜕3𝑢

𝜕𝑦3
+
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
−
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2
)) 

−(
𝜎𝐵0

2

𝜌
𝑢 +

𝜈

𝐾𝑝′
𝑢) + 

𝜎

𝜌
𝐵0 𝐸0 = 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
,                                                       (14) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+
𝑄0(𝑥)

𝜌𝐶𝑝
(𝑇 − 𝑇∞) 

−
1

𝜌𝐶𝑝

𝜕𝑞𝑟
𝜕𝑦

 +
𝜇

𝜌𝐶𝑝
(
𝜕𝑢

𝜕𝑦
)
2

+
𝜎

𝜌𝐶𝑝
(𝑢𝐵0 − 𝐸0)

2,                                                     (15) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝑘𝑐

∗(𝐶 − 𝐶∞),                                                                                          (16) 

where 𝑢  and 𝑣  are the velocity components in the 𝑥 − axis and 𝑦 − axis respectively, 𝑇 is the 

fluid temperature, 𝐶 is the concentration, 𝜈 is the kinematic viscosity, 𝜌 is the fluid density, 𝐶𝑝 is 

specific heat and 𝐷  is the diffusion coefficient. We also have  𝐵0,  𝐸0, 𝐾𝑝
′ , 𝑘𝑐

∗, 𝛼,  𝑞𝑟 , 𝑄0 and 𝜎 

which represents the magnetic field factor, electric field factor, the permeability of the porous 

medium, the rate of chemical reaction, thermal diffusivity, radiative heat flux, heat source 

coefficient, and electrical conductivity. 
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Rosseland’s approximation for thermal radiation gives 𝑞𝑟 = −
4𝜎∗

3𝑘∗ 

𝜕𝑇4

𝜕𝑦
, where 𝜎∗  and 𝑘∗ are the 

Stefan-Boltzmann constant and the mean absorption number, respectively. It is supposed that the 

temperature variation within the flow is such that 𝑇4 may be expressed in Taylor series. Expanding 

𝑇4 about 𝑇∞ and avoiding the higher order terms, we obtain 

𝑇4 = −3𝑇∞
4 + 4𝑇∞

3𝑇                                                                                                                          (17) 

and  

 
𝜕𝑞𝑟
𝜕𝑦

= −
16𝜎∗𝑇∞

3

3𝑘∗
𝜕2𝑇

𝜕𝑦2
.                                                                                                                      (18) 

Substituting Equation (18) to Equation (15), we get 

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+
𝑄0
𝜌𝐶𝑝

(𝑇 − 𝑇∞) +
16𝜎∗𝑇∞

3

3𝜌𝐶𝑝𝑘∗
𝜕2𝑇

𝜕𝑦2
 

+
𝜇

𝜌𝐶𝑝
(
𝜕𝑢

𝜕𝑦
)
2

+
𝜎

𝜌𝐶𝑝
(𝑢𝐵0 − 𝐸0)

2,                                                                                                  (19) 

subjected to the boundary conditions given below 

𝑢 = 𝑈𝑤 = 𝑐𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝐴1 (
𝑥

𝑙
)
𝑟

,  

𝐶 = 𝐶𝑤 = C∞+𝐴2 (
𝑥

𝑙
)
𝑟

for 𝑦 = 0,                                                                                                (20) 

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞  as 𝑦 → ∞,                                                                              (21) 
 
in which 𝐴1 and 𝐴2 are constants depending on the properties of the fluid, 𝑙 is the characteristic 

length, 𝑟 is the surface temperature parameter, 𝑇𝑤 , 𝐶𝑤 , 𝑇∞, and 𝐶∞ are temperature and species 

concentration at the wall and far away from the wall respectively. 

 

To convert the governing PDEs into a set of similarity ODEs, we established the following 

dimensionless parameters: 

 

{
 

 𝜂 = √
𝑐

𝜈
𝑦, 𝑢 = 𝑐𝑥𝑓′(𝜂), 𝑣 = −√𝜈𝑐 𝑓(𝜂),

    𝑔(𝜂) =
𝑇 − 𝑇∞
 𝑇𝑤 − 𝑇∞

 , ℎ(𝜂) =
𝐶 − 𝐶∞
 𝐶𝑤 − 𝐶∞

.  

                                                                (22) 

 

After a long simplification, the transformed momentum, energy and concentration Equations 

(14), (16) and (19) along with the boundary conditions (20) and (21) are given by 
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𝑓′′′ − 𝛽𝑓𝑓′′′′ + 𝛽(𝑓′′)2 + (1 + 𝜆)(𝑓𝑓′′ − (𝑓′)2 − (𝑀 + 𝐾2)𝑓
′ +𝑀𝐸1) = 0,                   (23) 

(1 +
4

3
𝑅𝑑)𝑔′′ + 𝑃𝑟[𝑓𝑔′ + 𝐸𝑐(𝑓′′)2 + 𝑄𝑔 − 𝑟𝑓′𝑔 + 𝑀𝐸𝑐(𝑓′ − 𝐸1)

2] = 0,                     (24) 

ℎ′′ + 𝑆𝑐(𝑓ℎ′ − 𝑟𝑓′ℎ − 𝛾ℎ) = 0,                                                                                                    (25) 
 
subject to the boundary conditions 

 

{
𝑓(0) = 0,    𝑓′(0) = 1, 𝑔(0) = 1, ℎ(0) = 1,

𝑓′(∞) → 0,   𝑓′′(∞) → 0, 𝑔(∞) → 0, ℎ(∞) → 0,
                                                    (26) 

 

where the prime denotes differentiation with respect to 𝜂 and the other parameters appearing in 

Equations (23)-(25) are defined as follows: 

 

𝑓′  is the dimensionless velocity, 𝑔  is temperature and ℎ  is the concentration, 𝐾2 =
𝜈

𝑐𝐾𝑝
′  is the 

porosity parameter, 𝑀 =
𝜎𝐵0

2

𝑐𝜌
  is the magnetic field parameter,   𝐸1 =

𝐸0

𝑈𝑤𝐵0
 is the electric field 

parameter, 𝛽 = 𝜆1𝑐 is the Deborah number,  𝐸𝑐 =
𝑈𝑤
2

  𝐴1𝐶𝑝
(
𝑙

𝑥
)
𝑟

 is the Eckert number, 𝑃𝑟 =
𝜐

𝛼
  is the 

Prandtl number, 𝑅𝑑 =
4𝜎∗𝑇∞

3

𝑘𝑘∗
 is the thermal radiation parameter, 𝑄 =

𝑄0

𝑐𝜌𝐶𝑝
 is the heat source 

parameter,  𝑆𝑐 =
𝜈

𝐷
 is the Schmidt number,  𝛾 =

𝑘𝑐
∗

𝑐
 is the chemical reaction parameter, for which 

when 𝛾 > 0 it leads to destructive chemical reaction while  𝛾 < 0 related  to generative chemical 

reaction, respectively.  

 

4.  Analytical Solution Using OHAM 

In this section, the OHAM is applied to nonlinear ordinary equations (23)-(25) with the boundary 

conditions (26) under the following assumption  

 

 𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝
2𝑓2, 𝑔 = 𝑔0 + 𝑝𝑔1 + 𝑝

2𝑔2, ℎ = ℎ0 + 𝑝ℎ1 + 𝑝
2ℎ2, 

 𝐻1(𝑝) = 𝑝𝐶1 + 𝑝
2𝐶2,   𝐻2(𝑝) = 𝑝𝐶3 + 𝑝

2𝐶4,    𝐻3(𝑝) = 𝑝𝐶5 + 𝑝
2𝐶6, 

where 𝑝 ∈ [0,1] is an embedding parameter, 𝐻𝑗(𝑝), 𝑗 = 1,2,3 is a nonzero auxiliary function, and 

𝐶𝑖, (𝑖 = 1,2,3,4,5,6) are constants Marinca et al. (2009). 

 

4.1. Analytical Solution of the Momentum Boundary Layer Problems 

 
The OHAM is applied to nonlinear ODE (23) using the assumption below 

 

 𝐿 = 𝑓′ + 𝑓′′ and 

 𝑁 = 𝑓′′′ − 𝛽𝑓𝑓′′′′ + 𝛽(𝑓′′)2 

+(1 + 𝜆)(𝑓𝑓′′ − (𝑓′)2 − (𝑀 + 𝐾2)𝑓
′ +𝑀𝐸1) − (𝑓

′ + 𝑓′′),                                            (27) 
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where  𝐿 is the linear operator, 𝑁 is a nonlinear operator. Hence, the OHAM family of equation is 

given by 

(1 − 𝑝)(𝑓′ + 𝑓′′) = 𝐻1(𝑝)[𝑓
′′′ − 𝛽𝑓𝑓′′′′ + 𝛽(𝑓′′)2 

+(1 + 𝜆)(𝑓𝑓′′ − (𝑓′)2 − (𝑀 + 𝐾2)𝑓
′ +𝑀𝐸1)].                                                                        (28) 

After simplification, equating the like powers of 𝑝 − terms and using the boundary conditions 

(26), we have the following: 

Equating the zero order equation 𝑝0,  we obtain 

𝑓0
′ + 𝑓0

′′ = 0             𝑓0(0) = 0, 𝑓0
′(0) = 1.                                                                          (29) 

Equating the first order equation 𝑝1, we obtain 

 𝑓1
′ + 𝑓1

′′ = 𝑓0
′′ + 𝑓0

′ 

                  +𝐶1 [
𝑓0
′′′ + (1 + 𝜆)(𝑓0𝑓0

′′ − 𝑓0
′2 −𝑀𝑓0

′

−𝐾2𝑓0
′ +𝑀𝐸1) − 𝛽[𝑓0𝑓0

′′′′ − (𝑓0
′′)2]

],                                                           (30) 

𝑓1(0) = 0, 𝑓1
′(0) = 0.                          

Equating the second order equation 𝑝2, we obtain 

  𝑓2
′ + 𝑓2

′′ = 𝐶1 [
𝑓1
′′′ + (1 + 𝜆)(𝑓0𝑓1

′′ + 𝑓1𝑓0
′′ − 2𝑓0

′𝑓1
′ − 𝑓1

′(𝑀 + 𝐾2) )

𝑀𝐸1 − 𝛽[𝑓1𝑓0
′′′′ + 𝑓0𝑓1

′′′′ − 2𝑓0
′′𝑓1

′′]
]                 

                  +𝐶2 [
𝑓0
′′′ + (1 + 𝜆)(𝑓0𝑓0

′′ − 𝑓0
′2 − (𝑀 + 𝐾2)𝑓0

′

+𝑀𝐸1)  − 𝛽[𝑓0𝑓0
′′′′ − (𝑓0

′′)2]
] + 𝑓1

′ + 𝑓1
′′,                                (31) 

 𝑓2(0) = 0,    𝑓2
′(0) = 0.      

After solving the ODEs (29)-(31) with the corresponding boundary conditions, we obtain 

𝑓0 = 𝑒
−𝜂(𝑒𝜂 − 1),                                                                                                                             (32) 

𝑓1 = −𝐶1𝑒
−𝜂(−𝐾2 + 𝑒

𝜂𝐾2 − 𝑀 + 𝑒𝜂𝑀− 𝐸1𝑀+ 𝑒𝜂𝐸1𝑀− 𝐾2𝜂 − 𝑀𝜂 

               +𝛽 − 𝑒𝜂𝛽 + 𝜂𝛽 − 𝜆 + 𝑒𝜂𝜆 −𝐾2𝜆 + 𝑒
𝜂𝐾2𝜆 −𝑀𝜆 + 𝑒

𝜂𝑀𝜆 − 𝐸1𝑀𝜆 

               +𝑒𝜂𝐸1𝑀𝜆 − 𝜂𝜆 − 𝐾2𝜂𝜆 − 𝑀𝜂𝜆 − 𝑒
𝜂𝐸1𝑀𝜂𝜆) − 𝑒

𝜂𝐸1𝑀𝜂.                                               (33) 

The other term 𝑓2 is too large to mention here. Hence, the solution 𝑓(𝜂, 𝐶𝑖) is given by: 

 
𝑓(𝜂, 𝐶𝑖) = 𝑓0(𝜂)+  𝑓1(𝜂, 𝐶𝑖)+  𝑓2(𝜂, 𝐶𝑖).                                                                                      (34) 
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The residual equation for the above problem is written in the form 

 

𝑅1(𝜂, 𝐶𝑖) = [
𝑓′′′ − 𝛽𝑓𝑓′′′′ + 𝛽(𝑓′′)2 +𝑀𝐸1

+(1 + 𝜆)(𝑓𝑓′′ − (𝑓′)2 − 𝑓′(𝑀 + 𝐾2))
].                                                        (35) 

 

The unknown convergence parameters 𝐶1 and 𝐶2 can be optimally identified from the following 

conditions given below 

 

𝜕𝐽1(𝐶1, 𝐶2)

𝜕𝐶1
=
𝜕𝐽1(𝐶1, 𝐶2)

𝜕𝐶2
= 0, where  𝐽1(𝐶𝑖) = ∫ 𝑅1

2(𝜂, 𝐶𝑖)
5

0

𝑑𝜂.                               (36) 

 

In the particular case when 𝐾2 = 𝛽 = 0.2,𝑀 = 𝐸1 = 0.1  and 𝜆 = 2, the convergence parameters 

are as follows 

 

    C1 = 0.261227  and  C2 = 0.0000449066. 

Hence, the approximate analytical solution can be written as 

𝑓(𝜂, 𝐶𝑖) = 𝑒
−𝜂(𝑒𝜂 − 1) +𝑓2(𝜂, 𝐶𝑖 ) 

            −0.261227𝑒−𝜂 (
−0.31+ 0.2𝑒𝜂 + 0.1𝑒𝜂 + 0.01𝑒𝜂 − 0.1𝜂

−0.2 − 0.2𝑒𝜂 − 2.82 + 2𝑒𝜂 + 0.4𝑒𝜂 + 0.2𝑒𝜂

+0.02𝑒𝜂 − 2.2𝜂 − 0.4𝜂 − 0.02𝑒𝜂𝜂 − 0.01𝑒𝜂𝜂
) .                               (37) 

After substituting all the parameters, the solution is given by 

𝑓(𝜂) = 𝑒−𝜂(−1 + 𝑒𝜂) − 0.261227𝑒−𝜂(−2.73 + 2.73𝑒𝜂 − 2.7𝜂 − 0.03𝑒𝜂𝜂) 

                     +
1

2
𝑒−𝜂(−0.815533897648 + 0.8155339786𝑒𝜂 − 0.823430904                  

          +0.00789700620598𝑒𝜂𝜂 − 0.49173416508141𝜂2).                                     (38) 

 

4.2. Analytical Solution of the Thermal Boundary Layer Problems 

The OHAM is applied to nonlinear ODE (24) using the following assumption 

𝐿 = 𝑔′ + 𝑔 and 

𝑁 = (1 +
4

3
𝑅𝑑)𝑔′′ + 𝑃𝑟 [

𝑓𝑔′ + 𝐸𝑐(𝑓′′)2 + 𝑄𝑔

−𝑟𝑓′𝑔 + 𝑀𝐸𝑐(𝑓′ − 𝐸1)
2] − (𝑔

′ + 𝑔),                                        (39)            

where 𝐿 is the linear operator, 𝑁 is a nonlinear operator. Hence, the OHAM family of equation is 

given by 
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(1 − 𝑝)(𝑔′ + 𝑔) = 𝐻2(𝑝)[(1 +
4

3
𝑅𝑑)𝑔′′     

+𝑃𝑟[𝑓𝑔′ + 𝐸𝑐(𝑓′′)2 + 𝑄𝑔 − 𝑟𝑓′𝑔 + 𝑀𝐸𝑐(𝑓′ − 𝐸1)
2]].                                                          (40) 

After simplification, equating the like powers of 𝑝 − terms and using the boundary conditions 

(26), we have the following: 

Equating the zero order equation 𝑝0, we get 

𝑔0
′ + 𝑔0 = 0,            𝑔0(0) = 1.                                                                                                       (41) 

Equating the first order equation 𝑝1, we get 

𝑔1
′ + 𝑔1 = 𝑔0

′ + 𝑔0 + 𝐶3((1 +
4

3
𝑅𝑑)𝑔0

′′ 

+𝑃𝑟[𝑓0𝑔0
′ + 𝐸𝑐(𝑓0′′)

2 + 𝑄𝑔0 − 𝑟𝑓0′𝑔0     +𝑀𝐸𝑐(𝑓0′ − 𝐸1)
2]),                                             (42) 

 𝑔1(0) = 0.                               

Equating the second order equation 𝑝2, we obtain 

𝑔2
′ + 𝑔2 = 𝑔1

′ + 𝑔1 

                        + 𝐶3 [(1 +
4

3
𝑅𝑑)𝑔1

′′ + 𝑃𝑟 [
𝑓1𝑔0

′ + 𝑓0𝑔1
′ + 2𝐸𝑐𝑓0

′′𝑓1
′′

−𝑟𝑓0
′𝑔1 − 𝑟𝑓1

′𝑔0 +𝑀𝐸𝑐(𝑓1′ − 𝐸1)
2]]              

   +𝐶4 [(1 +
4

3
𝑅𝑑)𝑔0

′′ + 𝑃𝑟 [
𝑓0𝑔0

′ + 𝐸𝑐(𝑓0′′)
2

+𝑄𝑔0 − 𝑟𝑓0′𝑔0 +𝑀𝐸𝑐(𝑓0′ − 𝐸1)
2]] , 𝑔2(0) = 0.      (43) 

After solving the ODEs (41)-(43) with the corresponding boundary conditions, we obtain 

𝑔0 = 𝑒−𝜂                                                                                                                                                            (44) 

        𝑔1 = 𝐶3𝑒
−2𝜂(−Pr + 𝑒𝜂Pr − EcPr + 𝑒𝜂EcPr − Ec𝑀Pr 

                 +𝑒𝜂Ec𝑀Pr − 𝑒𝜂(𝐸1)
2Ec𝑀Pr + 𝑒2𝜂(𝐸1)

2Ec𝑀Pr + r Pr 

                 −𝑟𝑒𝜂Pr − 𝑒𝜂Pr𝜂 − 2𝑒𝜂𝐸1Ec𝑀Pr𝜂 + 𝑒
𝜂Pr𝑄𝜂 + 𝑒𝜂𝑅𝜂).                                                         (45) 

The other term 𝑔2 is too large to mention here. Hence, the solution 𝑔(𝜂, 𝐶𝑖) is given by: 

𝑔(𝜂, 𝐶𝑖) = 𝑔0(𝜂)+  𝑔1(𝜂, 𝐶𝑖 )+  𝑔2(𝜂, 𝐶𝑖 ), 𝑖 = 1,2,3,4.                                                            (46) 
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The residual equation for the above problem is written in the form 

 

𝑅2(𝜂, 𝐶𝑖) = (1 +
4

3
𝑅𝑑)𝑔′′ + 𝑃𝑟 [

𝑓𝑔′ + 𝐸𝑐(𝑓′′)2 + 𝑄𝑔

−𝑟𝑓′𝑔 + 𝑀𝐸𝑐(𝑓′ − 𝐸1)
2].                                              (47) 

 

The unknown convergence parameters 𝐶𝑖 can be optimally identified from the following 

conditions given below 

 

𝜕𝐽2(𝐶𝑖)

𝜕𝐶1
=
𝜕𝐽2(𝐶𝑖)

𝜕𝐶2
=
𝜕𝐽2(𝐶𝑖)

𝜕𝐶3
=
𝜕𝐽2(𝐶𝑖)

𝜕𝐶4
= 0, where  𝐽2(𝐶𝑖) = ∫ 𝑅2

2(𝜂, 𝐶𝑖)
5

0

𝑑𝜂.     (48) 

 

In the particular case when 𝐾2 = 𝑅𝑑 = 𝐸𝑐 = 𝑆𝑐 = 𝑄 =  𝑀 = 𝐸1 = 0.1, 𝛽 = γ =  𝜆 = 0.2,  
𝑟 = 2 and 𝑃𝑟 = 0.72, then the values of the convergence parameters are given by 

 

𝐶1 = 0.6811505642327639,        𝐶2 =  0.602294011253409, 

𝐶3 = 0.4671549443900552,       𝐶4 = 0.3843015490314871.      

Hence, the approximate analytical solution can be written as 

 𝑔(𝜂, 𝐶𝑖) =  𝑔2(𝜂, 𝐶𝑖 )+ 𝑒
−𝜂 + 0.46715494𝑒−2𝜂(Pr(−1 + 𝑒𝜂 − Ec + 𝑒𝜂Ec) 

           −Ec𝑀Pr   +𝑒𝜂Ec𝑀Pr−𝑒𝜂(𝐸1)
2Ec𝑀Pr  + 𝑒2𝜂(𝐸1)

2Ec𝑀Pr 

          +r Pr − 𝑒𝜂Pr (r + 𝜂) −  2𝑒𝜂𝐸1Ec𝑀Pr𝜂 +  𝜂𝑒
𝜂(Pr𝑄 + 𝑅)).                                                 (49) 

 

After substituting all the parameters, the solution is given by 

𝑔(𝜂) = 0.46715494𝑒−2𝜂(0.64079  − 0.64087𝑒𝜂 + 0.0007𝑒2𝜂 + 0.4839𝑒𝜂𝜂) 

          +
1

2
𝑒−3𝜂(−5.551115123125 × 10−17 + 0.026877017826𝑒𝜂 

          +0.00008244963299996𝑒3𝜂 + 0.0662893612393148𝑒𝜂𝜂 

          +0.2549535423923659𝑒2𝜂𝜂 + 0.04861279751992115𝑒2𝜂𝜂2 

          −0.02695946745954858𝑒2𝜂)+𝑒−𝜂 .                                                                                 (50) 

 

4.3. Analytical Solution of the Concentration Boundary Layer Problems 

The OHAM is applied to the nonlinear ODE (25) under the following assumption 

𝐿 = ℎ′ + ℎ and 𝑁 = ℎ′′ + 𝑆𝑐(𝑓ℎ′ − 𝑟𝑓′ℎ − 𝛾ℎ) − (ℎ′ + ℎ),                                                (51) 

where 𝐿 is the linear operator, 𝑁 is a nonlinear operator. Hence, the OHAM family of the equation 

is given by 

(1 − 𝑝)(ℎ′ + ℎ) = 𝐻3(𝑝)[ℎ
′′ + 𝑆𝑐(𝑓ℎ′ − 𝑟𝑓′ℎ − 𝛾ℎ)].                                                          (52) 
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After simplification, equating the like powers of 𝑝 − terms and using the boundary conditions 

(26), we have the following: 

Equating the zero order equation 𝑝0, we get 

ℎ0
′ + ℎ = 0,            ℎ0(0) = 1.                                                                                                         (53) 

Equating the first order equation 𝑝1, we get 

ℎ1
′ + ℎ1 = ℎ0

′ + ℎ0 + 𝐶5[ℎ0
′′ + 𝑆𝑐(𝑓0ℎ0

′ − 𝑟𝑓0
′ℎ0 − 𝛾ℎ0)], ℎ1(0) = 0.                                 (54) 

Equating the second order equation 𝑝2,  we obtain 

 

ℎ2
′ + ℎ2 = 𝐶5[ℎ1

′′ + 𝑆𝑐(𝑓0ℎ1
′ + 𝑓1ℎ0

′ − 𝑟𝑓0
′ℎ1 − 𝑟𝑓1

′ℎ0 − 𝛾ℎ1)]  

+𝐶6[ℎ0
′′ + 𝑆𝑐(𝑓0ℎ0

′ − 𝑟𝑓0
′ℎ0 − 𝛾ℎ0)] + ℎ1

′ + ℎ1 ,  ℎ2(0) = 0.                                          (55) 

After solving the ODEs (53)-(55) with the corresponding boundary conditions, we obtain 

ℎ0 = 𝑒
−𝜂 ,                                                                                                                                             (56) 

ℎ1 = −𝐶5𝑒
−2𝜂(Sc − 𝑒𝜂Sc − 𝑟Sc + 𝑒𝜂𝑟Sc − 𝑒𝜂𝜂 + 𝑒𝜂Sc𝜂 + 𝑒𝜂Sc𝜂𝛾).                                (57) 

 

The other term ℎ2 is too large to mention here. Hence, the solution ℎ(𝜂, 𝐶𝑖) is given by: 

 

ℎ(𝜂, 𝐶𝑖) = ℎ0(𝜂) +  ℎ1(𝜂, 𝐶𝑖) +  ℎ2(𝜂, 𝐶𝑖), 𝑖 = 1,2,5,6.                                                         (58) 
 

The residual equation for the above problem is written in the form 

 

𝑅3(𝜂, 𝐶𝑖) = ℎ′′ + 𝑆𝑐(𝑓ℎ′ − 𝑟𝑓′ℎ − 𝛾ℎ).                                                                                     (59) 
 

The unknown convergence parameters 𝐶𝑖  can be optimally identified from the following 

conditions: 

 

𝜕𝐽3(𝐶𝑖)

𝜕𝐶1
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶2
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶5
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶6
= 0, where  𝐽3(𝐶𝑖) = ∫ 𝑅3

2(𝜂, 𝐶𝑖)
5

0

𝑑𝜂.      (60)  

 

In the particular case when 𝑅𝑑 = 𝐸𝑐 = 0.3, 𝑄 = 0.4, 𝑀 = 𝐸1 = 0.1, γ = 0.5, 𝑃𝑟 = 6.2 

 𝜆 = 2  𝐾2 = 𝛽 = 𝑆𝑐 = 0.2 and 𝑟 = 1.  Thus, the convergence parameters are calculated as 

𝐶1 = 0.2612266461651084,        𝐶2 = 0.00007659376670304, 

𝐶5 = 0.6910524293031602, 𝐶6 = 0.7900961769653166. 
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Hence, the approximate analytical solution can be written as 

 

 ℎ(𝜂) = 𝑒−𝜂 − 0.6910524293031602𝑒−2𝜂(−0.7𝑒𝜂𝜂)                                                    

                   +
1

2
𝑒−3𝜂(0.32867798191848(𝑒𝜂 − 𝑒2𝜂) + 0.3965614985𝑒2𝜂 

           +0.23291806757185493𝑒2𝜂𝜂2).                                                                                      (61) 

According to Dalir  (Dalir, 2014), the exact solution of differential equation (23) when the values 

of the magnetic field, electric field and porosity parameters 𝑀, 𝐸1 and 𝐾2  are zero given by 

𝑓(𝜂) =
1 − 𝑒−𝑛𝜂

𝑛
, 𝑛 = (

1 + 𝜆

1 + 𝛽
)

1
2
.                                                                                         (62) 

 

The second derivatives of the equation (54) with its velocity gradient at the surface are given by 

𝑓′′(𝜂) = −𝑛𝑒−𝑛𝜂 , when 𝜂 ≠ 0 and 𝑓′′(0) = −𝑛, when 𝜂 = 0.                                         (63) 

5. Result and Discussions 

The system of Equations (23), (24) and (25), along with the boundary conditions (26), has been 

solved by the optimal homotopy asymptotic method (OHAM). To verify the validity of our results, 

we have made a comparison of the skin-friction coefficient 𝑓′′(0)  for different values of the elastic 

parameter of Jeffrey fluid (the Deborah number β) when 𝑀 = 𝐸1 = 𝐾2 = 0  and 𝜆 = 0.2 with the 

previously published results and an interesting agreement is observed (See Table 1). 

Figures 2, 3 and 4 displayed the influence of electric field Parameter 𝐸1 on the velocity field 𝑓′(𝜂), 
temperature profile 𝑔(𝜂) and concentration profile ℎ(𝜂), respectively.  An increase in the value of 

electric field parameter  𝐸1 , the velocity boundary layer increases near the stretching sheet 

considerably. For a remarkable increase in the value of the electric field, the resistance between 

fluid particles increases and hence Lorentz force tries to enhance the body forces and it leads to 

increase in the flow of Jeffrey fluid velocity and momentum boundary layer become thicker. In 

Figure 3 we have seen that the electric field performs as an accelerating force that increases the 

fluid temperature and thermal boundary layer thickness. A higher value of an electric field is 

accompanied with thicker and higher the amount of temperature distribution inside the boundary 

layer region of the neighborhood of the Jeffrey fluid. From Figure 4 we observed that the fluid 

concentration decreases for a large amount of an electric field parameter 𝐸1. The rate of mass 

transfer at sheet increases because of an increment in the value of the electric field.  

 

 

Table 1.  Comparison values of 𝑓′′(0) for various values of Deborah number 𝛽 for the case 𝑀 = 𝐸1 = 𝐾2 = 0 

and 𝜆 = 0.2 
β      Zokri et al. (2017)    Dalir (2014)          Exact              Present Result          Error 
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                                                                           Solution               (OHAM)              |OH. S − Ex. S| 

0.0      -1.09544512          -1.09641580           -1.09544512         -1.09539762        0.0000475 
0.2                 -                       -1.00124052           -1.00000000         -1.00000000        0.0000000 
0.4      -0.92582010          -0.92724220           -0.92582010         -0.92583743        0.0000173 
0.6                 -                       -0.86755715           -0.86602540         -0.86611893        0.0000935 
0.8      -0.81649659          -0.81808091           -0.81649658         -0.81672159        0.0002250 
1.0                 -                       -0.77618697           -0.77459667         -0.77499482        0.0003981 
1.2      -0.73854899          -0.74010502           -0.73854895         -0.73915253        0.0006035 
1.4                 -                       -0.70859214           -0.70710678         -0.70794355        0.0008367 
1.6      -0.67936634          -0.68074654           -0.67936662         -0.68046252        0.0010959 
1.8                  -                      -0.65589608           -0.65465367         -0.65603602        0.0013823 
2.0      -0.63245579          -0.63352833           -0.63245553         -0.63415120        0.0016956 

 

Figures 5 and 6 exhibited the profiles of the dimensionless velocity 𝑓 ′(𝜂) and the temperature 

distribution 𝑔(𝜂) for dissimilar values of Deborah number 𝛽. From Figure 5 we observed that the 

boundary layer thickness and the velocity are increasing functions of the Deborah number 𝛽. In 

contrast, opposing event is observed for the temperature profile as seen in Figure 6.    

Figures 7, 8 and 9 show the variation of temperature profiles for dissimilar values of heat source 

parameter  𝑄 , Eckert number 𝐸𝑐  and thermal radiation parameter  𝑅𝑑 , respectively. Figure 7 

represents the impact of heat source parameter on dimensionless temperature 𝑔(𝜂). A gradual 

increment of the heat source parameter 𝑄 increases the thermal boundary layer thickness which 

finally leads to higher the temperature profile. Figure 8 demonstrates the impact of Eckert 

number 𝐸𝑐 in the case of Jeffrey fluid. It is seen that an increase in 𝐸𝑐, increase the temperature 

distribution and hence increase the thermal boundary layer thickness. This leads to the decline of 

the rate of heat transfer from the surface. It is observed that the temperature has been affected by 

the thermal radiation, which results to increase in both the temperature and the thermal boundary 

layer thickness when the values of 𝑅𝑑 increases, which is demonstrated in Figure 9. 

Figures 10, 11 and 12 demonstrate the variation of concentration fields for dissimilar values of 

Schmidt number 𝑆𝑐, destructive chemical reaction and generative chemical reaction parameters, 

respectively. Figure 10 exhibits the graph of concentration profiles for various values of Schmidt 

number 𝑆𝑐. We observe that concentration declines with a rise in Schmidt number 𝑆𝑐. Thus, for 

higher values of Schmidt number the concentration of chemically reactive species is larger and 

lower for small values of 𝑆𝑐. Figures 11 and 12 displayed the influence of chemical reaction 

parameter  𝛾. The concentration profile ℎ(𝜂) decreases with an increment of destructive chemical 

reaction parameter (𝛾 > 0). However, ℎ(𝜂) increases in the case of generative chemical reaction 

parameter (𝛾 < 0).  

Figure 13 displays the influence of surface temperature parameter 𝑟 on the temperature field. It is 

seen that an increase in 𝑟 the thermal boundary layer thickness decreases. The wall temperature 

parameter plays a significant role in managing heat transfer. The effects of the porous medium 𝐾2 

of the flow velocity and temperature are displayed in Figures 14 and 15, respectively. The cause 

of greater obstruction to the Jeffery fluid flow is an increase in the porosity parameter 𝐾2, which 

concludes in the decrement of velocity, whereas the contrary event occurs in the temperature 

profile. 

The influence of magnetic field parameter M on velocity profiles without the electric field and 

with the electric field is depicted in Figures 16 and 17, respectively. Figure 16 illustrates the impact 



164                                                                                       Gossaye Aliy and Naikoti Kishan 
 

of the magnetic field parameter on the velocity profile in the absence of an electric field (𝐸1 = 0). 

The velocity field significantly reduces with an increase in the values of magnetic field parameter 

 𝑀. It is obvious that the magnetic field depends on Lorenz force, which is stronger for a larger 

magnetic field. Because of the absence of an electric field, the Lorenz force increases the frictional 

force, which performs as a retarding force that opposes the Jeffrey fluid flow over a stretching 

sheet. Figure 17 illustrates that in the presence of an electric field (𝐸1 ≠ 0), as the magnetic field 

parameter 𝑀 increases, the velocity boundary layer decreases. After a distance of around  𝜂 ≅

2.16576 away from the wall, it increases over the stretching sheet strongly. This is due to the fact 

that the electric field which acts as speeding up the body force, accelerate the Jeffrey fluid flow.                         

6. Conclusions 
 

In this study, we have examined the effects of flow parameters like; Deborah number, electric 

field, porous medium, radiation, Eckert number, heat source/sink, chemical reaction, Schmidt 

number and wall temperature on heat and mass transfer characteristics of the stretching sheet in a 

Jeffrey fluid. The transformed ordinary equations are solved analytically using the optimal 

homotopy asymptotic method (OHAM). The graphic illustrations of our results from the influence 

of relevant parameters on velocity, temperature, and concentration profiles are discussed in 

detailed. Some of the specific conclusions which have been derived from the study can be 

summarized as follows: 

 

 The optimal homotopy asymptotic method is clear, effective, reliable and efficient.  

 Controlling and adjusting the convergence of the series solution using the convergence 

parameters are very simple. 

 The elasticity of the Jeffrey fluid decreases the temperature closer to the bounding surface. 

 Velocity and temperature increase with an increase in an electric field while concentration 

decreases. 

 For higher values of thermal radiation and viscous dissipation, the temperature field shows 

an increasing behavior. 

 Destructive chemical reaction (𝛾 > 0) and electric field parameters have the tendency to 

decrease the concentration boundary layer thickness. 

 The surface temperature parameter plays a significant role in controlling the heat transfer. 
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Figure 2. Velocity profile 𝑓′(𝜂) for different values of electric field parameter  𝐸1 when  

                𝐾2 = 𝛽 = 0.5,𝑀 = 1, 𝜆 = 0.2 
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Figure 3. Temperature profile 𝑔(𝜂) for different values of electric field parameter 𝐸1 when 

       𝐾2 = 0.5, 𝑅𝑑 = 𝑄 = 0.1,𝑀 = 0.5, 𝜆 = 𝛽 = 1, 𝐸𝑐 = 0.2, 𝑟 = 2, 𝑃𝑟 = 0.72 

 

 
Figure 4. Concentration profile ℎ(𝜂) for different values of electric field parameter 𝐸1when 

                 𝐾2 = 𝛽 = 0.5,𝑀 = 1, 𝜆 = 𝑆𝑐 = γ = 0.2, 𝑟 = 2 
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Figure 5. Velocity profile 𝑓′(𝜂) for different values of  𝛽 when  𝐾2 = 0.5, 𝐸1 = 𝜆 = 0.1,𝑀 = 1 

 

 

 

 
Figure 6. Temperature profile 𝑔(𝜂) for different values of 𝛽 when 

                       𝐾2 = 0.5, 𝐸1 = 𝑅𝑑 = 𝑄 = 0.1,𝑀 = 1, 𝜆 = 𝐸𝑐 = 0.2, 𝑟 = 2 
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Figure 7.  Temperature profile 𝑔(𝜂) for different values of heat source parameter 𝑄 when 

𝐾2 = 𝑀 = 𝐸1 = 𝐸𝑐 = 0.1, 𝑟 = 2, 𝜆 = 𝛽 = 0.2, 𝑃𝑟 = 0.72 
 

 

 

 
Figure 8.  Temperature profile 𝑔(𝜂) for different values of Eckert number 𝐸𝑐 when 

𝐾2 = 𝑀 = 𝐸1 = 𝑅𝑑 =  𝑄 = 0.1, 𝜆 = 𝛽 = 0.2, 𝑟 = 2, 𝑃𝑟 = 0.72 



AAM: Intern. J., Special Issue No. 4 (March 2019)                                                                                                171 
 

 
 

 

 

 

 
Figure 9.  Temperature profile 𝑔(𝜂) for different values of thermal radiation 𝑅𝑑 when 

 𝐾2 = 𝑀 = 𝑄 = 𝐸1 = 𝐸𝑐 = 0.1, 𝜆 = 𝛽 = 0.2, 𝑃𝑟 = 0.71, 𝑟 = 2 
 
 

 
Figure 10. Concentration profile ℎ(𝜂)for different values of Schmidt number 𝑆𝑐 when 

                  𝐾2 = 𝑀 = 𝐸1 = 𝑅𝑑 =  0.1, 𝑟 = 2, 𝛾 =  𝜆 = 0.2 
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Figure 11. Concentration profile ℎ(𝜂) for different values of chemical reaction parameter  𝛾 > 0 

when  𝐾2 = 𝑀 = 𝐸1 = 𝑅𝑑 = 𝑆𝑐 = 0.1, 𝑟 = 2, 𝜆 = 0.2 

 

 
Figure 12.        Concentration profile ℎ(𝜂) for different values of chemical reaction parameter  

𝛾 < 0 when  𝐾2 = 𝑀 = 𝐸1 = 𝑅𝑑 = 𝑆𝑐 = 0.1, 𝑟 = 2, 𝜆 = 0.2 
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Figure 13.  Temperature profile 𝑔(𝜂) for different values of surface temperature parameter 𝑟 

when  𝐾2 = 𝑀 = 𝑄 =  𝐸1 = 𝐸𝑐 = 𝑅𝑑 = 0.1, 𝜆 = 𝛽 = 0.2, 𝑃𝑟 = 0.71 

 

 
Figure 14. Velocity profile 𝑓′(𝜂) for different values of porosity parameter 𝑘2 when 𝛽 =

0.2, 𝐸1 = 0.1,𝑀 = 0.1, 𝜆 = 0.2  
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Figure 15.     Temperature profile 𝑔(𝜂) for different values of porosity parameter 𝐾2 when 

𝑀 =  𝐸1 = 𝐸𝑐 = 𝑄 = 𝑅𝑑 = 0.1, 𝜆 = 𝛽 = 𝛾 = 0.2, 𝑃𝑟 = 0.71, 𝑟 = 2 
 

 
Figure 16.  Velocity profile 𝑓′(𝜂) for different values of magnetic field parameter 𝑀 with no 

electric filed (𝐸1 = 0)  when    𝐾2 =, 𝜆 = 𝛽 = 0.2 
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Figure 17.  Velocity profile 𝑓′(𝜂) for different values of magnetic field parameter  𝑀 when 

                      𝐾2 = 𝐸1 = 0.1, 𝜆 = 𝛽 = 0.2 

 


