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Abstract 

The steady laminar viscous incompressible nanofluid flow of mixed convection and mass 

transfer about an isothermal vertical flat plate embedded in Darcy porous medium in the 

presence of magnetic field and viscous dissipation is analyzed. The governing partial 

differential equations are converted into ordinary differential equations by similarity 

transformations. The coupled nonlinear ordinary differential equations are linearized by 

Quasi-linearization technique.  The linear ordinary differential equations are solved by using 

implicit finite difference scheme with the help of C-programming. Numerical calculations are 

carried out for different values of dimensionless parameter such as magnetic field, mixed 

convection parameter, inertia parameter, buoyancy ratio parameter, Eckert number, Prandtl 

number, Brownian motion parameter and Thermophoresis parameter. The temperature and 

concentration profiles increase with the increase of thermophoresis parameter. It is noticed 

that with the increase of Brownian motion parameter the temperature profile increases 

whereas concentration profile decreases. On the other hand, the Local Nusselt number and the 

local Sherwood number also presented and analyzed. 
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1. Introduction 
 

The nanofluid is the amalgamation of suspensions of nano-size particles into the conventional 

fluids which was firstly pioneered by Choi (1995). The nanoparticles involved in this fluid 

are made of metals, carbides and oxides or carbon nanotubes, and conventional fluids take 

account of water, oil and ethylene glycol. The thermal conductivity of nanoparticles is larger 

than that of regular fluids, and due to this fact solid particles are used to enhance the thermal 

properties of base fluids. So the existence of nano solid particles in the conventional fluids 

heat transfer characteristics enhanced. There are several potential uses of nanofluids in heat 

transfer such as engine cooling, refrigerator, chiller, microelectronics, and fuel cells. 

 

The word magneto-hydrodynamics has several industrial significance such as MHD 

generators, pumps, petroleum technologies and liquid metal cooling blanket for fusion 

reactor. Forghani et al. (2017) discussed the effect of Hartmann number on flow and heat 

transfer of Ag-water nanofluid with variable heat flux. Ganga et al. (2017) premeditated the 

impact of heat generation/absorption on MHD nanofluid boundary layer flow of a nanofluid 

over a vertical plate utilized Buongiorno model. Again, the influence of MHD nanofluid flow 

over an elongating flat plate was deliberated by Hatami et al. (2016) and Sheikholeslami et al. 

(2015). Recently, Salahuddin et al. (2016) examined the Carreau-Yasuda fluid flow past a flat 

sensor surface when magnetic field is applied. Mahmoudi et al.(2015)  studied the natural 

convection in an open cavity with non-uniform thermal radiation. Dagonchi et al. [8] 

investigated the consequences of thermal radiation on MHD flow of nanofluid between 

parallel plates. Nandy et al. (2013) scrutinized the impact of slip on the hydromagnetics 

stagnation point flow and heat transfer of nanofluids past an enlarging surface.  Karimipour et 

al. (2017) analyzed numerically the flow of different nanofluids in a microchannel. Jalilpour 

et al. (2014) studied the MHD flow of a nanofluid towards a stretching sheet by taking into 

account the surface heat flux and suction/blowing. Sheri and Thumma (2016) performed a 

numerical study by utilizing different nano-solid particle to discuss the heat transfer 

enhancement in MHD flow over a vertical plate. Pal and Mandal (2015) have presented the 

impact of viscous-Ohmic dissipation on hydro-magnetic boundary layer flow of nanofluid 

over an upright stretching/ shrinking surface in the existence of thermal radiation. Naramgari 

and Sulochana (2016) investigated the influence of thermal radiation and suction/injection on 

steady hydro-magnetic flow of suspension of nanoparticles over a porous stretching/shrinking 

surface by considering chemical reaction. 

 

Recently, the combined effect of viscous-Ohmic dissipation and thermal radiation on hydro-

magnetic flow of nanofluid over a stretching/shrinking sheet in the presence of slip and 

porous medium was studied by Ganesh et al. (2016).  Hayat et al. (2016) carried out a 

discussion over the nanofluid flow due to Riga plate with convective boundary conditions 

and heat generation/absorption. The repercussions of flow and heat transfer on nanofluids 

flow over a parallel flat plate have been observed by Ahmadi et al. (2014).  They found that 

Nusselt number accelerated with volume fraction of nano-solid particles. Vajravelu et al. 

(2011) investigated the impact of nanoparticle volume fraction of nanofluids and heat transfer 

characteristics in the fluid flow due to a stretching surface. The authors depicted that 

thickness of thermal boundary layer grows with nanoparticles volume fraction.  Recently, 

Rashidi et al. (2016) deliberated the effect of heat and mass transfer on MHD flow of 

micropolar nanofluid between two-coaxial parallel plates with uniform blowing and porous 

medium. In the past, there are some investigations on squeezing flow of nanofluid between 

parallel plates done by (2013-16). Ganga et al. (2015) scrutinized the influence of viscous and 

Ohmic dissipation, heat generation/absorption on radiative MHD flow of nanofluid over a 
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vertical plate.  In the earlier literatures, the combined effect of porous medium and viscous 

dissipation on nanofluid flow for different geometry was considered by Pandey et al. (2016). 

Sheikholeslami et al. (2015) inspected the influence of Brownian motion and thermophoresis 

on a steady flow of nanofluid between parallel plates.  

 

Ramesh et al. (2014) explored their research on stretching sheet and they analyzed the heat 

transfer characteristics of a nanofluid. Many researchers have studied and given valuable 

contribution in the field of nanofluid flows over a permeable stretching sheet. Simulation of 

magnetohydrodynamic CuO–water nanofluid flow and heat transfer in the presence of 

Lorentz forces was discussed by Sheikholeslami et al. (2014). Ellahi et al. (2013) illustrated 

non-Newtonian nanofluids flow through a porous medium between two coaxial cylinders by 

considering variable viscosity. Ellahi (2013) presented the analytical solution to analyze the 

effects of MHD and temperature dependent viscosity. 

 

The present paper deals with the effects of MHD on the nanofluid flow of mixed convection 

and mass transfer of a steady, two-dimensional, Darcy-Forchheimer, laminar boundary layer 

about an isothermal vertical flat plate embedded in a porous medium in the presence of 

chemical reaction, viscous dissipation with nano parameters. The governing non-linear 

differential equations are linearized by using the Quasi-linearization technique.  The implicit 

finite difference scheme is used to solve the coupled linear differential equations.    

  

2. Mathematical Description of the Problem 
 

Consider the steady, two-dimensional, Darcy-Forchheimer model and mixed convection 

boundary layer over a vertical flat plate of a constant temperature Tw and concentration Cw, 

which is embedded in a fluid saturated porous medium of ambient temperature T∞ and 

concentration C∞, respectively. The properties of the fluid and the porous medium are 

assumed to be constant, isotropic and homogenous.  The x-coordinate is measured along the 

surface from its leading edge and the y-coordinate is measured normal to it. With the 

Boussinesq approximation and Brownian motion of particles, the governing boundary-layer 

equations flow from the wall to the fluid saturated porous medium are:  

 

  
𝜕𝑢

𝜕𝑥
+  

𝜕𝑣

𝜕𝑦
= 0,                                                   (1) 

 

[1 +
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                                        𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2.                                                       (4) 

 

In the above equations u, v are the velocity components in the x and y directions respectively, 

g is the acceleration due to gravity, ν is the kinematic
 
viscosity,  𝛽 and 𝛽∗ are the coefficient 

of volume expansion and the volumetric coefficient of expansion with concentration 

respectively, K is the Darcy permeability of the porous medium, Cf , Cp are the Forchheimer 

coefficient and the specific heat of the fluid at constant pressure.  In addition, T and C are   

the temperature of the fluid inside the thermal boundary layer and the corresponding 

concentrations.  Furthermore 𝛼 and D are the effective thermal diffusivity and the Brownian 
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diffusion coefficient.  In Equation (2), the plus sign corresponds to the case where the 

buoyancy force has a component “aiding” the forced flow and the minus sign refer to the 

“opposing” case. 

 

The boundary conditions are given by 

 

                                             𝑣 = 0,         𝑇 = 𝑇𝑤 ,       𝐶 =  𝐶𝑤  as    𝑦 = 0, 

                                             𝑢 = 𝑢∞,     𝑇 =  𝑇∞,       𝐶 =  𝐶∞  as    𝑦 → ∞.                           (5) 

 

It is convenient to transform the governing equations into a dimensionless form which can be 

suitable for solution.  This can be done by introducing the dimensionless variables for mixed 

convection: 

 

                𝜂 = √𝑃𝑒𝑥  
𝑦

𝑥
  ,   𝜓 =  𝛼√𝑃𝑒𝑥𝑓(𝜂),   𝜃(𝜂) =

(𝑇−𝑇∞)

(𝑇w− 𝑇∞)
, 𝜙(𝜂) =

(𝐶− 𝐶∞)

(𝐶𝑤− 𝐶∞)
,               (6) 

 

where ψ is the stream function that satisfies the continuity equation and η is the 

dimensionless similarity variable.  With the change of variables, Equation (1) is identically 

satisfied and Equations (2)-(4) are transformed, respectively, to: 

 

                                 (1 + 𝐻𝑎2)𝑓" + 2𝛬𝑓′𝑓" = ± (
Ra𝑥

Pe𝑥
) (𝜃′ + 𝑁𝜙′),                                    (7) 

                         𝜃" +
1

2
𝑓𝜃′ + 𝑃𝑟𝐸𝑐𝑓" 2 + 𝑃𝑟𝑁𝑏𝜃′𝜙′ + 𝑃𝑟𝑁𝑡𝜃′2    =  0,                               (8) 

                                         𝜙" + 𝐿𝑒
1

2
𝑓𝜙′ +

𝑁𝑡

𝑁𝑏
𝜃"=0.                                                              (9) 

 

The corresponding dimensionless boundary conditions take the form: 

 

𝑓(𝜂) =  0, 𝜃(𝜂)  =  1, 𝜙(𝜂)  = 1 𝑜𝑛 𝜂 =  0, 
                                      𝑓′(𝜂) → 1, 𝜃(𝜂) → 0, 𝜙(𝜂) → 0 𝑎𝑠  𝜂 → ∞.                                    (10) 

 

Here, the primes denote differentiation with respect to η, Pr = 𝜈 𝛼⁄  is the Prandtl number,     

𝐿𝑒 =  𝛼 𝐷⁄   is the Schmidt number, 𝑁 =  𝛽∗(𝐶𝑤 − 𝐶∞)/𝛽(𝑇𝑤 − 𝑇∞)  is the  buoyancy ratio 

parameter, 𝑅𝑎𝑥   =  (𝐾𝑔𝛽)(𝑇𝑤 − 𝑇∞)𝑥/𝛼𝜈  is the Rayleigh number, 𝑃𝑒𝑥  =  𝑢∞𝑥/𝛼   is the  

local Peclet number, 𝐸𝑐 =  𝑢∞
2 /𝑐𝑓(𝑇𝑤 − 𝑇∞) is the Eckert number, 𝛬 =  𝑐𝑓√𝐾 𝑢∞/𝜈 is the 

inertia parameter, Brownian motion parameter 𝑁𝑏 = 𝜏𝐷𝐵(𝐶𝑤 − 𝐶∞) 𝜈⁄ , thermophoresis 

parameter 𝑁𝑡 = 𝜏𝐷𝑇(𝑇𝑤 − 𝑇∞) 𝜈𝑇∞⁄  and magnetic parameter 𝐻𝑎2 = 𝜎𝛽𝑜
2𝑘/𝜌𝜈. 

 

3. Numerical Solution 
 

Applying the Quasi-linearization technique (1965) to the non-linear Equation (7) we obtain as 

 

                       (1 + 𝐻𝑎2 + 2˄ 𝐹′)𝑓" + 2 λ F" 𝑓′  = ± (
Ra𝑥

Pe𝑥
) (𝜃′ +  𝑁𝜙′)+2 ˄ 𝐹" 𝐹′,             (11) 

 

where assumed F is the value of f at n
th

 iteration and f’ is at (n+1)
th

 iteration. The 

convergence criterion is fixed as ⃒F- f⃒ < 10-5. 
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Using an implicit finite difference scheme for the Equation (8), (9) and (11) we obtain 

 

               1           1 ,a i f i b i f i c i f i d i        
 

 

             1 1 1 11         1     ,a i i b i i c i i d i        

 

                   2 2 21         1    0a i i b i i c i i       , 

 

where 

       
2

1 2   1     2  – 0.5* *2 ,a i Ha F i h F i      

 

    2
1    2*  1         2    ,b i Ha F i     

                                

     2

1 2    1         2        0.5* *2 ,c i Ha F i h F i       

 

       1 1 2 1    * *  2 ,x

x

Ra
d i h h N F i F i

Pe
 

 
     

 
 

 

   1 1 1  1 – 0.5* *0.5*  2 ,a i h f i PrNb PrNt     

 

 1     2,b i   

 

   1 1 1  1   0.5* *0.5*   2 ,c i h f i PrNb PrNt      

 

     1 2 2 1 1  * *        *   * ,          d i h h Pr Ec f i f i      

 

   2 1  –  0.5* * *0.5* ,  a i h Le f i       

 

 2      2,b i   

 

   2  1   0.5* * *0.5* ,c i h Le f i   

 

   2 2*d i h hD i , and 

 

    2

1   1         2    ,A i Ha F i     

 

            2 1 1 2 1   2  ,       2  ,x

x

Ra
B i F i D i N F i F i

Pe
 

 
      

 
 

 

     1 1 1 1  1  ,     0.5*   2 ,A i B i f i PrNb PrNt      
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     1 2 2 1 1          *   * ,D i Pr Ec f i f i     

 

                   2 2 2 21   ,     *0.5* ,   .
Nt

A i B i Le f i D
Nb

     

 

4. Results and Discussion 
  

The system of nonlinear ordinary differential Equations (7)-(9) together with boundary 

conditions (10) are locally similar and solved numerically by using implicit finite difference 

scheme.  The coupled nonlinear differential equations, first linearized by using the Quasi-

linearization technique. The implicit finite difference scheme is applied to the coupled 

differential equation. The resulting algebraic system is solved by Gauss- Seidel method.  To 

compute the numerical values we have used the C programming code.  To get the physical 

insight of the problem, this method is adequate and gives accurate result for boundary layer 

equations. A uniform grid was adopted, which is concentrated towards the wall. The 

calculations are repeated until some convergent criterion is satisfied and the calculations are 

stopped  |𝐹 −  𝑓|  ≤  10−5 . In the present study, the boundary conditions for 𝜂  at ∞  are 

replaced by a sufficient large value of 𝜂 where the velocity approaches 1, at temperature and 

concentration approaches zero.  In order to see the effects of step size ℎ run the code for our 

model with two different step sizes as ℎ =  0.001 and 0.05 and in each case we found very 

good agreement between them on different profiles.  A parameter study of physical parameter 

is performed to illustrate interesting features of numerical solutions. 

 

The results of parametric study are shown graphically in Figures 1 to 9 and discussed.  In the 

present study we have adopted the following default parameter values for numerical 

computation 𝑃𝑟 = 0.73,
𝑅𝑎𝑥

𝑃𝑒𝑥
= 1, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1, 𝑁 = 2, 𝛬 =  1 and 𝐻𝑎 =  1.  

 

The effects of magnetic field parameter 𝐻𝑎  on velocity, temperature and concentration 

profiles are plotted in Figures 1(a)-(c) respectively.  It is clear from 1(a) that the velocity of 

the fluid decreases with the increase of magnetic parameter Ha, while the temperature of the 

fluid and concentration of the fluid increases with the increase of magnetic field parameter 

are shown in Figures 1(b)-(c). A magnetic strength increases the Lorentz force, which 

opposes the flow, also increase and leads to enhance the deceleration of the flow.  This result 

qualitatively agrees with the expectation since the magnetic field exerts retarding force on the 

mixed convection flow. 

 

Figures 2(a)-(c) present the trend of the velocity, temperature and concentration for the 

various values of mixed convection parameter respectively. When  
𝑅𝑎𝑥

𝑃𝑒𝑥
≫  1 , the flow is 

dominated by natural convection, whereas when 
𝑅𝑎𝑥

𝑃𝑒𝑥
≪ 1 the forced convection takes the 

leading role .When  
𝑅𝑎𝑥

𝑃𝑒𝑥
= 1 , the effect of natural and forced convection achieve equal 

importance and the flow is truly under mixed convection conditions. Since the buoyancy is 

aiding the flow, the mixed convection flow is taken positive value.  For the opposing flow, 

the value of mixed convection flow is taken negative value. Figure 2(a) shows that the fluid 

velocity in the boundary layer increases with the increase of mixed convection parameter 
𝑅𝑎𝑥

𝑃𝑒𝑥
 

for aiding flow. The mixed convection parameter effect is on the velocity profiles is to 

increase velocity profiles with increasing mixed convection parameter. Figures 2(b) and 2(c) 
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show that temperature and concentration profiles as well as thermal and solutal boundary 

layer thickness decrease with the increase value of mixed convection parameter 
𝑅𝑎𝑥

𝑃𝑒𝑥
. When 

the free stream and the buoyancy force are in opposite directions (opposing flow), the 

buoyancy force retards the fluid in the boundary layer. 

 

In Figures 3(a)-(c) depicts the effects of buoyancy ratio parameter 𝑁 on the fluid velocity, 

temperature and concentrations distributions respectively.  As N increases, it can be observed 

from Figure 3(a) that the maximum velocity increases.  From Figures 3(b) and 3(c) it is 

observed that the temperature and concentration profiles decrease with the increase of 𝑁. 

Figures 4(a)-(c) illustrates the effect of inertia parameter 𝛬  on velocity, temperature and 

concentration profiles respectively. It is clear from the Figure 4(a) the velocity profile 

decrease with the increase of inertia parameter 𝛬. This decrease in the fluid velocity takes 

place because when the porous medium inertia affects increase, the form drag of the porous 

medium increases.  It can be observed that reverse phenomena is noticed on the temperature 

and concentration distributions in the boundary layer increases owing to the increase in the 

value of inertia parameter 𝛬.  It is well known that the presence of porous medium in the flow 

presents an obstacle to flow causing the flow to move slower and the fluid temperature and 

concentration to increase. 

 

In Figures 5(a)-(c) the effect of viscous dissipation 𝐸𝑐  on velocity, temperature and 

concentration are presented.  As Eckert number 𝐸𝑐 increases the velocity increases.  With the 

effect of viscous dissipation the temperature profiles increases is observed from Figure 5(b). 

It is also noticed from Figure 5(c), the effect of viscous dissipation there is no significant 

changes on concentration profiles.  The effect of thermophoresis parameter 𝑁𝑡 is displayed in 

Figures 6(a) and 6(b) for temperature and concentration respectively. Temperature and 

concentration profiles increase with the increase of thermophoresis parameter. The effect of 

Brownian motion parameter 𝑁𝑏 for temperature and concentration is displayed in Figure 7(a) 

and 7(b) respectively.  With the increase of Brownian motion parameter 𝑁𝑏 it is noticed that 

temperature profile increases whereas concentration profile decreases.  The effect of Eckert 

number 𝐸𝑐  is to reduce the Nusselt number whereas it increases in Sherwood number in 

Figures 8(a)-8(b).  The viscous dissipation effect is more on Nusselt number when compare 

with the Sherwood number. The effect of buoyancy ratio 𝑁 on the heat and mass transfer 

results in terms of  
𝑁𝑢𝑥

√𝑃𝑒𝑥
    and  

𝑆ℎ𝑥

√𝑃𝑒𝑥
  are displaced in Figures 9(a) and 9(b). The effect of 

buoyancy ratio parameter 𝑁  is to reduce the value of Nusselt number and increases the 

Sherwood number  

 

5. Conclusion 
 

This work considered the effects of thermophoresis and Brownian motion parameters on 

Darcy Forchheimer mixed convection heat and mass transfer embedded in a nanofluid 

saturated porous medium under the influence of magnetic field parameter with viscous 

dissipation.  The governing partial differential equations are transformed into a system of 

ordinary differential equations using similarity transformation.  The non-linear ordinary 

differential equations are linearized by using Quasi-linearization technique and then solved 

numerically by using implicit finite difference scheme. 

 

The following conclusions are drawn: 
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1. The velocity profile is decreased with the increase of magnetic parameter 𝐻𝑎, inertia 

parameter Λ and viscous dissipation 𝐸𝑐 whereas reverse phenomena is observed in the 

case mixed convection 
𝑅𝑎𝑥

𝑃𝑒𝑥
 and buoyancy parameter 𝑁.  

 

2. The temperature profile increases with the increase of magnetic parameter 𝐻𝑎, inertia 

parameter Λ, viscous dissipation 𝐸𝑐 , thermophoresis parameter 𝑁𝑡 , Brownian motion 

parameter 𝑁𝑏 while with the increase of mixed convection parameter  
𝑅𝑎𝑥

𝑃𝑒𝑥
 and inertia 

parameter Λ  the temperature profile decreases 

 

3. The concentration profile is increased with the increase of magnetic parameter  𝐻𝑎 , 

inertia parameter Λ , thermophoresis parameter 𝑁𝑡  whereas the reverse phenomena is 

seen in  mixed convection  parameter 
𝑅𝑎𝑥

𝑃𝑒𝑥
, buoyancy ratio parameter 𝑁 and Brownian 

motion parameter 𝑁𝑏. 
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Figure 1. Effect of magnetic parameter 𝐻𝑎 on (a) Velocity profile (b) temperature profile 

                       (c) concentration profile   Pr = 0.73, 𝛬 =  1,
𝑅𝑎𝑥

𝑃𝑒𝑥
=  1 , 𝑁 =  2, 𝐸𝑐 =  0.5,  

                        𝑁𝑡 = 0.1  and  𝑁𝑏 = 0.1 
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Figure 2. Effect of mixed convection  parameter 
𝑅𝑎𝑥

𝑃𝑒𝑥
 on (a) Velocity profile  (b) temperature  

               profile (c) concentration profile 𝑃𝑟 = 0.73, 𝛬 = 0, 𝐻𝑎 =  1, 𝑁 =  2, 𝐸𝑐 =  0.5, 

                       𝑁𝑡 = 0.1 and 𝑏 = 0.1 
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Figure 3. Effect of buoyancy ratio parameter 𝑁 on (a) Velocity profile  (b) temperature profile 

         (c) concentration profile 𝑃𝑟 = 0.73, 𝛬 = 1, 𝐻𝑎 =  1, 
𝑅𝑎𝑥

𝑃𝑒𝑥
=  1, 𝐸𝑐 =  0.5, 𝑁𝑡 = 0.1   

         and  𝑁𝑏 = 0.1 
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Figure 4.  Effect of inertia parameter Λ on (a) Velocity profile (b) temperature profile 

                  (c) concentration profile 𝑃𝑟 = 0.73, 𝑁 = 2, 𝐻𝑎 =  1, 
𝑅𝑎𝑥

𝑃𝑒𝑥
=  1, 𝐸𝑐 =  0.5,  

                 𝑁𝑡 = 0.1  and 𝑁𝑏 = 0.1 
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Figure 5. Effect of Eckert number 𝐸𝑐 on (a) Velocity profile  (b) temperature  

                  profile (c) concentration profile  𝑃𝑟 = 0.73, 𝑁 = 2, 𝐻𝑎 =  1,
𝑅𝑎𝑥

𝑃𝑒𝑥
=  1, Λ = 1,  

                 𝑁𝑡 = 0.1 and 𝑁𝑏 = 0.1 
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Figure 6. Effect of Thermophoresis parameter 𝑁𝑡  on (a) temperature  profile                                

                              (b ) concentration profile 𝑃𝑟 = 0.73, 𝑁 = 2, 𝐻𝑎 =  1, 𝑅𝑎𝑥/𝑃𝑒𝑥 =  1,  

                              Λ = 1, 𝐸𝑐 = 0.5  and 𝑁𝑏 = 0.1 
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Figure 7. Effect of Brownian motion parameter on (a) temperature  profile (b) concentration  

                  profile 𝑃𝑟 = 0.73, 𝑁 = 2, 𝐻𝑎 =  1,
𝑅𝑎𝑥

𝑃𝑒𝑥
=  1, Λ = 1, 𝐸𝑐 = 0.5  and 𝑁𝑡 = 0.1 

 

 

 

 

 

 

 

 

Figure 8(a).  Effect of Nusselt number for various values of Eckert number, 

                   𝑃𝑟 = 0.73, 𝐻𝑎 =  1, 𝛬 = 1, 𝑁 = 2, 𝑁𝑡 = 0.1 and 𝑁𝑏 = 0.1 
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Figure 8(b).  Effect of Sherwood number for various values of Eckert number, 

               𝑃𝑟 = 0.73, 𝐻𝑎 =  1, 𝛬 = 1, 𝑁 = 2, 𝑁𝑡 = 0.1 and 𝑁𝑏 = 0.1 

 

 

 

 

 

 

 

 

Figure 9(a). Effect of Nusselt number for various values of  buoyancy ratio, 

                    𝑃𝑟 = 0.73, 𝐻𝑎 =  1, 𝛬 = 1, 𝐸𝑐 = 0.5, 𝑁𝑡 = 0.1 and 𝑁𝑏 = 0.1 

 

 

 

 

 

 

 

Figure 9(b). Effect of Sherwood number for various values of  buoyancy ratio, 

                 𝑃𝑟 = 0.73, 𝐻𝑎 =  1, 𝛬 = 1, 𝐸𝑐 = 0.5, 𝑁𝑡 = 0.1 and 𝑁𝑏 = 0.1 
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